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This paper accompanies a lecture given at the 2003 CCP4

Study Weekend on experimental phasing. With the audience

of the CCP4 Study Weekend in mind, an overview is given of

symmetries of substructures and the implications for single

isomorphous replacement and single anomalous diffraction

phasing procedures, as well as difference Fourier analyses.

Pointers are also provided to practical tools for working with

substructure symmetries.

Received 1 May 2003

Accepted 24 September 2003

1. Introduction

Experimental phasing divides the larger problem of deter-

mining a complete macromolecular structure into two steps.

Firstly, a substructure consisting of heavy atoms or anomalous

scatterers is determined and re®ned. The re®ned substructure

is then used in algebraic or probabilistic phasing procedures to

derive estimates of the phases for the full structure. These

phases are in turn used to compute electron-density maps for

the purpose of density modi®cation and model building (e.g.

Drenth, 1999).

In this paper, we give an overview of substructure symme-

tries. We distinguish two types, expected symmetry and

unexpected symmetry. Expected symmetry encompasses

alternative origin choices, hand ambiguity and indexing

ambiguities. Expected symmetry has to be considered when

substructures are compared or combined in some way, e.g. in a

multiple isomorphous replacement procedure.

Unexpected symmetry refers to cases where the symmetry

of the isolated substructure is higher than the crystal

symmetry. For example, in many non-centrosymmetric space

groups a single-atom substructure is centrosymmetric. This

may have an impact on single isomorphous replacement (SIR)

or single anomalous diffraction (SAD) experiments, as well as

on difference Fourier analyses. Phasing procedures and

difference Fourier syntheses will yield maps that exhibit the

higher symmetry of the substructure, rendering substructure

completion, density modi®cation and model building more

dif®cult. We introduce a simple diagnostic test that indicates

unexpected substructure symmetry.

2. Expected symmetry

Expected symmetry is equivalent to or a subgroup of the

Euclidean normalizer of the crystal symmetry (Koch &

Fischer, 1983), which is also known as Cheshire symmetry

(Hirshfeld, 1968). The concepts of allowed origin shifts or



structure-seminvariant vectors and moduli (e.g. Giacovazzo,

2001) are also intimately connected with Euclidean normal-

izers. The exact de®nition of Euclidean normalizers as given

by, for example, Koch & Fischer (1983), is an advanced subject

of group theory and a full account is beyond the scope of this

paper. Here, we will approach Euclidean normalizers prag-

matically by noticing that they are useful for answering the

question `How many possibilities are there for transforming a

given (sub)structure without changing the corresponding

diffraction intensities?'

We can distinguish three classes of transformations, corre-

sponding to the three columns listed under `Additional

Generators' in Table 15.3.2 of Hahn (1983).

2.1. Translations

A simple example is space group P1 (No. 1). The only

symmetry is the periodicity of the lattice of unit cells. If a given

substructure is shifted arbitrarily in space, the complex

structure factors change owing to phase shifts, but the inten-

sities are invariant. Fig. 1 illustrates that this is not the case for

(for example) space group P2 (No. 3). An atom placed at the

site x, y, z implies another atom atÿx, y,ÿz. If both atoms are

shifted together in a general direction and the symmetry is

applied again, the result is that we ®nd four atoms in the unit

cell. The overall arrangement of atoms is invariant only for

particular shifts (Fig. 1c). These are known as allowed origin

shifts, which can alternatively be represented as structure-

seminvariant vectors and moduli (e.g. Giacovazzo, 2001).

2.2. Inversion through a center

In the absence of anomalous scattering, the inverse image of

a given structure gives rise to the same diffraction intensities

as the original structure. Somewhat counter-intuitively, this is

also true for substructures solved using anomalous differences,

as these are approximations of the anomalous contributions to

the structure factor only (e.g. Grosse-Kunstleve & Adams,

2003a). In most space groups the inversion operation is

located at the origin of the standard setting, but there are

exceptions (e.g. space group I4122; No. 98). Applying the

inversion operation is also known as `changing the hand' of a

structure.

2.3. Further generators

These generators describe the possibilities for reindexing a

given data set. For some space groups, autoindexing programs

may randomly choose between alternative indexing con-

ventions (c.f. `Scenario 5: Reindexing' in the SCALE-

PACK Manual published by HKL Research Inc.; http://

www.hkl-xray.com/hkl/manual.htm). For example, in P4 a

certain re¯ection could be indexed as (1, 2, 0) or alternatively

(2, 1, 0). This corresponds to the generator y, x, z in

Table 15.3.2 of Hahn (1983).

To compare two substructures that were derived from the

same data set, it is suf®cient to consider the allowed origin

shifts and the inversion through a center as given by

Table 15.3.2 of Hahn (1983). If it is not a given that the

substructures relate to the same data set, the further genera-

tors must also be taken into account. This is performed

automatically by the Euclidean model-matching (Emma)

module included in the Computational Crystallography

Toolbox (Grosse-Kunstleve & Adams, 2003b). Similar

programs are included in the Shake-and-Bake suite (Smith,

2002) and the SHELX suite (Dall'Antonia et al., 2003).
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Figure 1
Allowed origin shifts. (a) An atom in P2 and its symmetrically equivalent
copy in four unit cells. (b) The two atoms arbitrarily shifted and their
symmetrically equivalent copies. The overall structure changes under
crystal symmetry. (c) The two atoms shifted by the allowed origin shift
1
2,

1
2, 0. The overall structure is invariant under crystal symmetry.
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3. Unexpected symmetry

An electron-density map obtained through SIR phasing is a

superposition of the true electron density and the centro-

symmetric counterpart of the true electron density convoluted

with the Fourier transform of exp(2i'sub), where 'sub are the

phases of the heavy-atom substructure and i is the imaginary

number. The Fourier coef®cients of this map are given by

(Ramachandran & Srinivasan, 1970)

F � F� exp�2i'sub�; �1�
where F represents complex structure factors and F* are the

complex conjugates.

An electron-density map obtained through SAD phasing is

a superposition of the true electron density and the negative

inverse of the true electron density convoluted with the

Fourier transform of exp(2i'sub) (Ramachandran & Srini-

vasan, 1970),

F ÿ F� exp�2i'sub�: �2�
The second terms of (1) and (2) are expected to only contri-

bute noise to the general background in the SIR and SAD

maps, respectively. However, the case when the substructure

has a centrosymmetric con®guration in a noncentrosymmetric

crystal is special. If the center of inversion of the substructure

is (without loss of generality) placed at the origin of the unit

cell, all phases 'sub are either 0 or 180� and exp(2i'sub) = 1 for

either value. Therefore, (1) and (2) reduce to F + F* and

F ÿ F*, respectively. The SIR or SAD map will therefore be

the superposition of the true electron density with its exact

inverse or exact negative inverse, respectively, and inter-

pretation of the map can be signi®cantly more dif®cult.

Often it is not immediately obvious that a substructure is

centrosymmetric. However, the following algorithm provides

a simple means to test for this condition.

(i) Given the crystallographic data of a substructure, the

phases 'sub are computed through a straightforward structure-

factor calculation.

(ii) The coef®cients exp(2i'sub) are Fourier transformed.

(iii) The resulting map is searched for peaks.

(iv) The peaks are sorted by height and plotted.

(v) If the resulting plot shows one sharp peak then the

substructure is centrosymmetric.

We refer to this diagnostic procedure as the phase-o-phrenia

algorithm (http://cci.lbl.gov/cctbx/phase_o_phrenia.html).

This name is inspired by the term `double-phasing' used by

Ramachandran & Srinivasan (1970) in reference to SIR and

SAD phasing. The rationale behind the phase-o-phrenia

algorithm is that the Fourier transform of a constant function

[e.g. exp(2i'sub) = 1] is a delta function. It is different from

zero only at the origin and exactly zero everywhere else. If the

center of inversion of a substructure is shifted away from the

origin, the expression exp(2i'sub) is no longer a constant but

the Fourier transform is still a delta function which is different

from zero only at the location (2xc, 2yc, 2zc), where (xc, yc, zc)

are the coordinates of the center of inversion.

Figs. 2, 3, 4 and 5 show selected results of the phase-o-

phrenia algorithm. The sharp peak in Fig. 2 is generated by

one or two atoms in any position in space group P1 or, for

example, one atom at x1, y1, 0 and optionally another atom at

x2, y2, 1
2 in space group P6. As a counter-example, Fig. 3 shows

a plot generated by four randomly placed atoms in space

group P31. The phase-o-phrenia algorithm can also be used to

show that some maps will be more dif®cult to interpret than

others even if the substructure is not centrosymmetric. For

example, the plot generated by a randomly placed atom in

space group P3 (Fig. 4) is signi®cantly sharper than a plot

generated by a randomly placed atom in space group P31

(Fig. 5). This re¯ects the higher symmetry of the single-atom

substructure in P3: the symmetry is actually P�6, with a mirror

plane passing through the atom.

It is worth noting that substructures with all sites in special

positions may also lead to higher symmetries. A systematic

treatment can be found in chapter 14 of Hahn (1983) under

the title `Lattice Complexes'.

4. Implications for difference Fourier analyses

It is possible to solve small substructures by manual difference

Figure 2
Phase-o-phrenia plot for centrosymmetric substructures, e.g. one or two
atoms in P1 or one atom at x, y, 0 in P6. The sharp plot re¯ects that the
substructures are centrosymmetric.

Figure 3
Phase-o-phrenia plot for four randomly placed atoms in P31. The ¯at plot
indicates that the substructure symmetry is identical to the crystal
symmetry.



Fourier analyses. A certain number of initial sites (often only

one) are used to compute phases for the full structure. These

phases are combined with isomorphous or anomalous differ-

ences �F to compute a Fourier map that hopefully shows the

missing substructure sites,

map � Fourier transform��F � exp�i'��: �3�
If the substructure used to compute the phases ' has a

symmetry higher than the crystal symmetry, the phases will

re¯ect this higher symmetry. Difference Fourier maps in both

the SIR and SAD case are likely to show spurious strong

positive peaks. For example, if the substructure is centro-

symmetric, the map will show the substructure and the inverse

substructure simultaneously. Therefore, it is important to pick

only one peak from the difference Fourier map and to repeat

the computation of phases with the additional site. If more

than one site is picked from the same map they may not all be

consistent with one choice of hand and the phasing procedure

could fail. The best way to avoid this pitfall is to use automatic

procedures for the solution of substructures (e.g. Grosse-

Kunstleve & Adams, 2003a). In our experience, it is highly

unlikely that a substructure can be solved manually if all

automatic programs available fail to produce the solution.

5. Conclusions

We have presented a summary of how Euclidean normalizer

symmetry affects the comparison of substructures found in

experimental phasing procedures. Based on this theory, we

have implemented a Euclidean model-matching algorithm

(Emma; http://cci.lbl.gov/cctbx/emma.html) that is freely

available as source code and through a web interface. Details

of the Emma algorithm will be published elsewhere.

We have also shown how substructures with a symmetry

higher than the crystal symmetry may affect the interpret-

ability of SIR and SAD maps. Our simple diagnostic phase-o-

phrenia algorithm is also freely available as source code and

through an easy-to-use web interface. For substructures with a

small number of sites (less than ®ve), it can be informative to

use the phase-o-phrenia web service. The general rule is that a

SIR or SAD map will be easier to interpret if the phase-o-

phrenia plot is relatively ¯at because the (negative) inverse of

the electron density is smeared out more evenly according to

(1) and (2). A sharp plot indicates that a map may be dif®cult

to interpret even if the diffraction data are of high quality.

Our work was funded in part by the US Department of
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NIGMS under grant No. 1P01GM063210.
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Figure 4
Phase-o-phrenia plot for one randomly placed atom in P3. The relatively
sharp plot is the result of the P�6 symmetry of the substructure.

Figure 5
Phase-o-phrenia plot for one randomly placed atom in P31. The relatively
¯at plot illustrates the contrast to a single-atom substructure that results
in a higher symmetry (Fig. 4).


