Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michael Simpson, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.055 wR factor = 0.143 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Diethyl 9,10-endo-ethano-9,10-dihydroanthracene-11,11-dicarboxylate

The title compound, $C_{22}H_{22}O_4$, possesses normal geometrical parameters and the dihedral angle between the two benzene ring planes is 57.62 (5)°. The crystal packing is controlled by van der Waals forces and a possible $C-H \cdots O$ interaction, the latter resulting in a supramolecular C(6) motif.

Received 14 May 2004 Accepted 20 May 2004 Online 29 May 2004

Comment

The title compound, (I) (Fig. 1), was created as an intermediate in the synthesis of 2-methylene malonic acid diethyl ester, (II). The alkene produced in the absence of anthracene is very unstable and polymerizes easily. The presence of the anthracene acts to trap the monomer in a Diels–Alder reaction and purification of (I) prior to thermolysis allows the generation of (II) (by a retro-Diels–Alder reaction) in a much more stable form. The presence of excess maleic anhydride in this reaction ensures that the released anthracene is consumed by the formation of an anthracene-maleic anhydride adduct and is not free to regenerate (I). Thus, this type of reaction may be useful in the trapping of alkenes and allow for easier purification.

The geometrical parameters for (I) are broadly similar to those of related 9,10-bridged anthracene derivatives (Table 1) (Gable *et al.*, 1996; Karolak-Wojciechowska *et al.*, 1998; Burrows *et al.*, 1999). The two benzene rings in (I) (atoms C2– C7 and C9–C14) are both essentially planar (r.m.s. deviations from the least-squares planes are 0.010 and 0.001 Å, respectively). The dihedral angle between these rings is 57.62 (5)°, which is typical for these 9,10-bridged anthracene systems, *e.g.* the corresponding dihedral angle in 11,12-bis(*N*,*N*-dimethylaminomethyl)-9,10-dihydro-9,10-ethanoanthracene (Karolak-Wojciechowska *et al.*, 1998) is 58.8 (2)°. The three sixmembered rings of the bicyclic core of (I) (C1/C2/C7/C8/C9/ C14, C1/C2/C7/C8/C15/C16 and C1/C14/C9/C8/C15/C16; see Fig. 1) are all forced into boat forms. The ester substituents show no unusual features.

The only significant intermolecular interaction in (I), as identified in a *PLATON* (Spek, 2003) analysis of the structure, is a $C8-H8 \cdot \cdot O3^i$ bond (Table 2). This bridgehead H8 atom attached to an sp^3 -hybridized C atom may be slightly activated due to ring strain (Desiraju & Steiner, 1999). This connectivity results in *C*(6) chains (Bernstein *et al.*, 1995), generated by *n*-

View of (I) (50% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius.

glide symmetry (Fig. 2). Otherwise, the crystal packing is controlled by van der Waals forces.

Experimental

A round-bottomed flask was fitted with a still head and condenser and diethyl malonate (9.70 g, 9.2 ml, 61 mmol), anthracene (12.00 g, 67 mmol), paraformaldehyde (3.64 g, 0.12 mol), copper(II) acetate monohydrate (0.60 g, 3.0 mmol), acetic acid (50 ml) and xylene (50 ml) were quickly added. The reaction mixture was heated at 383 K for 15 h and a clear dark-green solution resulted. The temperature was increased in order to distil off the acetic acid, then the reaction mixture was cooled to room temperature and filtered under suction. The filtrate was retained and the xylene evaporated on a rotary evaporator to yield a green oil which was left to crystallize. Purification was carried out by recrystallization from hot hexane. Filtration and washing with ice-cold hexane (25 ml) resulted in the pure anthracene adduct (I) (14.72 g, 69%) as colourless plates [m.p. 404.5-405 K; literature (De Keyser et al., 1988) 403-404 K from EtOH]; R_F (hexane-propan-2-ol 50:1) 0.13; ν_{max} (KBr disc)/cm⁻¹: 2974 (C-H), 1732 (C=O), 1460-1446 (aromatic C=C) and 757 (4 adjacent Ar-H); δ H (250 MHz; CDCl₃): 1.15 (6H, *t*, *J* = 7.0 Hz, 2 × CH₃), 2.47 [2H, d, J = 2.4 Hz, (EtO₂C)₂CCH₂], 3.95–4.09 (4H, $m, 2 \times$

Figure 2

Detail of a chain of molecules of (I) linked by C-H···O interactions. [Symmetry codes: (i) as in Table 2; (ii) x + 1, y, z + 1.]

OCH₂), 4.33 (1H, poorly resolved *t*, *J* = 2.4 Hz, Ar₂CHCH₂), 4.97 [1H, s, Ar₂CHC(CO₂Et)₂] and 7.07–7.33 (8H, m, Ar-H); δC (CDCl₃): 14.0, 36.4, 43.9, 49.6, 60.0, 61.7, 123.3, 125.7, [De Keyser et al. (1988) give 125.68 and 125.74], 126.4, 139.8, 144.0 and 170.2.

> 3538 independent reflections 2750 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.120$ $\theta_{\rm max} = 26.0^{\circ}$

 $h=-11\rightarrow 11$

 $k = -20 \rightarrow 20$

 $l = -14 \rightarrow 14$

Crystal data

C22H22O4 $D_x = 1.294 \text{ Mg m}^{-3}$ $M_r = 350.40$ Mo $K\alpha$ radiation Monoclinic, P21/n Cell parameters from 21 198 a = 9.2424(2) Å reflections b = 16.5210(5) Å $\theta = 2.9 - 27.5^{\circ}$ $\mu=0.09~\mathrm{mm}^{-1}$ c = 11.9154 (4) Å T = 120 (2) K $\beta = 98.631 (2)^{\circ}$ $V = 1798.80 (9) \text{ Å}^3$ Plate, colourless Z = 4 $0.28 \times 0.20 \times 0.03 \text{ mm}$ Data collection

Enraf-Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\rm min} = 0.976, \ T_{\rm max} = 0.999$ 21 237 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0607P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.055$	+ 0.8446P]
$wR(F^2) = 0.143$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3538 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
238 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.012 (3)

Table 1

Selected geometrical parameters (Å °).

C1-C16 C8-C15	1.576 (3) 1.550 (3)	C15-C16	1.559 (3)
C20-C16-C17-O2	-131.2 (2)	C17-C16-C20-O3	-109.9 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C8-H8\cdots O3^i$	1.00	2.56	3.380 (2)	139
Symmetry code: (i)	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + x$	ζ.		

All H atoms were geometrically placed in idealized locations and refined as riding on their carrier C atoms with C-H distances set to 0.95, 0.98, 0.99 and 1.00 Å for aromatic, sp^2 , terminal sp^3 and bridgehead sp^3 hybrid C atoms, respectively. The constraint $U_{iso}(H) =$ $1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(methyl C)$ was applied as appropriate.

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Burrows, L., Masnovi, J. & Baker, R. J. (1999). Acta Cryst. C55, 236–239.
 De Keyser, J.-L., De Cock, C. J. C., Poupaert, J. H. & Dumont, P. (1988). J. Org. Chem. 53, 4859–4862.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond*. Oxford: IUCr/ OUP.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gable, R. W., Qureshi, A. & Schiesser, C. H. (1996). Acta Cryst. C52, 674–675. Karolak-Wojciechowska, J., Trzeźwińska, H. B., Alibert-Franco, S., Santelli-
- Rouvier, C. & Barbe, J. (1998). J. Chem. Crystallogr. 28, 905–911.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,
- Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

supporting information

Acta Cryst. (2004). E60, o1081–o1083 [https://doi.org/10.1107/S1600536804012279]

Diethyl 9,10-endo-ethano-9,10-dihydroanthracene-11,11-dicarboxylate

Michael Simpson, John M. D. Storey and William T. A. Harrison

(|)

Crystal data

C₂₂H₂₂O₄ $M_r = 350.40$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.2424 (2) Å b = 16.5210 (5) Å c = 11.9154 (4) Å $\beta = 98.631$ (2)° V = 1798.80 (9) Å³ Z = 4

Data collection

Enraf–Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.976, T_{\max} = 0.999$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.143$ S = 1.063538 reflections 238 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 744 $D_x = 1.294 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 21198 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 120 KPlate, colourless $0.28 \times 0.20 \times 0.03 \text{ mm}$

21237 measured reflections 3538 independent reflections 2750 reflections with $I > 2\sigma(I)'$ $R_{int} = 0.120$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -20 \rightarrow 20$ $l = -14 \rightarrow 14$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0607P)^2 + 0.8446P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.25$ e Å⁻³ Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.012 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ х v ZC1 0.0216(2)0.24941 (11) 0.79618 (16) 0.0207(4)0.025* H1 0.0063 0.2266 0.7176 C2 0.1800(2)0.27254 (11) 0.83512 (16) 0.0221 (4) C3 0.2947(2)0.26234 (12) 0.77362 (17) 0.0267(5)H3 0.032* 0.2785 0.2375 0.7009 C4 0.4342(2)0.28899(13) 0.81988 (18) 0.0303(5)H4 0.5134 0.2828 0.7782 0.036* C5 0.4574(2)0.32439 (13) 0.0306 (5) 0.92616 (18) 0.037* H5 0.5526 0.3426 0.9568 C6 0.3427(2)0.33370(12) 0.98894(17)0.0272 (5) H6 0.3596 0.3572 1.0625 0.033* C7 0.2032(2)0.30808(12)0.94241 (16) 0.0237(4)C8 0.0234(4)0.0657(2)0.31482(12)0.99611 (16) H8 0.0844 0.3424 1.0716 0.028* C9 -0.0462(2)0.35975 (12) 0.91330 (16) 0.0233(4)-0.1241(2)C10 0.42843 (12) 0.93459 (18) 0.0279 (5) H10 -0.10880.4528 1.0076 0.033* C11 -0.2248(2)0.46132 (13) 0.84820 (19) 0.0314(5)H11 -0.27820.5084 0.8622 0.038* -0.2475(2)0.74195 (18) C12 0.42579 (13) 0.0305 (5) H12 -0.31660.4487 0.037* 0.6835 C13 -0.1706(2)0.35706 (12) 0.71985 (17) 0.0247(4)H13 -0.18660.3328 0.6467 0.030* C14 -0.0703(2)0.32413 (11) 0.80559 (16) 0.0217(4)C15 0.0035(2)0.22833(12)1.00520 (16) 0.0238(4)H15A -0.09080.2312 1.0349 0.029* H15B 0.1958 1.0587 0.029* 0.0725 C16 -0.0199(2)0.18699 (11) 0.0210 (4) 0.88621 (15) C17 0.0766(2)0.11174 (12) 0.88462 (15) 0.0220(4)C18 0.1230(2)-0.00151(13)0.77158 (19) 0.0327 (5) H18A 0.0615 -0.03900.7201 0.039* 0.039* H18B 0.1501 -0.02900.8456 C19 0.2581(3)0.01865 (16) 0.7228(2)0.0473 (6) H19A 0.3088 -0.03140.7079 0.071*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H19B	0.3227	0.0521	0.7767	0.071*
H19C	0.2314	0.0485	0.6516	0.071*
C20	-0.1775 (2)	0.15905 (12)	0.85190 (16)	0.0219 (4)
C21	-0.3694 (2)	0.08520 (17)	0.9188 (2)	0.0441 (6)
H21A	-0.3710	0.0253	0.9166	0.053*
H21B	-0.4223	0.1056	0.8458	0.053*
C22	-0.4421 (3)	0.11405 (15)	1.0129 (2)	0.0402 (6)
H22A	-0.5432	0.0944	1.0026	0.060*
H22B	-0.4419	0.1734	1.0139	0.060*
H22C	-0.3895	0.0937	1.0849	0.060*
O1	0.03986 (15)	0.07194 (8)	0.78719 (12)	0.0287 (4)
O2	0.17203 (16)	0.09130 (9)	0.95894 (12)	0.0321 (4)
O3	-0.25370 (15)	0.17464 (9)	0.76424 (12)	0.0333 (4)
O4	-0.21870 (16)	0.11370 (10)	0.93410 (12)	0.0366 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0227 (9)	0.0208 (10)	0.0182 (9)	-0.0013 (8)	0.0025 (7)	-0.0005 (7)
C2	0.0247 (10)	0.0175 (10)	0.0242 (10)	-0.0001 (8)	0.0043 (8)	0.0042 (8)
C3	0.0307 (11)	0.0228 (11)	0.0270 (11)	0.0004 (8)	0.0062 (8)	0.0043 (8)
C4	0.0245 (10)	0.0291 (12)	0.0387 (12)	0.0025 (9)	0.0092 (9)	0.0099 (9)
C5	0.0236 (10)	0.0271 (12)	0.0396 (12)	-0.0024 (8)	0.0000 (9)	0.0078 (9)
C6	0.0293 (11)	0.0217 (10)	0.0284 (11)	-0.0013 (8)	-0.0032 (8)	0.0022 (8)
C7	0.0245 (10)	0.0199 (10)	0.0258 (10)	0.0004 (8)	0.0014 (8)	0.0019 (8)
C8	0.0244 (10)	0.0248 (10)	0.0205 (10)	-0.0030 (8)	0.0020 (8)	-0.0038 (8)
C9	0.0230 (10)	0.0233 (10)	0.0239 (10)	-0.0035 (8)	0.0047 (7)	-0.0001 (8)
C10	0.0272 (11)	0.0248 (11)	0.0325 (11)	-0.0048 (8)	0.0068 (8)	-0.0069 (9)
C11	0.0277 (11)	0.0226 (11)	0.0446 (13)	0.0022 (9)	0.0078 (9)	-0.0013 (9)
C12	0.0275 (11)	0.0268 (12)	0.0368 (12)	0.0011 (9)	0.0034 (9)	0.0064 (9)
C13	0.0244 (10)	0.0236 (11)	0.0257 (10)	-0.0036 (8)	0.0020 (8)	0.0014 (8)
C14	0.0214 (10)	0.0193 (10)	0.0248 (10)	-0.0044 (8)	0.0049 (8)	-0.0007 (8)
C15	0.0257 (10)	0.0266 (11)	0.0193 (10)	-0.0003 (8)	0.0036 (8)	0.0001 (8)
C16	0.0221 (10)	0.0209 (10)	0.0196 (9)	-0.0001 (7)	0.0022 (7)	-0.0006 (7)
C17	0.0213 (9)	0.0221 (10)	0.0229 (10)	-0.0035 (8)	0.0044 (8)	0.0012 (8)
C18	0.0334 (12)	0.0214 (11)	0.0428 (13)	0.0066 (9)	0.0039 (10)	-0.0087 (9)
C19	0.0495 (15)	0.0438 (15)	0.0524 (15)	0.0110 (12)	0.0203 (12)	0.0001 (12)
C20	0.0232 (10)	0.0199 (10)	0.0232 (10)	0.0018 (8)	0.0053 (8)	-0.0031 (8)
C21	0.0316 (13)	0.0571 (16)	0.0457 (14)	-0.0259 (11)	0.0128 (10)	-0.0100 (12)
C22	0.0332 (12)	0.0418 (14)	0.0464 (14)	0.0044 (10)	0.0083 (10)	0.0025 (11)
01	0.0286 (8)	0.0245 (8)	0.0319 (8)	0.0049 (6)	0.0005 (6)	-0.0079 (6)
O2	0.0312 (8)	0.0340 (9)	0.0294 (8)	0.0072 (6)	-0.0010 (6)	0.0024 (6)
O3	0.0283 (8)	0.0345 (9)	0.0339 (8)	-0.0054 (6)	-0.0065 (6)	0.0042 (6)
O4	0.0305 (8)	0.0487 (10)	0.0306 (8)	-0.0174 (7)	0.0043 (6)	0.0057 (7)

Geometric parameters (Å, °)

C1—C14	1.512 (3)	C13—C14	1.384 (3)	
C1—C2	1.516 (3)	C13—H13	0.9500	
C1—C16	1.576 (3)	C15—C16	1.559 (3)	
C1—H1	1.0000	C15—H15A	0.9900	
C2—C3	1.387 (3)	C15—H15B	0.9900	
C2—C7	1.394 (3)	C16—C20	1.524 (3)	
C3—C4	1.395 (3)	C16—C17	1.532 (3)	
С3—Н3	0.9500	C17—O2	1.201 (2)	
C4—C5	1.382 (3)	C17—O1	1.333 (2)	
C4—H4	0.9500	C18—O1	1.463 (2)	
C5—C6	1.395 (3)	C18—C19	1.492 (3)	
С5—Н5	0.9500	C18—H18A	0.9900	
C6—C7	1.391 (3)	C18—H18B	0.9900	
С6—Н6	0.9500	C19—H19A	0.9800	
С7—С8	1.510 (3)	C19—H19B	0.9800	
C8—C9	1.513 (3)	C19—H19C	0.9800	
C8—C15	1.550 (3)	C20—O3	1.197 (2)	
С8—Н8	1.0000	C20—O4	1.333 (2)	
C9—C10	1.387 (3)	C21—O4	1.455 (2)	
C9—C14	1.399 (3)	C21—C22	1.470 (3)	
C10—C11	1.390 (3)	C21—H21A	0.9900	
C10—H10	0.9500	C21—H21B	0.9900	
C11—C12	1.383 (3)	C22—H22A	0.9800	
C11—H11	0.9500	C22—H22B	0.9800	
C12—C13	1.386 (3)	C22—H22C	0.9800	
C12—H12	0.9500			
C14—C1—C2	107.37 (15)	C13—C14—C1	126.00 (17)	
C14—C1—C16	106.66 (15)	C9—C14—C1	113.45 (16)	
C2-C1-C16	106.21 (14)	C8—C15—C16	110.04 (15)	
C14—C1—H1	112.1	C8—C15—H15A	109.7	
C2—C1—H1	112.1	C16—C15—H15A	109.7	
С16—С1—Н1	112.1	C8—C15—H15B	109.7	
C3—C2—C7	120.74 (18)	C16-C15-H15B	109.7	
C3—C2—C1	125.96 (18)	H15A—C15—H15B	108.2	
C7—C2—C1	113.29 (16)	C20-C16-C17	106.61 (15)	
C2—C3—C4	119.17 (19)	C20-C16-C15	111.94 (15)	
С2—С3—Н3	120.4	C17—C16—C15	111.39 (15)	
С4—С3—Н3	120.4	C20-C16-C1	109.64 (15)	
C5—C4—C3	120.18 (19)	C17—C16—C1	108.70 (15)	
С5—С4—Н4	119.9	C15—C16—C1	108.50 (15)	
С3—С4—Н4	119.9	O2—C17—O1	124.51 (18)	
C4—C5—C6	120.81 (19)	O2—C17—C16	125.72 (17)	
С4—С5—Н5	119.6	O1—C17—C16	109.77 (15)	
С6—С5—Н5	119.6	O1—C18—C19	110.52 (18)	
C7—C6—C5	119.10 (19)	O1C18H18A	109.5	

С7—С6—Н6	120.4	C19—C18—H18A	109.5
С5—С6—Н6	120.4	O1—C18—H18B	109.5
C6—C7—C2	119.98 (18)	C19—C18—H18B	109.5
C6—C7—C8	126.67 (18)	H18A—C18—H18B	108.1
C2—C7—C8	113.34 (16)	C18—C19—H19A	109.5
C7—C8—C9	107.23 (15)	C18—C19—H19B	109.5
C7-C8-C15	107.81 (16)	H19A - C19 - H19B	109.5
C_{9} C_{8} C_{15}	105 88 (15)	C18 - C19 - H19C	109.5
C7 - C8 - H8	111.9	H19A - C19 - H19C	109.5
C_{0} C_{8} H_{8}	111.9	H10B - C10 - H10C	109.5
$C_{15} = C_{8} = H_{8}$	111.9	$\Omega^3 = \Omega^2 = \Omega^4$	107.5
$C_{10} = C_{0} = C_{14}$	110.77 (18)	$O_{3} = C_{20} = O_{4}$	124.40(10) 125.63(18)
$C_{10} = C_{2} = C_{14}$	117.77(10)	03-020-016	123.03(16)
C10 - C9 - C8	127.21(10) 112.00(17)	04 - 020 - 010	109.88(10) 100.74(10)
C14 - C9 - C8	115.00 (17)	04 - 021 - 022	109.74 (19)
	119.48 (19)	O4-C2I-H2IA	109.7
С9—С10—Н10	120.3	С22—С21—Н21А	109.7
C11—C10—H10	120.3	O4—C21—H21B	109.7
C12—C11—C10	120.33 (19)	C22—C21—H21B	109.7
C12—C11—H11	119.8	H21A—C21—H21B	108.2
C10—C11—H11	119.8	C21—C22—H22A	109.5
C11—C12—C13	120.67 (19)	C21—C22—H22B	109.5
C11—C12—H12	119.7	H22A—C22—H22B	109.5
C13—C12—H12	119.7	C21—C22—H22C	109.5
C14—C13—C12	119.20 (18)	H22A—C22—H22C	109.5
C14—C13—H13	120.4	H22B—C22—H22C	109.5
C12—C13—H13	120.4	C17—O1—C18	116.73 (15)
C13—C14—C9	120.55 (18)	C20—O4—C21	117.59 (17)
	()		
C14—C1—C2—C3	-125.2(2)	C2-C1-C14-C13	126.6 (2)
$C_{16} - C_{1} - C_{2} - C_{3}$	121.0 (2)	C_{16} C_{1} C_{14} C_{13}	-119.9(2)
$C_{14} - C_{1} - C_{2} - C_{7}$	53 7 (2)	C_{2} C_{1} C_{14} C_{9}	-537(2)
$C_{16} - C_{1} - C_{2} - C_{7}$	-60 1 (2)	$C_{16} - C_{1} - C_{14} - C_{9}$	59.7(2)
$C_{10} = C_{10} = C$	-0.7(3)	C7-C8-C15-C16	-55.1(2)
$C_1 = C_2 = C_3 = C_4$	178 10 (18)	$C_{1}^{0} = C_{1}^{0} = C_{1}^{0} = C_{1}^{0} = C_{1}^{0}$	50.1(2)
$C_1 = C_2 = C_3 = C_4$	1/6.10(10)	$C_{3} = C_{15} = C_{15} = C_{10}$	-123.56(17)
$C_2 = C_3 = C_4 = C_5$	0.0(3)	$C_{8} = C_{15} = C_{16} = C_{20}$	123.30(17)
$C_{3} - C_{4} - C_{5} - C_{6}$	0.5(5)	$C_{0} = C_{10} = C_{10} = C_{17}$	117.18(17)
C4 - C3 - C0 - C7	-1.1(3)	C_{3}	-2.4(2)
$C_{5} = C_{6} = C_{7} = C_{2}$	1.0 (3)	C14 - C1 - C16 - C20	66.91 (18)
	-1/8.54 (18)	C2—C1—C16—C20	-1/8./9(15)
C3—C2—C7—C6	-0.1 (3)	C14—C1—C16—C17	-176.91 (14)
C1—C2—C7—C6	-179.02 (17)	C2-C1-C16-C17	-62.61 (18)
C3—C2—C7—C8	179.51 (17)	C14—C1—C16—C15	-55.63 (19)
C1—C2—C7—C8	0.5 (2)	C2-C1-C16-C15	58.68 (19)
C6—C7—C8—C9	124.7 (2)	C20—C16—C17—O2	-131.2 (2)
C2—C7—C8—C9	-54.8 (2)	C15—C16—C17—O2	-8.8 (3)
C6—C7—C8—C15	-121.7 (2)	C1-C16-C17-O2	110.7 (2)
C2—C7—C8—C15	58.8 (2)	C20-C16-C17-O1	49.30 (19)
C7—C8—C9—C10	-126.4 (2)	C15—C16—C17—O1	171.68 (15)

C15—C8—C9—C10	118.7 (2)	C1-C16-C17-O1	-68.82 (19)
C7—C8—C9—C14	54.7 (2)	C17—C16—C20—O3	-109.9 (2)
C15—C8—C9—C14	-60.2 (2)	C15—C16—C20—O3	128.1 (2)
C14—C9—C10—C11	-0.3 (3)	C1—C16—C20—O3	7.6 (3)
C8—C9—C10—C11	-179.15 (19)	C17—C16—C20—O4	69.68 (19)
C9—C10—C11—C12	0.2 (3)	C15-C16-C20-O4	-52.4 (2)
C10-C11-C12-C13	0.0 (3)	C1—C16—C20—O4	-172.83 (15)
C11—C12—C13—C14	0.0 (3)	O2—C17—O1—C18	0.0 (3)
C12—C13—C14—C9	-0.2 (3)	C16—C17—O1—C18	179.50 (16)
C12—C13—C14—C1	179.54 (18)	C19—C18—O1—C17	-86.8 (2)
C10-C9-C14-C13	0.3 (3)	O3—C20—O4—C21	-3.8 (3)
C8—C9—C14—C13	179.30 (17)	C16—C20—O4—C21	176.68 (17)
C10-C9-C14-C1	-179.41 (17)	C22—C21—O4—C20	-121.4 (2)
C8—C9—C14—C1	-0.4 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
<u>C8—H8…O3</u> ⁱ	1.00	2.56	3.380 (2)	139

Symmetry code: (i) x+1/2, -y+1/2, z+1/2.