Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrew D. Burrows, Ross W. Harrington* \ddagger and Mary F. Mahon

Department of Chemistry, University of Bath, Claverton Down, Bath BA1 7AY, England
\# Current address: School of Natural Sciences, Bedson Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, England.

Correspondence e-mail:
r.w.harrington@ncl.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.067$
Data-to-parameter ratio $=18.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorobis(1,3-dimethylthiourea-кS)zinc(II)

Determination of the crystal structure of the title compound, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, reveals a distorted tetrahedral geometry around the zinc centre which occupies a twofold axis. Both intra- and intermolecular hydrogen bonding is observed between the 1,3-dimethylthiourea NH groups and the coordinated Cl atoms.

Comment

The title compound, (I), was formed as part of our investigations into the formation of bis-thiourea $\operatorname{zinc}(\mathrm{II})$ dicarboxylate polymers (Burrows et al., 2000, 2004; Burke et al., 2003).

(I)

The asymmetric unit of (I) (Fig. 1) consists of a zinc(II) centre occupying a twofold symmetry axis, to which is coordinated one 1,3-dimethylthiourea ligand, via the S atom, and one Cl^{-}. The complete molecule is generated by transformation through a twofold rotation axis, inherent in the space group. The geometry around the Zn centre is distorted tetrahedral, with bond angles ranging from 104.35 (3) to

Figure 1
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms represented by small spheres. [Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.]

Received 15 July 2004
Accepted 18 August 2004 Online 28 August 2004
$113.300(19)^{\circ}$. This study confirms previous conclusions on the structure of (I) which emerged on the basis of IR studies (Marcotrigiano, 1975).

The NH groups of the 1,3-dimethylthiourea ligands are arranged such that they facilitate the formation of both intraand intermolecular hydrogen bonds, involving Cl^{-}anions as acceptors in both cases; details are given in Table 1. As seen in a number of zinc(II) bis(thiourea) dicarboxylate polymers (Burrows et al., 2000), the intramolecular hydrogen bonds have graph-set notation $S(6)$. The intermolecular hydrogen bonds link the molecules into infinite hydrogen-bonded chains (Fig. 2). These interactions occur pairwise and lead to hydrogen-bonded rings with graph-set notation $R_{2}^{2}(12)$. There is no inter-chain hydrogen bonding present.

Experimental

Equimolar aqueous solutions of zinc(II) tetra(1,3-dimethylthiourea) dichloride (Ashcroft, 1970) and sodium salts of succinic, itaconic or mesaconic acids were allowed to evaporate slowly over a period of two weeks, in each case resulting in the formation of colourless crystals. Analysis by single-crystal X-ray diffraction revealed the identity of the products as (I) and confirmed that the dicarboxylate was not incorporated into the structure.

Crystal data

$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=344.62$
Monoclinic, $C 2 / c$
$a=13.0230(4) \AA$
$b=8.9470$ (3) \AA
$c=12.4350$ (3) \AA
$\beta=106.967$ (2) ${ }^{\circ}$
$V=1385.82(7) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.652 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 1063 \\
& \text { reflections } \\
& \theta=0.2-26.3^{\circ} \\
& \mu=2.44 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.18 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.655, T_{\text {max }}=0.697$
8273 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.067$
$S=1.14$
1580 reflections
85 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
A view of the intermolecular hydrogen-bond interactions in (I), leading to chains along the crystallographic [101] direction.

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 11$	$0.884(17)$	$2.337(18)$	$3.2110(19)$	$170(3)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.887(17)$	$2.47(2)$	$3.2737(19)$	$152(2)$
Symmetry code: (i) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$				
l				

H atoms were included at calculated positions on all carbon centres, being constrained to an ideal geometry with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{N}$ bond. The position of the amino H atoms were located from the difference map and refined isotropically subject to a distance constraint of $0.89 \AA$.

Data collection: COLLECT (Hooft, 1998); cell refinement: $H K L$ DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL and local programs.

The EPSRC is thanked for funding.

References

Ashcroft, S. J. (1970). J. Chem. Soc. A, pp. 1020-1024.
Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Bruker (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
Burke, N. J., Burrows, A. D., Harrington, R. W. \& Mahon, M. F. (2003). Dalton Trans. pp. 3840-3849.
Burrows, A. D., Donovan, A. S., Harrington, R. W. \& Mahon, M. F. (2004). Eur. J. Inorg. Chem.. Accepted.
Burrows, A. D., Harrington, R. W. \& Mahon, M. F. (2000). J. Chem. Soc. Dalton Trans. pp. 3845-3854.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Marcotrigiano, G. (1975). Z. Anorg. Allg. Chem. 417, 75-80.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2004). E60, m1317-m1318 [https://doi.org/10.1107/S1600536804020550]

Dichlorobis(1,3-dimethylthiourea- κ S)zinc(II)

Andrew D. Burrows, Ross W. Harrington and Mary F. Mahon

Dichlorobis(1,3-dimethylthiourea-kS)zinc(II)

Crystal data

$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=344.62$
Monoclinic, C2/c
Hall symbol: -C2yc
$a=13.0230$ (4) \AA
$b=8.9470(3) \AA$
$c=12.4350(3) \AA$
$\beta=106.967(2)^{\circ}$
$V=1385.82(7) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD area-detector
diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.655, T_{\text {max }}=0.697$

$$
\begin{aligned}
& F(000)=704 \\
& D_{\mathrm{x}}=1.652 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71070 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=0.2-26.3^{\circ} \\
& \mu=2.44 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.18 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 8273 \text { measured reflections } \\
& 1580 \text { independent reflections } \\
& 1439 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.034 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=4.0^{\circ} \\
& h=-16 \rightarrow 16 \\
& k=-11 \rightarrow 11 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.067$
$S=1.14$
1580 reflections
85 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0178 P)^{2}+2.1477 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.43$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Zn1	0.5000	$0.65085(4)$	0.2500	$0.02036(12)$
C11	$0.39368(4)$	$0.80208(7)$	$0.32074(4)$	$0.03019(15)$
S1	$0.60867(4)$	$0.49039(6)$	$0.38451(4)$	$0.02451(15)$
N1	$0.74153(14)$	$0.5551(2)$	$0.58578(15)$	$0.0249(4)$
H1	$0.760(2)$	$0.611(3)$	$0.6472(19)$	$0.043(8)^{*}$
N2	$0.59505(15)$	$0.7072(2)$	$0.52832(15)$	$0.0248(4)$
H2	$0.5344(16)$	$0.730(3)$	$0.477(2)$	$0.034(7)^{*}$
C1	$0.65113(16)$	$0.5921(2)$	$0.50836(17)$	$0.0205(4)$
C2	$0.8128(2)$	$0.4339(3)$	$0.5763(2)$	$0.0334(5)$
H2A	0.8203	0.4326	0.5001	$0.043(8)^{*}$
H2C	0.7827	0.3385	0.5914	$0.052(9)^{*}$
H2B	0.8834	0.4490	0.6309	$0.054(9)^{*}$
C3	$0.62235(19)$	$0.7902(3)$	$0.63317(19)$	$0.0302(5)$
H3A	0.6953	0.8301	0.6488	$0.022(6)^{*}$
H3B	0.6185	0.7237	0.6945	$0.043(8)^{*}$
H3C	0.5716	0.8730	0.6270	$0.042(8)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.02062(19)$	$0.02289(19)$	$0.01535(18)$	0.000	$0.00177(13)$	0.000
C11	$0.0290(3)$	$0.0365(3)$	$0.0220(3)$	$0.0119(2)$	$0.0026(2)$	$-0.0025(2)$
S1	$0.0288(3)$	$0.0223(3)$	$0.0178(3)$	$0.0039(2)$	$-0.0006(2)$	$-0.00186(19)$
N1	$0.0237(9)$	$0.0275(9)$	$0.0198(9)$	$0.0034(7)$	$0.0005(7)$	$-0.0016(7)$
N2	$0.0226(9)$	$0.0285(10)$	$0.0196(9)$	$0.0047(7)$	$0.0002(7)$	$-0.0026(7)$
C1	$0.0200(10)$	$0.0223(10)$	$0.0187(9)$	$-0.0023(8)$	$0.0047(8)$	$0.0015(8)$
C2	$0.0321(12)$	$0.0357(13)$	$0.0277(11)$	$0.0124(10)$	$0.0016(9)$	$0.0000(10)$
C3	$0.0304(12)$	$0.0328(12)$	$0.0256(12)$	$0.0019(10)$	$0.0051(9)$	$-0.0072(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Zn} 1-\mathrm{Cl1}$	$2.2874(6)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.327(3)$
$\mathrm{Zn} 1-\mathrm{Cl1} 1^{\mathrm{i}}$	$2.2874(6)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.452(3)$
$\mathrm{Zn} 1-\mathrm{S} 1$	$2.3410(5)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{Zn} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.3410(5)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
$\mathrm{~S} 1-\mathrm{C} 1$	$1.734(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800
$\mathrm{~N} 1-\mathrm{H} 1$	$0.887(17)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 1$	$1.327(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 2$	$1.454(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
$\mathrm{~N} 2 — \mathrm{H} 2$	$0.884(17)$		

$\mathrm{Cl1}-\mathrm{Zn} 1-\mathrm{Cl1}^{\text {i }}$	107.47 (3)
$\mathrm{Cl1}-\mathrm{Zn} 1-\mathrm{S} 1$	113.300 (19)
$\mathrm{Cl1} 1^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{S} 1^{\text {i }}$	113.300 (19)
$\mathrm{Cl1}-\mathrm{Zn} 1-\mathrm{Sl}^{\text {i }}$	109.27 (2)
$\mathrm{Cl1}{ }^{\text {i }}$-Zn1-S1	109.27 (2)
$\mathrm{S} 1-\mathrm{Zn} 1-\mathrm{S} 1^{\text {i }}$	104.35 (3)
Zn1-S1-C1	106.40 (7)
$\mathrm{H} 1-\mathrm{N} 1-\mathrm{C} 1$	116.6 (19)
$\mathrm{H} 1-\mathrm{N} 1-\mathrm{C} 2$	118.0 (19)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	125.39 (19)
$\mathrm{H} 2-\mathrm{N} 2-\mathrm{C} 1$	117.8 (18)
$\mathrm{H} 2-\mathrm{N} 2-\mathrm{C} 3$	117.8 (18)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	124.14 (18)
S1-C1-N1	119.92 (16)
$\mathrm{Cl1}-\mathrm{Zn} 1-\mathrm{S} 1-\mathrm{C} 1$	-38.29 (8)
$\mathrm{Cl1}{ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{S} 1-\mathrm{C} 1$	81.50 (7)
S1- ${ }^{\text {i }}$ n1-S1-C1	-157.04 (8)
C2-N1-C1-S1	1.1 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	-179.0 (2)

$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$121.53(15)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$118.55(19)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$175.64(17)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$-4.3(3)$
$\mathrm{Zn} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$-155.05(15)$
$\mathrm{Zn} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$25.05(19)$

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{Cl1}$	$0.88(2)$	$2.34(2)$	$3.2110(19)$	$170(3)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.89(2)$	$2.47(2)$	$3.2737(19)$	$152(2)$

Symmetry code: (ii) $x+1 / 2,-y+3 / 2, z+1 / 2$.

