Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### John N. Low,<sup>a</sup> Justo Cobo,<sup>b</sup> Angy Ortíz,<sup>c</sup> Paola Cuervo,<sup>c</sup> Rodrigo Abonia<sup>c</sup> and Christopher Glidewell<sup>d</sup>\*

<sup>a</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, <sup>b</sup>Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, <sup>c</sup>Grupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360 Colombia, and <sup>d</sup>School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

#### Key indicators

Single-crystal X-ray study T = 120 KMean  $\sigma$ (C–C) = 0.004 Å R factor = 0.041 wR factor = 0.086 Data-to-parameter ratio = 7.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

## organic papers

## *rac*-5-Acetyl-6-(4-nitrophenyl)-6,7-dihydro-5*H*-1,3-dioxolo[4,5-g]quinoline-8-one: chains of rings built from C— $H \cdots O$ and C— $H \cdots \pi$ (arene) hydrogen bonds

Molecules of the title compound,  $C_{18}H_{14}N_2O_6$ , are linked into chains by a combination of one  $C-H\cdots O$  and one  $C-H\cdots \pi$ (arene) hydrogen bond, augmented by a dipolar carbonyl–carbonyl interaction.

Received 17 May 2004 Accepted 19 May 2004 Online 22 May 2004

#### Comment

The title compound, (I), was prepared as an intermediate in the preparation of new bis-amides derived from tetrahydroquinolones, for use as model compounds for DNA intercalating agents (Gamage *et al.*, 1999; Chacón-García & Martínez, 2001; Deady *et al.*, 2001).



Compound (I) (Fig. 1) crystallizes in the polar space group  $Pna2_1$ . The molecule contains a stereogenic centre at C6, and the selected reference molecule is of S configuration; however, the space group accommodates equal numbers of R and S enantiomers.

For the heterocyclic ring (N5/C4A/C8A/C8/C7/C6), the ring-puckering parameters (Cremer & Pople, 1975) for this atom sequence,  $\theta = 124.7$  (3)° and  $\varphi = 120.3$  (4)°, indicate an almost pure envelope form (Evans & Boeyens, 1989). The inter-bond angles at N5 (Table 1) indicate that this atom has



The S enantiomer of compound (I), showing the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

#### Figure 1

 $\odot$  2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Cryst. (2004). E60, o1057-o1059



Figure 2

Stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain along [100].

effectively planar coordination, as expected for amidic N, but, unexpectedly, the nitrophenyl substituent at C6 occupies an axial site. Within the fused-ring system, the bond lengths (Table 1) show several unexpected features. In particular, the bonds C3A-C4 and C9-C9A are significantly shorter than the other bonds in the carbocyclic aromatic ring, and the bond C4A-N5 is very long for its type: the mean value for bonds of this type (Allen et al., 1987) is 1.371 Å. It may also be noted that the two carbonyl C=O distances are identical, despite their different local environments.

The molecules of (I) are linked into chains by a combination of C-H···O and C-H··· $\pi$ (arene) hydrogen bonds, augmented by a dipolar carbonyl-carbonyl interaction. Atoms C62 and C63 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to amidic atom O51 and to the ring C61-C66, both in the molecule at  $(\frac{1}{2} + x, \frac{3}{2} - y, z)$ , and propagation of these interactions produces a chain of rings running parallel to the [100] direction and generated by the *a* glide plane at y =0.75 (Fig. 2). In addition, carbonyl atom O51 in the molecule at (x, y, z) forms a short contact with the carbonyl atom C51 in the molecule at  $(x - \frac{1}{2}, \frac{3}{2} - y, z)$ : the O···C distance is 3.001 (3) Å, the C–O···C angle is 150 (4)° and the O···C–O angle is 87.4 (2) $^{\circ}$ , indicative of a type I interaction (Allen *et al.*, 1998), which reinforces the [100] chain.

Two antiparallel chains of this type pass through each unit cell, generated by the *a* glide planes at y = 0.25 and 0.75, but there are no direction-specific interactions between adjacent chains. In particular, there are no  $\pi$ - $\pi$  stacking interaction and no C-H···O hydrogen bonds involving the nitro O atoms.

#### **Experimental**

A mixture of 6-(4-nitrophenyl)-6,7-dihydro-5H-[1,3]dioxolo[4,5-g]quinolin-8-one (250 mg, 0.71 mmol) (Donnelly & Farell, 1990) and acetic anhydride (3 ml) was heated at 353 K for 90 min. After reaction was complete (as shown by thin-layer chromatography), the solvent was removed under vacuum and the resulting solid was washed with water and then purified by column chromatography on silica gel with chloroform-ethyl acetate (9:1 v/v) as eluant, to give a pale yellow solid (60% yield, m.p. 483 K). MS (70 eV): m/e (%) 354  $(40, M^+)$ , 312 (86), 190 (39), 43 (100). Crystals suitable for singlecrystal X-ray diffraction were grown from a solution in 96% aqueous ethanol.

| Crystal | d | ata |
|---------|---|-----|
|---------|---|-----|

| Mo K $\alpha$ radiation        |
|--------------------------------|
| Cell parameters fr             |
| reflections                    |
| $\theta = 3.3-27.1^{\circ}$    |
| $\mu = 0.12 \text{ mm}^{-1}$   |
| T = 120 (2)  K                 |
| Needle, colourless             |
| $0.30 \times 0.10 \times 0.09$ |
|                                |
|                                |

#### Data collection

Nonius KappaCCD diffractometer  $\varphi$  scans, and  $\omega$  scans with  $\kappa$  offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997)

 $T_{\min} = 0.956, \ T_{\max} = 0.989$ 

15335 measured reflections 1762 independent reflections

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.042$ | + 0.0405P]                                                 |
| $wR(F^2) = 0.087$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.06                        | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 1762 reflections                | $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$  |
| 237 parameters                  | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   | Extinction correction: SHELXL97                            |
|                                 | Extinction coefficient: 0.0110 (18)                        |

parameters from 1952

 $\times$  0.10  $\times$  0.09 mm

1360 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.082$ 

 $\theta_{\rm max} = 27.1^{\circ}$ 

 $h = -8 \rightarrow 7$  $k = -27 \rightarrow 27$ 

 $l = -13 \rightarrow 13$ 

#### Table 1

Selected geometric parameters (Å, °).

| O1-C2      | 1.431 (4) | C8-C8A    | 1.480 (4) |
|------------|-----------|-----------|-----------|
| C2-O3      | 1.440 (4) | C8A-C9    | 1.407 (4) |
| O3-C3A     | 1.367 (3) | C9-C9A    | 1.352 (4) |
| C3A-C4     | 1.369 (4) | C9A-O1    | 1.381 (3) |
| C4-C4A     | 1.400 (4) | C3A-C9A   | 1.385 (4) |
| C4A-N5     | 1.425 (3) | C4A-C8A   | 1.403 (4) |
| N5-C6      | 1.472 (4) | N5-C51    | 1.388 (4) |
| C6-C7      | 1.527 (4) | C51-O51   | 1.223 (3) |
| C7-C8      | 1.506 (4) | C8-O8     | 1.223 (4) |
| C51-N5-C4A | 125.0 (2) | C4A-N5-C6 | 115.1 (2) |
| C51-N5-C6  | 118.1 (2) |           |           |

Table 2 Hydrogen-bonding geometry (Å, °).

| $D - H \cdots A$                                         | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $C62 - H62 \cdots O51^{i}$<br>$C63 - H63 \cdots Cg1^{i}$ | 0.95<br>0.95 | 2.48<br>2.98            | 3.358 (4)<br>3.693 (3) | 153<br>132                           |

Symmetry code: (i)  $\frac{1}{2} + x, \frac{3}{2} - y, z$ . Cg1 is the centroid of ring C61–C66

All H atoms were located in difference maps and subsequently treated as riding atoms, with distances C-H = 0.95 (aromatic), 0.98 (methyl), 0.99 (CH<sub>2</sub>) or 1.00 Å (aliphatic CH), and with  $U_{iso}(H) =$  $1.2U_{eq}(C)$ , or  $1.5U_{eq}(C)$  for the methyl group. The value of the Flack parameter [0.2 (13); Flack, 1983] was indeterminate (Flack & Bernardinelli, 2000), and hence the correct orientation of the structure relative to the polar axis direction could not be established (Jones, 1986). Accordingly, the Friedel-equivalent reflections were merged prior to the final refinement.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997);

program(s) used to refine structure: *OSCAIL* and *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97 and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support; RA thanks Fundación para la Promoción de la Investigación y la Tecnología (Banco de la República) and Universidad del Valle for financial support. PC thanks COLCIENCIAS for a doctoral fellowship.

#### References

Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blessing, R. H. (1995). Acta Cryst. A**51**, 33–37.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Chacón-García, L. & Martínez, R. (2001). Eur. J. Med. Chem. 36, 731-736.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Deady, L. W., Desneves, J., Kaye, A. J., Findalay, G. J., Baguley, B. C. & Denny, W. A. (2001). *Bioorg. Med. Chem.* 9, 445–452.
- Donnelly, J. A. & Farell, D. F. (1990). Tetrahedron, 46, 885-894.
- Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Gamage, S. A., Spicer, J. A., Atwell, G. L., Finlay, G. J., Baguales, B. C. & Denny, W. A. (1999). J. Med. Chem. 42, 2383–2393.
- Jones, P. G. (1986). Acta Cryst. A42, 57.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

# supporting information

Acta Cryst. (2004). E60, o1057–o1059 [https://doi.org/10.1107/S1600536804012140]

*rac*-5-Acetyl-6-(4-nitrophenyl)-6,7-dihydro-5*H*-1,3-dioxolo[4,5-*g*]quinoline-8one: chains of rings built from C—H···O and C—H··· $\pi$ (arene) hydrogen bonds

### John N. Low, Justo Cobo, Angy Ortíz, Paola Cuervo, Rodrigo Abonia and Christopher Glidewell

rac-5-Acetyl-6-(4-nitrophenyl)-6,7-dihydro-5H-1,3-dioxolo[4,5-g]quinoline-8-one

#### Crystal data

C<sub>18</sub>H<sub>14</sub>N<sub>2</sub>O<sub>6</sub>  $M_r = 354.31$ Orthorhombic, *Pna*2<sub>1</sub> Hall symbol: P 2c -2n a = 6.5253 (2) Å b = 21.4286 (5) Å c = 10.8198 (9) Å V = 1512.91 (14) Å<sup>3</sup> Z = 4

#### Data collection

Nonius KappaCCD diffractometer Radiation source: rotating anode Graphite monochromator  $\varphi$  scans, and  $\omega$  scans with  $\kappa$  offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997)  $T_{\min} = 0.956, T_{\max} = 0.989$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.042$  $wR(F^2) = 0.087$ S = 1.061762 reflections 237 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 736  $D_x = 1.556 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1952 reflections  $\theta = 3.3-27.1^{\circ}$   $\mu = 0.12 \text{ mm}^{-1}$  T = 120 KPlate, colourless  $0.30 \times 0.10 \times 0.09 \text{ mm}$ 

15335 measured reflections 1762 independent reflections 1360 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.082$   $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 3.3^{\circ}$   $h = -8 \rightarrow 7$   $k = -27 \rightarrow 27$  $l = -13 \rightarrow 13$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 0.0405P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.21$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.22$  e Å<sup>-3</sup> Extinction correction: SHELXL97, Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0110 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x          | у            | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |
|----|------------|--------------|------------|-----------------------------|
| 01 | 0.5209 (4) | 0.45991 (10) | 0.5921 (2) | 0.0450 (6)                  |

# supporting information

| C2   | 0.6518 (5)  | 0.49285 (15) | 0.5084 (4)   | 0.0429 (8) |
|------|-------------|--------------|--------------|------------|
| O3   | 0.5919 (3)  | 0.55753 (10) | 0.5100 (2)   | 0.0383 (6) |
| C3A  | 0.4110 (4)  | 0.55944 (14) | 0.5736 (3)   | 0.0278 (7) |
| C4   | 0.2903 (4)  | 0.61069 (13) | 0.5940 (3)   | 0.0265 (6) |
| C4A  | 0.1148 (4)  | 0.60062 (12) | 0.6658 (2)   | 0.0237 (6) |
| N5   | -0.0191 (3) | 0.65140 (12) | 0.6922 (2)   | 0.0262 (5) |
| C51  | -0.1005 (4) | 0.69175 (13) | 0.6047 (3)   | 0.0291 (7) |
| O51  | -0.2149 (3) | 0.73380 (10) | 0.63757 (19) | 0.0426 (6) |
| C52  | -0.0541 (5) | 0.68171 (14) | 0.4710 (3)   | 0.0313 (7) |
| C6   | -0.1136 (4) | 0.65011 (13) | 0.8158 (3)   | 0.0278 (6) |
| C61  | 0.0432 (4)  | 0.65684 (13) | 0.9186 (3)   | 0.0249 (6) |
| C62  | 0.2377 (4)  | 0.68212 (13) | 0.8979 (3)   | 0.0268 (6) |
| C63  | 0.3740 (4)  | 0.69024 (13) | 0.9951 (3)   | 0.0273 (6) |
| C64  | 0.3144 (4)  | 0.67328 (12) | 1.1127 (2)   | 0.0246 (6) |
| N64  | 0.4578 (4)  | 0.68102 (11) | 1.2154 (2)   | 0.0298 (6) |
| O41  | 0.3963 (3)  | 0.67045 (11) | 1.3207 (2)   | 0.0451 (6) |
| O42  | 0.6331 (3)  | 0.69795 (11) | 1.1920 (2)   | 0.0410 (6) |
| C65  | 0.1243 (4)  | 0.64875 (13) | 1.1358 (3)   | 0.0292 (7) |
| C66  | -0.0106 (4) | 0.64056 (13) | 1.0388 (3)   | 0.0306 (7) |
| C7   | -0.2388 (4) | 0.59007 (15) | 0.8248 (3)   | 0.0358 (7) |
| C8   | -0.1070 (5) | 0.53365 (14) | 0.8006 (3)   | 0.0347 (7) |
| 08   | -0.1483 (4) | 0.48271 (11) | 0.8451 (2)   | 0.0578 (8) |
| C8A  | 0.0733 (4)  | 0.54239 (13) | 0.7194 (3)   | 0.0278 (6) |
| С9   | 0.2061 (5)  | 0.49165 (13) | 0.6998 (3)   | 0.0327 (7) |
| C9A  | 0.3695 (4)  | 0.50171 (13) | 0.6255 (3)   | 0.0307 (7) |
| H2A  | 0.6375      | 0.4756       | 0.4239       | 0.051*     |
| H2B  | 0.7966      | 0.4886       | 0.5344       | 0.051*     |
| H4   | 0.3235      | 0.6506       | 0.5614       | 0.032*     |
| H52A | -0.1760     | 0.6913       | 0.4216       | 0.047*     |
| H52B | -0.0145     | 0.6381       | 0.4577       | 0.047*     |
| H52C | 0.0586      | 0.7092       | 0.4460       | 0.047*     |
| H6   | -0.2106     | 0.6861       | 0.8215       | 0.033*     |
| H62  | 0.2769      | 0.6939       | 0.8166       | 0.032*     |
| H63  | 0.5064      | 0.7072       | 0.9807       | 0.033*     |
| H65  | 0.0859      | 0.6375       | 1.2175       | 0.035*     |
| H66  | -0.1425     | 0.6235       | 1.0544       | 0.037*     |
| H7A  | -0.2999     | 0.5868       | 0.9083       | 0.043*     |
| H7B  | -0.3519     | 0.5914       | 0.7639       | 0.043*     |
| Н9   | 0.1822      | 0.4522       | 0.7369       | 0.039*     |
|      |             |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0547 (14) | 0.0436 (13) | 0.0369 (12) | 0.0229 (12)  | 0.0026 (11)  | -0.0028 (11) |
| C2  | 0.0360 (17) | 0.046 (2)   | 0.047 (2)   | 0.0074 (15)  | 0.0007 (16)  | -0.0128 (17) |
| 03  | 0.0296 (11) | 0.0476 (13) | 0.0378 (13) | 0.0056 (9)   | 0.0066 (10)  | -0.0047 (10) |
| C3A | 0.0234 (15) | 0.0373 (17) | 0.0226 (16) | 0.0023 (12)  | -0.0028 (11) | -0.0051 (12) |
| C4  | 0.0256 (14) | 0.0304 (15) | 0.0235 (15) | -0.0023 (12) | -0.0032 (11) | 0.0008 (12)  |

Acta Cryst. (2004). E60, o1057–o1059

# supporting information

| C4A | 0.0238 (14) | 0.0286 (14) | 0.0188 (14) | 0.0023 (12)  | -0.0033 (11) | -0.0020 (11) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N5  | 0.0261 (12) | 0.0312 (12) | 0.0212 (12) | 0.0050 (10)  | 0.0008 (10)  | 0.0007 (10)  |
| C51 | 0.0289 (16) | 0.0326 (16) | 0.0258 (16) | 0.0017 (13)  | -0.0048 (12) | -0.0009 (13) |
| O51 | 0.0499 (13) | 0.0473 (13) | 0.0306 (12) | 0.0214 (11)  | -0.0031 (11) | -0.0018 (11) |
| C52 | 0.0350 (18) | 0.0357 (17) | 0.0230 (15) | 0.0031 (13)  | -0.0029 (12) | 0.0026 (13)  |
| C6  | 0.0272 (15) | 0.0352 (15) | 0.0211 (14) | 0.0055 (12)  | 0.0016 (12)  | -0.0010 (13) |
| C61 | 0.0288 (16) | 0.0245 (14) | 0.0213 (15) | 0.0028 (12)  | 0.0012 (12)  | -0.0011 (12) |
| C62 | 0.0303 (16) | 0.0296 (15) | 0.0206 (13) | 0.0000 (12)  | 0.0026 (11)  | 0.0010 (12)  |
| C63 | 0.0267 (15) | 0.0276 (15) | 0.0277 (16) | 0.0009 (12)  | 0.0026 (12)  | 0.0029 (12)  |
| C64 | 0.0291 (15) | 0.0248 (14) | 0.0199 (15) | 0.0015 (11)  | -0.0017 (12) | -0.0023 (12) |
| N64 | 0.0297 (14) | 0.0332 (14) | 0.0265 (14) | -0.0014 (11) | -0.0012 (11) | 0.0013 (11)  |
| O41 | 0.0463 (14) | 0.0687 (16) | 0.0204 (12) | -0.0099 (11) | -0.0024 (11) | 0.0060 (11)  |
| O42 | 0.0290 (12) | 0.0580 (14) | 0.0360 (13) | -0.0080 (10) | -0.0031 (10) | 0.0002 (11)  |
| C65 | 0.0322 (16) | 0.0363 (16) | 0.0192 (15) | -0.0025 (13) | 0.0036 (13)  | 0.0019 (13)  |
| C66 | 0.0296 (16) | 0.0363 (17) | 0.0259 (15) | -0.0023 (12) | 0.0028 (12)  | -0.0013 (13) |
| C7  | 0.0278 (15) | 0.058 (2)   | 0.0216 (14) | -0.0085 (14) | 0.0020 (13)  | -0.0019 (15) |
| C8  | 0.0430 (19) | 0.0398 (18) | 0.0214 (16) | -0.0138 (14) | 0.0013 (13)  | -0.0032 (14) |
| 08  | 0.0848 (19) | 0.0412 (14) | 0.0474 (16) | -0.0206 (13) | 0.0283 (14)  | -0.0019 (13) |
| C8A | 0.0324 (16) | 0.0309 (16) | 0.0201 (14) | -0.0057 (12) | -0.0012 (12) | -0.0024 (12) |
| C9  | 0.0469 (18) | 0.0242 (15) | 0.0270 (17) | -0.0016 (13) | 0.0005 (15)  | -0.0001 (13) |
| C9A | 0.0389 (17) | 0.0291 (15) | 0.0242 (17) | 0.0080 (13)  | -0.0068 (14) | -0.0056 (13) |
|     |             |             |             |              |              |              |

### Geometric parameters (Å, °)

| 01—C2     | 1.431 (4) | С9—С9А     | 1.352 (4) |
|-----------|-----------|------------|-----------|
| C2—O3     | 1.440 (4) | С9—Н9      | 0.95      |
| C2—H2A    | 0.99      | C9A—O1     | 1.381 (3) |
| C2—H2B    | 0.99      | C3A—C9A    | 1.385 (4) |
| O3—C3A    | 1.367 (3) | C4A—C8A    | 1.403 (4) |
| C3A—C4    | 1.369 (4) | N5—C51     | 1.388 (4) |
| C4—C4A    | 1.400 (4) | C51—O51    | 1.223 (3) |
| C4—H4     | 0.95      | C8—O8      | 1.223 (4) |
| C4A—N5    | 1.425 (3) | C61—C66    | 1.391 (4) |
| N5—C6     | 1.472 (4) | C61—C62    | 1.398 (4) |
| C51—C52   | 1.493 (4) | C62—C63    | 1.388 (4) |
| С52—Н52А  | 0.98      | С62—Н62    | 0.95      |
| С52—Н52В  | 0.98      | C63—C64    | 1.379 (4) |
| С52—Н52С  | 0.98      | С63—Н63    | 0.95      |
| C6—C61    | 1.519 (4) | C64—C65    | 1.370 (4) |
| С6—С7     | 1.527 (4) | C64—N64    | 1.463 (4) |
| С6—Н6     | 1.00      | N64—O42    | 1.226 (3) |
| С7—С8     | 1.506 (4) | N64—O41    | 1.229 (3) |
| C7—H7A    | 0.99      | C65—C66    | 1.381 (4) |
| С7—Н7В    | 0.99      | С65—Н65    | 0.95      |
| C8—C8A    | 1.480 (4) | C66—H66    | 0.95      |
| C8A—C9    | 1.407 (4) |            |           |
| C9A—O1—C2 | 105.8 (2) | C62—C61—C6 | 122.1 (2) |

| O1—C2—O3                                | 107.8 (2)             | C63—C62—C61                         | 120.6 (3)             |
|-----------------------------------------|-----------------------|-------------------------------------|-----------------------|
| O1—C2—H2A                               | 110.2                 | C63—C62—H62                         | 119.7                 |
| O3—C2—H2A                               | 110.2                 | С61—С62—Н62                         | 119.7                 |
| O1—C2—H2B                               | 110.2                 | C64—C63—C62                         | 119.0 (3)             |
| O3—C2—H2B                               | 110.2                 | С64—С63—Н63                         | 120.5                 |
| H2A—C2—H2B                              | 108.5                 | С62—С63—Н63                         | 120.5                 |
| C3A—O3—C2                               | 105.6 (2)             | C65—C64—C63                         | 121.7 (3)             |
| Q3—C3A—C4                               | 127.0 (3)             | C65—C64—N64                         | 118.9 (2)             |
| 03—C3A—C9A                              | 110.2 (2)             | C63—C64—N64                         | 119.4 (2)             |
| C4-C3A-C9A                              | 122.6 (3)             | 042—N64—041                         | 123.4 (3)             |
| $C_{3A} - C_{4} - C_{4A}$               | 1122.0(3)<br>115.8(3) | 042—N64—C64                         | 1123.1(3)<br>118.3(2) |
| $C_{3A}$ $C_{4}$ $H_{4}$                | 122.1                 | 041 - N64 - C64                     | 118.3(2)              |
| $C_{4} - C_{4} - H_{4}$                 | 122.1                 | C64—C65—C66                         | 110.3(2)              |
| C4 - C4A - C8A                          | 122.1<br>121.6(2)     | C64 - C65 - H65                     | 120.4                 |
| $C_{4}$ $C_{4A}$ N5                     | 121.0(2)<br>1107(2)   | C66 C65 H65                         | 120.4                 |
| $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $N_{5}$ | 119.7(2)<br>118.5(2)  | $C_{00} = C_{00} = 103$             | 120.4<br>121.2(3)     |
| $C_{0A} - C_{4A} - N_{3}$               | 110.3(2)              | $C_{00} = C_{00} = C_{01}$          | 121.2(3)              |
| $C_{51}$ N5 $C_{4A}$                    | 123.0(2)              | $C_{00} = C_{00} = H_{00}$          | 119.4                 |
| $C_{1} = N_{2} = C_{0}$                 | 118.1(2)              | C01 - C00 - H00                     | 119.4                 |
| C4A = N5 = C6                           | 115.1(2)              | $C_{0}$                             | 111.1 (2)             |
| 051—C51—N5                              | 119.6 (3)             | C8—C/—H/A                           | 109.4                 |
| 051-052                                 | 120.8 (3)             | C6C/H/A                             | 109.4                 |
| N5-C51-C52                              | 119.6 (2)             | C8—C7—H7B                           | 109.4                 |
| C51—C52—H52A                            | 109.5                 | С6—С7—Н7В                           | 109.4                 |
| C51—C52—H52B                            | 109.5                 | H7A—C7—H7B                          | 108.0                 |
| H52A—C52—H52B                           | 109.5                 | O8—C8—C8A                           | 121.4 (3)             |
| C51—C52—H52C                            | 109.5                 | O8—C8—C7                            | 121.5 (3)             |
| H52A—C52—H52C                           | 109.5                 | C8AC8C7                             | 117.1 (2)             |
| H52B—C52—H52C                           | 109.5                 | C4A—C8A—C9                          | 120.4 (3)             |
| N5—C6—C61                               | 112.4 (2)             | C4A—C8A—C8                          | 120.8 (3)             |
| N5—C6—C7                                | 107.3 (2)             | C9—C8A—C8                           | 118.8 (3)             |
| C61—C6—C7                               | 113.2 (2)             | C9A—C9—C8A                          | 116.9 (3)             |
| N5—C6—H6                                | 107.9                 | С9А—С9—Н9                           | 121.6                 |
| С61—С6—Н6                               | 107.9                 | С8А—С9—Н9                           | 121.6                 |
| С7—С6—Н6                                | 107.9                 | C9—C9A—O1                           | 128.0 (3)             |
| C66—C61—C62                             | 118.4 (3)             | C9—C9A—C3A                          | 122.5 (3)             |
| C66—C61—C6                              | 119.4 (2)             | O1—C9A—C3A                          | 109.5 (3)             |
|                                         | ~ /                   |                                     |                       |
| C9A—O1—C2—O3                            | 9.3 (3)               | C63—C64—N64—O42                     | -5.6(4)               |
| O1—C2—O3—C3A                            | -10.7(3)              | C65—C64—N64—O41                     | -6.4(4)               |
| C2—O3—C3A—C4                            | -176.6(3)             | C63—C64—N64—O41                     | 174.2 (3)             |
| C2-03-C3A-C9A                           | 8.0 (3)               | C63—C64—C65—C66                     | 0.3 (4)               |
| Q3—C3A—C4—C4A                           | -178.0(3)             | N64—C64—C65—C66                     | -179.1(2)             |
| C9A - C3A - C4 - C4A                    | -3.1(4)               | C64-C65-C66-C61                     | -0.1(4)               |
| C3A - C4 - C4A - C8A                    | 3.8 (4)               | $C_{62}$ $C_{61}$ $C_{66}$ $C_{65}$ | -0.3(4)               |
| $C_{3A}$ $C_{4}$ $C_{4A}$ $N_{5}$       | 179 6 (2)             | C6-C61-C66-C65                      | -1769(3)              |
| C4-C4A-N5-C51                           | 512(4)                | N5-C6-C7-C8                         | 567(3)                |
| C8A - C4A - N5 - C51                    | -132 8 (3)            | $C_{61} - C_{6} - C_{7} - C_{8}$    | -679(3)               |
| C4 - C4A - N5 - C6                      | -1443(3)              | C6 - C7 - C8 - 08                   | 1527(3)               |
|                                         | 177.2 (2)             |                                     | 104.1 (0)             |

|                 |            |                | 20.0(4)    |
|-----------------|------------|----------------|------------|
| C8A—C4A—N5—C6   | 31.7 (3)   | C6-C/-C8-C8A   | -28.0 (4)  |
| C4A—N5—C51—O51  | 179.7 (3)  | C4—C4A—C8A—C9  | -1.5 (4)   |
| C6—N5—C51—O51   | 15.7 (4)   | N5-C4A-C8A-C9  | -177.4 (3) |
| C4A—N5—C51—C52  | 2.2 (4)    | C4—C4A—C8A—C8  | 176.6 (3)  |
| C6—N5—C51—C52   | -161.9 (3) | N5-C4A-C8A-C8  | 0.7 (4)    |
| C51—N5—C6—C61   | -129.5 (3) | O8—C8—C8A—C4A  | 177.9 (3)  |
| C4A—N5—C6—C61   | 64.8 (3)   | C7—C8—C8A—C4A  | -1.5 (4)   |
| C51—N5—C6—C7    | 105.4 (3)  | O8—C8—C8A—C9   | -3.9 (4)   |
| C4A—N5—C6—C7    | -60.2 (3)  | C7—C8—C8A—C9   | 176.7 (3)  |
| N5-C6-C61-C66   | -163.4 (2) | C4A—C8A—C9—C9A | -1.5 (4)   |
| C7—C6—C61—C66   | -41.6 (4)  | C8—C8A—C9—C9A  | -179.7 (3) |
| N5-C6-C61-C62   | 20.1 (4)   | C8A—C9—C9A—O1  | 179.9 (3)  |
| C7—C6—C61—C62   | 141.9 (3)  | C8A—C9—C9A—C3A | 2.2 (4)    |
| C66—C61—C62—C63 | 0.5 (4)    | C2—O1—C9A—C9   | 177.5 (3)  |
| C6—C61—C62—C63  | 177.0 (3)  | C2—O1—C9A—C3A  | -4.5 (3)   |
| C61—C62—C63—C64 | -0.3 (4)   | O3—C3A—C9A—C9  | 175.8 (3)  |
| C62—C63—C64—C65 | -0.1 (4)   | C4—C3A—C9A—C9  | 0.2 (4)    |
| C62—C63—C64—N64 | 179.3 (2)  | O3—C3A—C9A—O1  | -2.3 (3)   |
| C65—C64—N64—O42 | 173.8 (2)  | C4—C3A—C9A—O1  | -177.9 (3) |
|                 |            |                |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                  | D—H  | Н…А  | D···· $A$ | D—H··· $A$ |
|--------------------------|------|------|-----------|------------|
| C62—H62…O51 <sup>i</sup> | 0.95 | 2.48 | 3.358 (4) | 153        |
| C63—H63···· $Cg1^{i}$    | 0.95 | 2.98 | 3.693 (3) | 132        |

Symmetry code: (i) x+1/2, -y+3/2, z.