organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrew N Boa and Jonathan D Crane*

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.049 wR factor = 0.147 Data-to-parameter ratio = 18.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(3,5-Dimethylpyrazol-1-yl)acetic acid

At 150 K, the title compound, $C_7H_{10}N_2O_2$, comprises onedimensional hydrogen-bonded homochiral helical chains of molecules. Received 27 April 2004 Accepted 4 May 2004 Online 8 May 2004

Comment

The molecular structure of the title compound, (I), is shown in Fig. 1 and selected structural parameters are listed in Table 1. The least-squares planes of the pyrazole ring and the carboxylic acid group are almost mutually perpendicular, with a dihedral angle of 87.57 (7)°, and atom N2 is close to being coplanar with the carboxylic acid group, lying only 0.0067 (15) Å out of the least-squares plane of the latter. The molecules form homochiral helical hydrogen-bonded chains parallel to the *b* axis (Fig. 2 and Table 2).

Experimental

The title compound, (I), was prepared according to the method of Micetich (1970).

Crystal data

 $C_7H_{10}N_2O_2$ $M_r = 154.17$ Orthorhombic, $P2_12_12_1$ a = 4.8528 (4) Å b = 7.0073 (6) Å c = 23.256 (3) Å $V = 790.82 (13) Å^3$ Z = 4 $D_x = 1.295 Mg m^{-3}$

Mo K α radiation Cell parameters from 6939 reflections $\theta = 3.0-34.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 150 (2) KLath, colourless $0.60 \times 0.25 \times 0.10 \text{ mm}$

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Stoe IPDS-II area-detector diffractometer φ and ω scans Absorption correction: none 11979 measured reflections 2013 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.147$ S = 1.052013 reflections 107 parameters H atoms treated by a mixture of independent and constrained refinement 1357 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 34.8^{\circ}$ $h = -7 \rightarrow 6$ $k = -11 \rightarrow 10$ $l = -37 \rightarrow 37$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0896P)^2] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.26 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.26 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ \text{Extinction coefficient: } 0.088 (15) \end{split}$$

Table 1

Selected geometric parameters (Å, °).

1.318 (2)	C1-C2	1.407 (3)
1.201 (2)	N1-C1	1.331 (2)
1.359 (2)	N2-C4	1.451 (2)
1.348 (2)	C4-C5	1.514 (3)
1.381 (3)		
119.87 (14)	O2-C5-O1	124.93 (18)
110.48 (15)		
87.48 (19)	N2-C4-C5-O2	0.7 (3)
	1.318 (2) 1.201 (2) 1.359 (2) 1.348 (2) 1.381 (3) 119.87 (14) 110.48 (15) 87.48 (19)	$\begin{array}{cccc} 1.318 & (2) & C1-C2 \\ 1.201 & (2) & N1-C1 \\ 1.359 & (2) & N2-C4 \\ 1.348 & (2) & C4-C5 \\ 1.381 & (3) \\ \end{array}$ $\begin{array}{cccc} 119.87 & (14) & O2-C5-O1 \\ 110.48 & (15) & \\ 87.48 & (19) & N2-C4-C5-O2 \\ \end{array}$

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots N1^i$	0.95 (3)	1.79 (3)	2.723 (2)	169 (3)
Symmetry code: (i)	$2-x, y-\frac{1}{2}, \frac{1}{2}-x$	ζ.		

All H atoms were initially located in a difference Fourier map. The positional and isotropic displacement parameters for the hydroxyl H atom were freely refined. The methyl H atoms were constrained to an ideal geometry, with a C-H distance of 0.98 Å, but each group was allowed to rotate freely about its X-C bond. All other C-H atoms

Figure 2

The packing and unit cell of (I), viewed approximately down the a axis. Hydrogen bonds are denoted by dashed lines.

were placed in geometrically idealized positions, with C–H distances of 0.95–0.99 Å. $U_{\rm iso}({\rm H})$ values were set at $1.2U_{\rm eq}({\rm C})$ for all C–H atoms.

Data collection: X-AREA (Stoe, 2001); cell refinement: X-AREA; data reduction: X-RED32 (Stoe, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2001).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Micetich, R. G. (1970). Can. J. Chem. 48, 2006-2015.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.
- Stoe. (2001). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.

supporting information

Acta Cryst. (2004). E60, o966–o967 [https://doi.org/10.1107/S1600536804010761]

(3,5-Dimethylpyrazol-1-yl)acetic acid

Andrew N Boa and Jonathan D Crane

(3,5-Dimethyl-pyrazol-1-yl)acetic acid

Crystal data

C₇H₁₀N₂O₂ $M_r = 154.17$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 4.8528 (4) Å b = 7.0073 (6) Å c = 23.256 (3) Å V = 790.82 (13) Å³ Z = 4

Data collection

Stoe IPDS-II area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 11979 measured reflections 2013 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.147$ S = 1.052013 reflections 107 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 328 $D_x = 1.295 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6939 reflections $\theta = 3.0-34.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 150 KLath, colourless $0.60 \times 0.25 \times 0.10 \text{ mm}$

1357 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 34.8^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -7 \rightarrow 6$ $k = -11 \rightarrow 10$ $l = -37 \rightarrow 37$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0896P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26$ e Å⁻³ $\Delta\rho_{min} = -0.26$ e Å⁻³ Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.088 (15)

Special details

Experimental. The crystal was mounted under the perfluoro-polyether PFO-XR75 (Lancaster Synthesis). A total of 183 frames (3 minute exposure) were collected (phi/omega: 60/0-150, 140/0-33 delta-omega = 1°.)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric Sci.(1965),15(II-A),807).

Plane 1 Atom d s d/s (d/s)**2 N1 * 0.0052 0.0016 3.329 11.084 N2 * -0.0068 0.0015 - 4.436 19.679 C1 * -0.0023 0.0019 - 1.194 1.425 C2 * -0.0046 0.0021 - 2.203 4.852 C3 * 0.0093 0.0020 4.733 22.397 C4 0.1719 0.0019 91.699 8408.692 C6 0.0192 0.0022 8.748 76.533 C7 0.0805 0.0025 31.975 1022.373 ==== Sum((d/s)**2) for starred atoms 59.437 Chi-squared at 95% for 2 degrees of freedom; 5.99

Plane 2 Atom d s d/s (d/s)**2 C4 * -0.0018 0.0019 - 0.939 0.882 C5 * 0.0065 0.0019 3.369 11.352 O1 * -0.0012 0.0015 - 0.843 0.710 O2 * -0.0029 0.0020 - 1.409 1.984 N2 - 0.0067 0.0015 - 4.325 18.707 ===== Sum((d/s)**2) for starred atoms 14.928 Chi-squared at 95% for 1 degrees of freedom: 3.84

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 87.57 (0.07) 92.43 (0.07)

Possible hydrogen bonds Donor-H Donor-Acceptor H-Acceptor Donor-H----Acceptor

O1 -H1 O1 ···N1 (1) H1 ···N1 (1) O1 -H1 ···N1 (1) 0.945(.029) 2.723(.002) 1.788(.029) 169.21 (2.64)

C4 -H4A C4 ···O2 (3) H4A ···O2 (3) C4 -H4A ···O2 (3) 0.990(.002) 3.090(.003) 2.369(.002) 128.98 (0.12)

C4 -H4B C4 ···O2 (4) H4B ···O2 (4) C4 -H4B ···O2 (4) 0.990(.002) 3.203(.003) 2.295(.002) 152.05 (0.12)

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.7445 (3)	0.7871 (2)	0.20669 (6)	0.0365 (3)
H1	0.857 (6)	0.711 (4)	0.1827 (11)	0.047 (7)*
O2	1.0832 (3)	0.7353 (3)	0.26981 (7)	0.0506 (5)
N1	0.9883 (3)	1.0557 (2)	0.36906 (6)	0.0305 (3)
N2	0.8155 (3)	0.9087 (2)	0.35669 (6)	0.0302 (3)
C1	1.1052 (4)	1.0099 (3)	0.41895 (7)	0.0324 (4)
C2	1.0090 (5)	0.8317 (3)	0.43831 (8)	0.0359 (4)
H2	1.0595	0.7673	0.4727	0.043*
C3	0.8258 (4)	0.7701 (3)	0.39683 (7)	0.0340 (4)
C4	0.6802 (4)	0.9005 (3)	0.30112 (7)	0.0322 (3)
H4A	0.6406	1.0316	0.2876	0.039*
H4B	0.5028	0.8318	0.3049	0.039*
C5	0.8611 (4)	0.7992 (3)	0.25772 (7)	0.0315 (4)
C6	1.3125 (5)	1.1405 (3)	0.44582 (8)	0.0396 (4)
H6A	1.3129	1.2628	0.4254	0.048*
H6B	1.4959	1.0825	0.4434	0.048*
H6C	1.2644	1.1617	0.4862	0.048*
C7	0.6677 (5)	0.5879 (3)	0.39156 (10)	0.0459 (5)
H7A	0.7373	0.5148	0.3587	0.055*
H7B	0.4721	0.6166	0.3857	0.055*
H7C	0.6901	0.5127	0.4268	0.055*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0385 (7)	0.0411 (7)	0.0300 (5)	0.0043 (6)	-0.0031 (5)	-0.0059 (5)
O2	0.0321 (7)	0.0757 (12)	0.0439 (8)	0.0119 (8)	-0.0075 (6)	-0.0208 (8)
N1	0.0321 (7)	0.0315 (7)	0.0277 (6)	-0.0024 (6)	0.0000 (6)	-0.0027 (5)
N2	0.0305 (7)	0.0306 (6)	0.0295 (6)	-0.0011 (6)	0.0010 (6)	-0.0022 (5)
C1	0.0319 (8)	0.0369 (9)	0.0284 (7)	-0.0021 (7)	0.0020 (7)	-0.0011 (6)
C2	0.0388 (9)	0.0390 (9)	0.0299 (7)	-0.0019 (8)	0.0000(7)	0.0040 (7)
C3	0.0353 (9)	0.0345 (8)	0.0322 (7)	-0.0027 (8)	0.0035 (7)	0.0012 (6)
C4	0.0297 (8)	0.0361 (8)	0.0309 (7)	0.0010 (7)	-0.0026 (7)	-0.0019 (6)
C5	0.0287 (8)	0.0342 (8)	0.0316 (7)	-0.0040 (7)	-0.0017 (6)	-0.0030 (6)
C6	0.0402 (10)	0.0454 (10)	0.0334 (8)	-0.0074 (9)	-0.0029 (8)	-0.0033 (8)
C7	0.0528 (13)	0.0390 (10)	0.0457 (10)	-0.0127 (10)	-0.0002(10)	0.0028 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C5	1.318 (2)	С2—Н2	0.9500	_
01—H1	0.95 (3)	C3—C7	1.495 (3)	
O2—C5	1.201 (2)	C4—H4A	0.9900	
N1—N2	1.359 (2)	C4—H4B	0.9900	
N2—C3	1.348 (2)	С6—Н6А	0.9800	
С2—С3	1.381 (3)	C6—H6B	0.9800	
C1—C2	1.407 (3)	С6—Н6С	0.9800	
N1—C1	1.331 (2)	С7—Н7А	0.9800	
N2—C4	1.451 (2)	С7—Н7В	0.9800	
C4—C5	1.514 (3)	С7—Н7С	0.9800	
C1—C6	1.497 (3)			
C5—O1—H1	108.5 (17)	C5—C4—H4B	109.6	
C1—N1—N2	105.34 (15)	H4A—C4—H4B	108.1	
C3—N2—N1	112.12 (15)	O2—C5—O1	124.93 (18)	
C3—N2—C4	127.23 (16)	O2—C5—C4	122.63 (17)	
N1—N2—C4	119.87 (14)	O1—C5—C4	112.42 (16)	
N1-C1-C2	110.60 (17)	C1—C6—H6A	109.5	
N1-C1-C6	120.19 (17)	C1—C6—H6B	109.5	
C2—C1—C6	129.19 (18)	H6A—C6—H6B	109.5	
C3—C2—C1	105.50 (16)	C1—C6—H6C	109.5	
С3—С2—Н2	127.3	H6A—C6—H6C	109.5	
C1—C2—H2	127.3	H6B—C6—H6C	109.5	
N2—C3—C2	106.42 (17)	С3—С7—Н7А	109.5	
N2—C3—C7	122.65 (17)	С3—С7—Н7В	109.5	
С2—С3—С7	130.89 (18)	H7A—C7—H7B	109.5	
N2-C4-C5	110.48 (15)	С3—С7—Н7С	109.5	
N2—C4—H4A	109.6	H7A—C7—H7C	109.5	
С5—С4—Н4А	109.6	H7B—C7—H7C	109.5	
N2—C4—H4B	109.6			

supporting information

N2-N1-C1-C2 $0.6 (2)$ $C1-C2-C3-N2$ $-1.1 (2)$ N2-N1-C1-C6 $179.48 (17)$ $C1-C2-C3-C7$ $176.6 (2)$ N1-C1-C2-C3 $0.3 (2)$ $C3-N2-C4-C5$ $-81.6 (2)$ C6-C1-C2-C3 $-178.4 (2)$ $N1-N2-C4-C5$ $87.48 (19)$ N1-N2-C3-C2 $1.6 (2)$ $N2-C4-C5-O2$ $0.7 (3)$	
C4—N2—C3—C2 171.38 (18) N2—C4—C5—O1 179.42 (15)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
O1—H1···N1 ⁱ	0.95 (3)	1.79 (3)	2.723 (2)	169 (3)

Symmetry code: (i) -x+2, y-1/2, -z+1/2.