Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

William C. Kaska, ${ }^{\text {a }}$ Hermann A. Mayer, ${ }^{\text {b }}$ Mark R. J. Elsegood, ${ }^{\text {c }}$ Peter N. Horton, ${ }^{\text {d }}$ Michael B. Hursthouse, ${ }^{\text {d }}$ Carl Redshaw ${ }^{e}$ and Simon M. Humphrey ${ }^{\text {f }}$ *
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA, 'buniversität Tübingen, Institut für Anorganische Chemie, Auf der Morgenstelle 18, D-72076 Tübingen, Germany, ${ }^{\text {c }}$ Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, ' School of Chemistry, University of Southampton, Southampton SO17 1BJ, England, e Wolfson Materials and Catalysis Centre, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England, and 'University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: smh49@cam.ac.uk

## Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{Au}-\mathrm{I})=0.001 \AA$
$R$ factor $=0.049$
$w R$ factor $=0.125$
Data-to-parameter ratio $=24.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# $\left[\left\{\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{NB}(\mathrm{H})_{2} \mathrm{NC}\right\}_{2} \mathrm{Au}\right]\left[\mathrm{AuI}_{2}\right]$ : a linear chain polymer of gold(I) iodide with an unusual isocyanoborane ligand showing aurophilic behaviour 

Treatment of the (isocyanoborane)gold(I) chloride adduct [ $L \mathrm{AuCl}]\left[L=\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{NB}(\mathrm{H})_{2} \mathrm{NC}\right]$ with KI at room temperature yields the unusal title compound, bis[isocyano(trimethylamino)borane]gold(I) diiodoaurate(I), $\quad\left[\mathrm{Au}\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{BN}_{2}\right)_{2}\right]-$ [ $\mathrm{AuI}_{2}$ ], which forms via an in situ rearrangement of isocyanoborane and halide ligands. The structure consists of alternating $\left[L_{2} \mathrm{Au}\right]^{+}$and $\left[\mathrm{AuI}_{2}\right]^{-}$ions, which form an infinite linear onedimensional chain due to aurophilic $\mathrm{Au} \cdots \mathrm{Au}$ interactions. Both Au atoms occupy inversion centres.

## Comment

We have recently been interested in the formation of (isocyanide)gold(I) halide adducts, because of their propensity to interact aurophilically. The term aurophilicity is used to describe observed $\mathrm{Au} \cdots \mathrm{Au}$ interactions. These intermolecular contacts have been shown to have bond energies and distances similar to those observed for classical hydrogen-bonding interactions ( $7.5-12.5 \mathrm{kcal} \mathrm{mol}^{-1}$ and $2.7-3.5 \AA$, respectively) (Schmidbaur, 1990, 2000; Mathieson et al., 2000). Hence, aurophilic behaviour is considered to be a major factor in determining the particular supramolecular motif which a series of monomers is observed to adopt. Our recent synthetic studies have involved the use of an unusual zwitterionic isocyanoborane species ( $L$ ) (Andersen et al., 2001) (see scheme). The substitution reaction of $[\mathrm{LAuCl}]$, whereby chloride is replaced with iodide, has yielded (I), whose structure shows clear evidence for aurophilic effects directing the appearance of its extended structure.


Compound (I) crystallizes in the triclinic space group $P \overline{1}$ ( $Z$ $=2$ ). The asymmetric unit comprises one equivalent of the isocyanoborane donor species and a single iodide, each coordinated to crystallographically distinct gold cations Au1 and Au 2 , both of which are located on inversion centres (Fig. 1). Both Au1 and Au2 exhibit pseudo-square-planar coordination geometry, with bonding angles of 91.443 (11) (I1-Au1‥Au2) and 97.1 (2) ${ }^{\circ}\left(\mathrm{C} 1-\mathrm{Au} 2 \cdots \mathrm{Au} 1^{\mathrm{i}}\right.$; symmetry code as in Table 1). Au1 is trans-coordinated by two equivalents of iodide; Au2 is also trans-coordinated, by isocyanide moieties. The coordination of each gold ion is

Received 29 March 2004
Accepted 2 April 2004
Online 17 April 2004


Figure 1
Part of the polymeric structure of (I), showing two asymmetric units and two additional Au atoms, with displacement ellipsoids drawn at the $50 \%$ probability level. Coordination environments of all unique atoms are drawn completed. [Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1+x, y, z$; (iii) $-1-x,-y, 1-z$.]


Figure 2
View of (I), showing the chains of aurophilically bound gold centres running parallel to the crystallographic $a$ axis. Aurophilic type bonds are drawn in red.
completed by $\mathrm{Au} \cdots \mathrm{Au}$ contacts with adjacent Au centres, where $\mathrm{Au} 1 \cdots \mathrm{Au} 2$ is a mere $3.0438(7) \AA$, suggesting that significant aurophilic character is present in (I). Literature values for observed $\mathrm{Au} \cdots \mathrm{Au}$ contact distances suggest an approximate range of $4.1 \AA$ (as often associated with the inter-dimer bonding in chains of dimers) to $2.9 \AA$ for complexes similar in topology to (I).

A perfectly linear infinite chain of gold atoms is thus formed, aligned parallel to the crystallographic $a$ axis (Fig. 2). It can be seen that adjacent chains are displaced from each other along the $b$ axis, thus forming a two-dimensional gridlike array of sheets. The $\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 1$ angle is $175.7(7)^{\circ}$, this portion of the coordinated isocyanoborane being almost linear. Adjacent iodide and isocyanide substituents are aligned approximately orthogonally to one another (Fig. 3). A


Figure 3
Projection of (I) on the $b c$ plane, detailing the approximately orthogonal arrangement of the iodide and isocyanoborane substituents.
network of classical (van der Waals) intermolecular interactions is formed primarily between methyl H atoms and adjacent $\mathrm{I}^{-}$atoms (Fig. 3).

## Experimental

A solution of $[\mathrm{LAuCl}](42 \mathrm{mg}, 0.202 \mathrm{mmol})$ in dichloromethane ( 10 ml ) was stirred vigorously with KI ( $51 \mathrm{mg}, 0.307 \mathrm{mmol}$ ) in $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{ml})$ over a period of 18 h . After removal of all solvent, the yellow-green residual solid was dissolved in dichloromethane ( 5 ml ). Small light green shard-like crystals of (I) were grown from the solution by layering with heptane (1:1) and allowing slow evaporation of the solvent. For full experimental details and characterization data, see Humphrey et al. (2004).

## Crystal data

$\left[\mathrm{Au}\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{BN}_{2}\right)_{2}\right]\left[\mathrm{AuI}_{2}\right]$
$M_{r}=421.82$
Triclinic, $P \overline{1}$
$a=6.0875$ (1) Å
$b=9.3080(2) \AA$
$c=9.6876(2) \AA$
$\alpha=115.970(1)^{\circ}$
$\beta=91.039$ (1) ${ }^{\circ}$
$\gamma=102.127(2)^{\circ}$
$V=478.680(16) \AA^{3}$

## Data collection

Nonius KappaCCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.267, T_{\text {max }}=0.689$
7106 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.125$
$S=1.06$
2174 reflections
88 parameters
$Z=2$
$D_{x}=2.927 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2009

> reflections
$\theta=2.9-27.5^{\circ}$
$\mu=18.52 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Shard, light green
$0.10 \times 0.06 \times 0.02 \mathrm{~mm}$

2174 independent reflections
2033 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$

```
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0926 P)^{2}\right]\)
where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=6.24 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\min }=-4.28 \mathrm{e}^{-3}\)
```

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{Au} 1-\mathrm{I} 1$ | $2.5604(5)$ | $\mathrm{C} 1-\mathrm{N} 1$ | $1.156(10)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Au} 1 \cdots \mathrm{Au} 2$ | $3.0438(1)$ | $\mathrm{N} 1-\mathrm{B} 1$ | $1.550(9)$ |
| $\mathrm{Au} 2-\mathrm{C} 1$ | $1.977(8)$ |  |  |
| $\mathrm{I} 1-\mathrm{Au} 1-\mathrm{I} 1^{\mathrm{i}}$ | 180 | $\mathrm{C} 1-\mathrm{Au} 2 \cdots \mathrm{Au} 1$ | $82.9(2)$ |
| $\mathrm{I} 1-\mathrm{Au} 1 \cdots \mathrm{Au} 2$ | $91.443(11)$ | $\mathrm{C} 1 \mathrm{iii}^{\mathrm{iii}}-\mathrm{Au} 2 \cdots \mathrm{Au} 1$ | $97.1(2)$ |
| $\mathrm{I}^{\mathrm{i}}-\mathrm{Au} 1 \cdots \mathrm{Au} 2$ | $88.557(11)$ | $\mathrm{N} 1-\mathrm{C} 1-\mathrm{Au} 2$ | $178.1(7)$ |
| $\mathrm{Au} 2 \cdots \mathrm{Au} 1 \cdots \mathrm{Au} 2^{\mathrm{ii}}$ | 180 | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1$ | $175.7(7)$ |
| $\mathrm{C} 1-\mathrm{Au} 2-\mathrm{C}^{\mathrm{iii}}$ | 180 | $\mathrm{~N} 1-\mathrm{B} 1-\mathrm{N} 2$ | $108.2(6)$ |

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1+x, y, z$; (iii) $-1-x,-y, 1-z$.
Methyl $\mathrm{H}(\mathrm{C}-\mathrm{H}$ distance $=0.98 \AA)$ and $\mathrm{BH}_{2}(\mathrm{~B}-\mathrm{H}$ distance $=$ $0.99 \AA$ ) atoms were placed in calculated positions using a riding model. $U_{\text {iso }}$ values were set to $1.2 U_{\text {eq }}$ of the parent atom for BH $\left(1.5 U_{\text {eq }}\right.$ for methyl H$)$. The maximum and minimum difference map features were located $0.94 \AA$ from Au 1 and $0.81 \AA$ from Au 2 , respectively.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular
graphics: DIAMOND (Crystal Impact, 2001); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the University of East Anglia and EPSRC for funding (SMH and CR).

## References

Andersen, W. C., Mitchell, D. R., Young, K. J. H., Bu, X., Lynch, V. M., Mayer, H. A. \& Kaska, W. C. (1999). Inorg. Chem. 38, 1024-1027.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Crystal Impact (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Humphrey, S. M., Mack, H. G., Redshaw, C., Elsegood, M. R. J., Young,
K. J. H., Mayer, H. A. \& Kaska, W. C. (2004). Chem. Eur. J. In preparation.

Mathieson, T., Schier, A. \& Schmidbaur, H. (2000). J. Chem. Soc. Dalton Trans. pp. 3881-3884.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Schmidbaur, H. (1990). Gold Bull. 23, 11-21.
Schmidbaur, H. (2000). Gold Bull. 33, 3-9.
Sheldrick, G. M. (1997). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

## supporting information

Acta Cryst. (2004). E60, m563-m565 [https://doi.org/10.1107/S1600536804008098]
$\left.\left[\left\{\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{NB}(\mathrm{H})_{2} \mathrm{NC}\right\}_{2} \mathrm{Au}\right][\mathrm{AuI})_{2}\right]$ : a linear chain polymer of gold(I) iodide with an unusual isocyanoborane ligand showing aurophilic behaviour

William C. Kaska, Hermann A. Mayer, Mark R. J. Elsegood, Peter N. Horton, Michael B.<br>Hursthouse, Carl Redshaw and Simon M. Humphrey

(I)

## Crystal data

$\left[\mathrm{Au}\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{BN}_{2}\right)_{2}\right]\left[\mathrm{AuI}_{2}\right]$
$M_{r}=421.82$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.0875$ (1) $\AA$
$b=9.3080(2) \AA$
$c=9.6876$ (2) $\AA$
$\alpha=115.970(1)^{\circ}$
$\beta=91.039(1)^{\circ}$
$\gamma=102.127(2)^{\circ}$
$V=478.68$ (2) $\AA^{3}$

## Data collection

Nonius KappaCCD area-detector
diffractometer
Radiation source: Nonius FR591 rotating anode
Graphite monochromator
Detector resolution: 9.091 pixels $\mathrm{mm}^{-1}$
$\varphi$ and $\omega$ scans to fill Ewald Sphere
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
$T_{\text {min }}=0.267, T_{\text {max }}=0.689$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.125$
$S=1.06$
2174 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$Z=2$
$F(000)=372$
$D_{\mathrm{x}}=2.927 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 417-419 K K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2009 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=18.52 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Shard, light green
$0.10 \times 0.06 \times 0.02 \mathrm{~mm}$

7106 measured reflections
2174 independent reflections
2033 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\min }=3.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0926 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=6.24 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-4.28$ e $\AA^{-3}$

## Special details

Experimental. PLEASE NOTE cell_measurement_fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors (gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Au1 | 0.0000 | 0.0000 | 0.5000 | $0.02402(17)$ |
| Au2 | -0.5000 | 0.0000 | 0.5000 | $0.02413(17)$ |
| I1 | $-0.01262(8)$ | $-0.04700(6)$ | $0.21874(5)$ | $0.03220(19)$ |
| N2 | $-0.3642(10)$ | $-0.6158(7)$ | $0.1986(7)$ | $0.0241(12)$ |
| C1 | $-0.5406(12)$ | $-0.2415(10)$ | $0.3899(9)$ | $0.0281(15)$ |
| C4 | $-0.4108(14)$ | $-0.8005(9)$ | $0.1236(10)$ | $0.0313(16)$ |
| H4A | -0.2715 | -0.8344 | 0.0892 | $0.047^{*}$ |
| H4B | -0.5274 | -0.8471 | 0.0343 | $0.047^{*}$ |
| H4C | -0.4638 | -0.8403 | 0.1984 | $0.047^{*}$ |
| C2 | $-0.1955(14)$ | $-0.5474(12)$ | $0.3387(10)$ | $0.0372(18)$ |
| H2A | -0.0579 | -0.5864 | 0.3091 | $0.056^{*}$ |
| H2B | -0.2595 | -0.5840 | 0.4133 | $0.056^{*}$ |
| H2C | -0.1581 | -0.4268 | 0.3858 | $0.056^{*}$ |
| C3 | $-0.2679(15)$ | $-0.5580(11)$ | $0.0871(10)$ | $0.0359(18)$ |
| H3A | -0.2440 | -0.4381 | 0.1321 | $0.054^{*}$ |
| H3B | -0.3732 | -0.6101 | -0.0087 | $0.054^{*}$ |
| H3C | -0.1229 | -0.5876 | 0.0641 | $0.054^{*}$ |
| N1 | $-0.5586(10)$ | $-0.3820(7)$ | $0.3243(7)$ | $0.0245(12)$ |
| B1 | $-0.5989(14)$ | $-0.5722(9)$ | $0.2423(10)$ | $0.0257(16)$ |
| H1A | -0.7086 | -0.6197 | 0.1477 | $0.031^{*}$ |
| H1B | -0.6613 | -0.6184 | 0.3119 | $0.031^{*}$ |

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Au1 | $0.0190(3)$ | $0.0229(3)$ | $0.0262(3)$ | $0.00771(17)$ | $0.00457(17)$ | $0.00637(19)$ |
| Au2 | $0.0205(3)$ | $0.0164(2)$ | $0.0295(3)$ | $0.00851(17)$ | $0.00569(17)$ | $0.00314(18)$ |
| I1 | $0.0319(3)$ | $0.0359(3)$ | $0.0273(3)$ | $0.0120(2)$ | $0.0062(2)$ | $0.0113(2)$ |
| N2 | $0.022(3)$ | $0.024(3)$ | $0.028(3)$ | $0.013(2)$ | $0.008(2)$ | $0.010(2)$ |
| C1 | $0.018(3)$ | $0.034(4)$ | $0.029(4)$ | $0.010(3)$ | $0.006(3)$ | $0.010(3)$ |
| C4 | $0.036(4)$ | $0.018(3)$ | $0.039(4)$ | $0.017(3)$ | $0.011(3)$ | $0.007(3)$ |
| C2 | $0.025(4)$ | $0.047(5)$ | $0.034(4)$ | $0.016(3)$ | $0.005(3)$ | $0.010(3)$ |
| C3 | $0.040(5)$ | $0.037(4)$ | $0.038(4)$ | $0.019(4)$ | $0.016(4)$ | $0.019(4)$ |
| N1 | $0.019(3)$ | $0.019(3)$ | $0.029(3)$ | $0.009(2)$ | $0.007(2)$ | $0.003(2)$ |


| B 1 | $0.020(4)$ | $0.016(3)$ | $0.032(4)$ | $0.008(3)$ | $0.009(3)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Geometric parameters ( $\mathrm{A},{ }^{\circ}$ )

| Au1-I1 | 2.5604 (5) | C4-H4A | 0.9800 |
| :---: | :---: | :---: | :---: |
| Au1-I1 ${ }^{\text {i }}$ | 2.5604 (5) | C4-H4B | 0.9800 |
| Au1-Au2 | 3.0438 (1) | $\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$ | 0.9800 |
| $\mathrm{Au} 1-\mathrm{Au} 2^{\text {ii }}$ | 3.0438 (1) | $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 0.9800 |
| $\mathrm{Au} 2-\mathrm{C} 1$ | 1.977 (8) | C 2 - H 2 B | 0.9800 |
| Au2-C1 $1^{\text {iii }}$ | 1.977 (8) | $\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | 0.9800 |
| $\mathrm{Au} 2-\mathrm{Au} 1^{\text {iv }}$ | 3.0438 (1) | C3-H3A | 0.9800 |
| N2-C3 | 1.484 (10) | С3-H3B | 0.9800 |
| N2-C2 | 1.490 (10) | C3-H3C | 0.9800 |
| N2-C4 | 1.502 (9) | N1-B1 | 1.550 (9) |
| N2-B1 | 1.581 (9) | B1-H1A | 0.9900 |
| $\mathrm{C} 1-\mathrm{N} 1$ | 1.156 (10) | B1-H1B | 0.9900 |
| I 1 -Au1-I1 ${ }^{\text {i }}$ | 180 | N2- $\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$ | 109.5 |
| I1—Au1—Au2 | 91.443 (11) | $\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$ | 109.5 |
| I 1 i-Au1-Au2 | 88.557 (11) | $\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$ | 109.5 |
| $\mathrm{I} 1-\mathrm{Au} 1-\mathrm{Au} 2{ }^{\text {ii }}$ | 88.557 (11) | N2-C2-H2A | 109.5 |
| $\mathrm{I} 1^{\text {i }}$ - $\mathrm{Au} 1-\mathrm{Au} 2^{\text {ii }}$ | 91.443 (11) | N2-C2-H2B | 109.5 |
| $\mathrm{Au} 2-\mathrm{Au} 1-\mathrm{Au2}{ }^{\text {ii }}$ | 180 | $\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 109.5 |
| C1—Au2-C1 ${ }^{\text {iii }}$ | 180 | N2- $22-\mathrm{H} 2 \mathrm{C}$ | 109.5 |
| C 1 - Au 2 - Au 1 | 82.9 (2) | $\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | 109.5 |
| C 1 iii -Au2-Au1 | 97.1 (2) | $\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | 109.5 |
| $\mathrm{C} 1-\mathrm{Au} 2-\mathrm{Au} 1^{\text {iv }}$ | 97.1 (2) | N2-C3-H3A | 109.5 |
| $\mathrm{C} 1{ }^{\text {iiii- }} \mathrm{Au} 2-\mathrm{Au} 1{ }^{\text {iv }}$ | 82.9 (2) | N2-C3-H3B | 109.5 |
| Au1-Au2-Au1 ${ }^{\text {iv }}$ | 180 | H3A-C3-H3B | 109.5 |
| C3-N2-C2 | 109.3 (7) | N2-C3-H3C | 109.5 |
| $\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$ | 108.4 (6) | $\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$ | 109.5 |
| $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4$ | 108.7 (6) | H3B-C3-H3C | 109.5 |
| C3-N2-B1 | 112.7 (6) | C1-N1-B1 | 175.7 (7) |
| $\mathrm{C} 2-\mathrm{N} 2-\mathrm{B} 1$ | 111.5 (6) | $\mathrm{N} 1-\mathrm{B} 1-\mathrm{N} 2$ | 108.2 (6) |
| $\mathrm{C} 4-\mathrm{N} 2-\mathrm{B} 1$ | 106.2 (6) | N1-B1-H1A | 110.1 |
| N1-C1-Au2 | 178.1 (7) | N2-B1-H1A | 110.1 |
| N2-C4-H4A | 109.5 | N1-B1-H1B | 110.1 |
| N2-C4-H4B | 109.5 | N2-B1-H1B | 110.1 |
| H4A-C4-H4B | 109.5 | H1A-B1-H1B | 108.4 |

[^0]
[^0]:    Symmetry codes: (i) $-x,-y,-z+1$; (ii) $x+1, y, z$; (iii) $-x-1,-y,-z+1$; (iv) $x-1, y, z$.

