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A twinned crystal is an aggregate in which different domains

are joined together according to a speci®c symmetry

operation: the twin law. The diffraction patterns derived from

different domains are rotated, re¯ected or inverted with

respect to each other, depending on the nature of the

relationship between the different domains, and weighted

according to the quantity of a particular domain present in the

crystal. The diffraction pattern measured during data collec-

tion is a superposition of all of these. Re¯ections from

different domains may overlap and twinned crystals fall

broadly into two categories in which either all re¯ections or

only certain zones of re¯ections are affected by overlap. The

former occurs when a crystal lattice belongs to a higher point

group than the crystal structure itself; the latter frequently

occurs when the twin law is a symmetry operation belonging to

a higher symmetry supercell.
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1. Introduction

Twinning is not an uncommon effect in crystallography,

although it has long been considered to be one of the most

serious potential obstacles to structure determination. The use

of area detectors has much facilitated the detection of twin-

ning and the treatment of diffraction patterns from twinned

crystals. Computer software has also now been developed to

such an extent that previously intractable twinning problems

have yielded results of comparable precision to those obtained

with untwinned samples. Structure determinations from

twinned crystals are therefore becoming more common and

the aim of this article is to present an introduction to the

phenomenon of twinning. An extensive database of papers

describing twinning has been assembled by Spek and Lutz

(Utecht University, The Netherlands) and is available

on the internet at http://www.cryst.chem.uu.nl/lutz/twin/

gen_twin.html. The review by Yeates (1997) will be of parti-

cular interest to macromolecular crystallographers.

2. A simple model for twinning

Twinning may occur when a unit cell (or a supercell) has

higher symmetry than implied by the space group of the

crystal structure. An example of a system which might be

susceptible to twinning is a monoclinic crystal structure in

P21/c where the unique angle, �, is equal or very close to 90�.
In this case, the crystal structure has point group 2/m, but the

lattice has point group mmm. The elements of these point

groups are

2=m : 1;m ? b; 2 k b; 1;

mmm : 1;m ? a; 2 k a;m ? b; 2 k b;m ? c; 2 k c; 1:
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The important issue is that mmm contains symmetry elements

which do not occur in 2/m. Under these conditions, `mistakes'

can occur during crystal growth such that different regions of

the crystal (domains) have their unit cells related by symmetry

operations which are elements of mmm but not 2/m: a twofold

axis about a, for example.

This idea can be illustrated by building up a stack of bricks.

The overall shape or outline of a brick is mmm, but if we

consider the `dent' (brick-layers call this the frog) on one side

plus the words `London Brick', the point symmetry is only 2

(the `space group' of this stack of bricks would be P2) (Fig. 1a).

The most obvious way to build a stack of bricks is to place all

the bricks in the same orientation, such as in Fig. 1(b): notice

that the bricks are related to each other by the twofold axes

perpendicular to the page or simple translation: both are

elements of the space group. However, it is also possible to

stack the bricks in such a way that some of the bricks are

placed upside down (Fig. 1c). The overall shape of the brick,

with the 90� angles between the edges, allows this to happen

without compromising the stacking of the bricks in any way. In

turning some of the bricks upside down, we have used a

twofold axis which is a symmetry operation of point group

mmm but not point group 2.

Fig. 1(b) is similar to a single crystal; Fig. 1(c) resembles a

twinned crystal. In Fig. 1(c) there are two domain variants:

bricks (which correspond to unit cells) within the same domain

are related to each other by translation; bricks in different

domains are related by a translation plus a rotation which

occurs in the point symmetry of the outline or overall shape of

the brick. This extra symmetry operation corresponds in

crystallography to the twin law. Had the extra element been

chosen to be a mirror plane the mirror image of the words

`London Brick' would have appeared in the second domain

and it is important to bear this in mind during the analysis of

enantiopure crystals of chiral compounds (such as proteins).

In protein crystallography the only possible twin laws are

rotation axes. The fraction of the bricks in the alternative

orientation corresponds to the twin scale factor, which in this

example is 0.5.

3. Twinning in crystals

Monoclinic crystal structures some-

times have � very close to 90�. If twin-

ning occurs, the unit cells in one domain

may be rotated by 180� about the a or c

axes relative to those in the other

domain in exactly the fashion described

above for bricks. However, not all

monoclinic crystal structures with � '
90� form twinned crystals: twinning will

only be observed if intermolecular

interactions across a twin boundary are

energetically competitive with those

that would have been formed in a single

crystal. For this reason, twinning very

commonly occurs if a high-symmetry

phase of a material undergoes a transition to a lower-

symmetry form upon change of temperature or pressure: a

`lost' symmetry element which made certain interactions

equivalent in the high-symmetry form can act as a twin law in

the low-symmetry form. Layered structures, such as the one

shown in Fig. 2 (see also x7), are also often susceptible to

twinning if the interactions between layers are rather weak

and non-speci®c; alternative orientations of successive layers

are then energetically similar. The total energy difference

between intermolecular interactions which occur in a single, as

opposed to a twinned, form of a crystal is one factor which

controls the value of the domain scale factor, although in

practice this may also be controlled kinetically by, for example,

the rate of crystal growth.

In the foregoing discussion the impression might have been

given that a twinned crystal consists of just two domains. A

monoclinic crystal with �' 90� twinned via a twofold rotation

about a, though it contains two domain variants, may actually

consist of very many domains. The orientations of the unit

cells in any pair of domains will be related either by the

identity operator or by the twin law. Further examples have

been illustrated by Giacovazzo (1992) and other lead refer-

ences can be found in the article by Koch (1992); an illustrative

study of the domain structure of KLiSO4 has been given by

Klapper et al. (1987).

Although the properties of a material (e.g. mechanical and

optical properties) can depend strongly on domain structure, it

is usually not necessary to characterize this for the purposes of

ordinary structure analysis. However, the twin scale factor

may appear to vary when different regions of a crystal are

sampled during data collection. This can give rise to powerful

non-isomorphism effects, as discussed by Terwisscha van

Scheltinga et al. (2003).

4. Diffraction patterns from twinned crystals

Each domain of a twinned crystal gives rise to its own

diffraction pattern; what is measured on a diffractometer is a

Figure 1
A simple model for twinning. (a) A brick; the top face of the brick has an indentation and the words
`London Brick' embossed on two sides of the indentation. (b) A stack of bricks where all the bricks
are related to one another by translation. This resembles the relationship between units cells making
up a single crystal. (c) Here some of the bricks have been placed upside down. The bricks still ®t
together because in turning a brick upside down we have used a symmetry element of the outline or
overall shape of the brick. This resembles the relationship between unit cells in a twinned crystal. In
both (b) and (c) the ®gures are intended to represent a whole crystal.



superposition of all these patterns with intensities weighted

according to the domain scale factors. The relative orienta-

tions of the diffraction patterns from different domains are the

same as the relative orientations of the domains, so that if they

are related by a 180� rotation about a, then so too are their

diffraction patterns. Fig. 3 shows this for a twinned monoclinic

crystal structure for which � = 90�. Twinning is a problem in

crystallography because it causes superposition or overlap

between re¯ections which are not related by symmetry. In

Fig. 3(c), the re¯ection which would have been measured with

indices 102 is actually a superposition of the 102 re¯ection

from domain 1 (Fig. 3a) and the 102 re¯ection from domain 2

(Fig. 3b). During structure analysis of a twinned crystal, it is

important to de®ne exactly which re¯ections contribute to a

given intensity measurement: this is the role of the twin law.

In order to treat twinning during re®nement, the twin law

must obviously form part of the model. Usually, it is input into

a re®nement program in the form of a 3 � 3 matrix. In the

example shown in Fig. 3, the twofold axis about the a axis will

transform a into a, b into ÿb and c into ÿc. This is the

transformation between the cells in different domains of the

crystal; written as a matrix this is

1 0 0

0 ÿ1 0

0 0 ÿ1

0@ 1A:

The same matrix relates the indices of pairs of overlapping

re¯ections,1

1 0 0

0 ÿ1 0

0 0 ÿ1

0@ 1A h

k

l

0@ 1A � h

ÿk

ÿl

0@ 1A:
This two-component twin can be modelled using a quantity

|Ftwin,calc|
2, which is a linear combination (equation 1, Pratt et

al., 1971) consisting of |F|2 terms for each component re¯ec-

tion weighted according to the twin scale factor, x, which can

be re®ned,

jFtwin;calc�h; k; l�j2 � �1ÿ x�jFcalc�h; k; l�j2
� xjFcalc�h;ÿk;ÿl�j2: �1�

In the single-crystal reciprocal-lattice plots shown in Figs. 3(a)

and 3(b), although twofold axes and mirror planes about the

a* and c* axes relate the positions of the spots, this symmetry

is not expressed in the intensities of the spots (for example, the

102 and 102 re¯ections have different intensities in Fig. 3a).

However, in the composite twinned pattern (Fig. 3c), both the

positions and the intensities of the spots exhibit the same

mirror or twofold symmetry with respect to both of these axes.

The composite pattern with equal domain volumes (that is

x = 0.5; Fig. 3c) appears to have orthorhombic diffraction
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Figure 2
Molecular structure of compound (1). This is a monoclinic structure in which � = 90�, twinned via a twofold rotation about a.

1 Here, the triple hkl is represented as a column vector; if it is treated as a row
vector (as it is in some software packages), the twin matrices discussed in this
paper should be transposed.



CCP4 study weekend

1998 Parsons � Introduction to twinning Acta Cryst. (2003). D59, 1995±2003

symmetry even though the crystal structure is monoclinic. In

general, for a two-component twin, if x is near 0.5 then

merging statistics will appear to imply higher point symmetry

than that possessed by the crystal structure. As x deviates from

0.5, then the merging in the higher-symmetry point group

gradually becomes poorer relative to merging in the point

group which corresponds to the space group of the crystal

structure (Fig. 3d). Although it is impossible to give a de®ni-

tive range, merging in the higher-symmetry point group may

yield a merging residual of 0.10±0.35; values of around 0.60

might be expected for untwinned samples (although pseudo-

symmetry in, for example, heavy-atom positions can give rise

to a similar effect).

Another striking feature of the twinned diffraction pattern

shown in Fig. 3(c) is that it appears to have a more acentric

intensity distribution than the component patterns. The

superposition of the diffraction patterns arising from the

different domains tends to average out intensities because

strong and weak re¯ections sometimes overlap. The quantity

|E2 ÿ 1|, which adopts values of 0.97 and 0.74 for ideal centric

and acentric distributions, respectively, may assume a value in

the range 0.4±0.7 for twinned crystal structures. Intensity

statistics can therefore be a valuable tool for the diagnosis of

twinning, although it is important to bear in mind all the usual

caveats relating to the assumption of a random distribution of

atoms, which is not appropriate, for example, in the presence

of heavy atoms or non-crystallographic symmetry (Alexeev,

2003). Rees (1980) has shown that an estimate of the twin

scale factor, x, can be derived from the value of |E2ÿ 1|. Other

procedures have been developed by Britton (1972) and Yeates

(1988) and these have been compared by Kahlenberg (1999).

The latter statistical tests will fail, however, for twins with x

near 0.5. If the value of x is known and is not near 0.5,

(equation 1) can be used to `detwin' a data set. This procedure

may be useful for the purposes of structure solution, although

it is generally preferable to re®ne against the original twinned

data set.

Common signs of twinning have

been listed by Herbst-Irmer & Shel-

drick (1998, 2002). Additional signs to

those described above include an

inability to solve a structure even

though the data appear to be of good

quality or, if a structure can be solved, a

high R factor or a noisy inexplicable

difference electron-density map. Twin-

ning also reveals itself in the Patterson

function and this is discussed by Dauter

(2003) and Yeates (1997). Since re¯ec-

tions from one domain may overlap

with systematic absences from another,

the observed systematic absences may

either not be consistent with any

known space group or appear to imply

a very rare space group. Low-symmetry

trigonal and hexagonal crystal struc-

tures appear to be particularly suscep-

tible to twinning. It was pointed out by

a referee to this paper that because

twinning makes the point symmetry

appear higher than it actually is, there

seem to be more molecules in the unit

cell than is actually the case, so that an

unreasonably high packing density can

also be taken to be a useful warning

sign of twinning in macromolecular

crystallography.

5. Inversion, merohedral and
pseudo-merohedral twins

Twinning can occur whenever a

compound crystallizes in a unit cell

with a higher point group than that

corresponding to the space group. This

Figure 3
The effect of twinning by a twofold rotation about a on the diffraction pattern of a monoclinic crystal
with � = 90�. Only the h0l zone is illustrated; the space group is P21/c. (a) h0l zones from a single-
crystal. This could represent the diffraction pattern from one domain of a twinned crystal. (b) This is
the same pattern as shown in (a), but rotated about a* (or h axis) (which is coincident with the a axis
of the direct cell). This ®gure represents the diffraction pattern from the second domain of a twinned
crystal. (c) Superposition of (a) and (b) simulating a twin with a domain scale factor of 0.5; that is,
both domains are present in equal amounts. (d) Superposition of (a) and (b) simulating a twin with a
domain scale factor of 0.2: the crystal consists on 80% of one domain (a) and 20% of the other (b).
The values of |E2ÿ 1| for each ®gure are (a) and (b) 1.015, (c) 0.674, (d) 0.743. The ideal (untwinned)
value of |E2 ÿ 1| for this centric crystal structure is 0.97, meaning that its diffraction pattern
characterized by the presence of both strong and weak re¯ections; intensities are more evenly
distributed in acentric distributions, where |E2 ÿ 1| has an ideal value of 0.74.



can occur for crystal structures in non-centrosymmetric space

groups, since all lattices have inversion symmetry. Thus, a

crystal of a compound in a space group such as P21 may

contain enantiomorphic domains (Flack, 2003). This type of

twinning does not occur for an enantiopure compound and it

can therefore be ruled out in protein crystallography. The twin

law in this case is the inversion operator,

ÿ1 0 0

0 ÿ1 0

0 0 ÿ1

0@ 1A:
This kind of twinning does not hamper structure solution and

is most commonly encountered in Flack's method for absolute

structure determination (Flack, 1983). The domain scale factor

in this case is referred to as the Flack parameter.

Twinning may also occur in lower symmetry tetragonal,

trigonal and cubic systems. Thus, a tetragonal structure in

point group 4/m may twin about the twofold axis along [110],

which is a symmetry element of the higher-symmetry tetra-

gonal point group 4/mmm. The twin law in this case is

0 1 0

1 0 0

0 0 ÿ1

0@ 1A;
this matrix may also be used in the treatment of low-symmetry

trigonal, hexagonal and cubic crystal structures, producing

diffraction patterns with apparent 3m1, 6/mmm and m3m

symmetry, respectively, when the domain scale factor x is 0.5.

Two further twin laws need to be considered in low-

symmetry trigonal crystals. A twofold rotation about [110],

mimicking point group 31m when x = 0.5, is expressed by the

matrix

0 ÿ1 0

ÿ1 0 0

0 0 ÿ1

0@ 1A:
By twinning via a twofold axis about [001], a trigonal crystal

may also appear from merging statistics to be hexagonal if

x = 0.5. The twin law in this case is

ÿ1 0 0

0 ÿ1 0

0 0 1

0@ 1A:
In rhombohedral crystal structures, twinning of this type leads

to obverse±reverse twinning.

The point groups of the crystal lattices (1 for triclinic, 2/m

for monoclinic, mmm for orthorhombic, 4/mmm for tetra-

gonal, 3m for rhombohedral, 6/mmm for hexagonal and m3m

for cubic) are referred to as the holohedral point groups.

Those point groups which belong to the same crystal family,

but which are subgroups of relevant holohedral point group,

are referred to as merohedral point groups (this classi®cation

is discussed in detail by Hahn & Klapper, 1996). Thus, 4/m is a

merohedral point group of 4/mmm. With the exception of

obverse±reverse twinning (see below), in all the cases

described in the previous paragraphs in this section the twin

law was a symmetry operation of the relevant holohedry (i.e.

of the crystal lattice) which was not expressed in the point

symmetry corresponding to the crystal structure. For this

reason, this type of phenomenon is referred to as twinning by

merohedry. Such twins are often described as merohedral and

although this usage is occasionally criticized in the literature

(Catti & Ferraris, 1976), it appears to have stuck.2 Though it is

quite rare in molecular crystals, twins containing more than

two domain variants are sometimes observed (see x6); more

commonly only two are present, however, and such twins are

also described as hemihedral twins.

Twinning by merohedry should be carefully distinguished

from the example described in x4 where a monoclinic crystal

structure accidentally had a � angle near 90�; for example,

there is nothing `accidental' about a low-symmetry tetragonal

structure having a lattice with symmetry 4/mmm: all low-

symmetry tetragonal structures have this property. Put

another way, the holohedry of the tetragonal lattice is 4/mmm;

the low-symmetry tetragonal structure might belong to point

group 4/m, 4 or 4, which are all nevertheless still tetragonal

point groups; this is what would make this twinning by

merohedry.

A trigonal crystal structure may be merohedrally twinned

via a twofold axis about the [001] direction (parallel to the

threefold axis), because this is a symmetry element of the

6/mmm holohedry. However, the rhombohedral lattice holo-

hedry is 3m and this point group does not contain a twofold

axis parallel to the threefold axis. Although twinning via a

twofold axis in this direction can certainly occur for rhom-

bohedral crystal structures, it is not twinning by merohedry.

Instead, it is referred to as obverse±reverse twinning or

twinning by reticular merohedry; this is an important distinc-

tion because overlap between re¯ections from different

domain variants in obverse±reverse twins only affects a third

of the intensity data. This has recently been discussed in detail

by Herbst-Irmer & Sheldrick (2002).

A monoclinic crystal structure which happens to have

� ' 90� has a lattice with, at least approximately, the mmm

symmetry characteristic of the orthorhombic crystal family. If

twinning occurs by a twofold axis about a or c, the crystal is not

merohedrally twinned, since monoclinic and orthorhombic are

two different crystal families. This type of effect is instead

referred to as twinning by pseudo-merohedry. A further

example might occur in an orthorhombic crystal where two

sides (b and c, say) are of equal length (pseudo-tetragonal).

The twin law in this case could be a fourfold axis about a,

1 0 0

0 0 1

0 ÿ1 0

0@ 1A:
A monoclinic crystal where a ' c and � ' 120� may be

twinned by a threefold axes about b. The clockwise and
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2 Holo and mero are Greek stems meaning whole and part, respectively. This
`French School' nomenclature was originally devised to describe crystal
morphology and is used here because it is currently popular in the literature.
Different nomenclature is also encountered; see, for example, Giacovazzo
(1992) or van der Sluis (1989).
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anticlockwise threefold rotations (3+ and 3ÿ) about this

direction are

0 0 1

0 1 0

ÿ1 0 ÿ1

0@ 1A and

ÿ1 0 ÿ1

0 1 0

1 0 0

0@ 1A;
potentially yielding a three-component pseudo-merohedral

twin appearing from the diffraction symmetry to be hexa-

gonal.

Note that higher symmetry may be `hidden' in a centred

setting of a unit cell and not be immediately obvious from the

cell dimensions and it is necessary to inspect carefully the

output from whichever program has been used to check the

metric symmetry of the unit cell [Herbst-Irmer & Sheldrick

(1998) have described two illustrations of this].

6. Derivation of twin laws

In x4 the case of a monoclinic crystal where � ' 90� was

examined and it was shown that twinning could occur about a

twofold axis about a. This leads to overlap between re¯ections

with indices hkl and hkl. Twinning via a twofold axis about c

would lead to overlap between re¯ections with indices hkl and

hkl. However, since re¯ections hkl and hkl are related by the

monoclinic twofold axis about b* which must be present if the

crystal point group is 2 or 2/m, these twin laws are equivalent.

However, in the twinning about two threefold axes described

in x5 for a monoclinic crystal with a ' c and � ' 120�, the

rotations are not equivalent because they are not related by

any of the symmetry operations of point group 2/m.

It is usually the case that several equivalent descriptions

may be used to describe a particular twin. However, several

distinct twin laws may be possible and they can be expressed

simultaneously. There clearly exists a potential for possible

twin laws to be overlooked during structure analysis. Flack

(1987) has described the application of coset decomposition to

this problem, enabling this danger to be systematically

avoided. The procedure has been incorporated by Litvin into

the computer program TWINLAWS (Schlessman & Litvin,

1995).3

Suppose that a crystal structure in point group G crystallizes

in a lattice with a higher point-group symmetry H. The number

of possible twin laws is given by (hH/hG)ÿ 1, where hG and hH

are the respective orders of point groups G and H (that is, the

number of symmetry operations they contain). For example, in

a protein crystallizing in point group 2 (space group P2, C2 or

P21) with a unit cell with parameters a = 30.5, b = 30.5,

c = 44.9 AÊ , � = 90.02�, G is point group 2 and H is effectively

point group 422 (4/mmm in principle, but mirror symmetry is

not permitted for an enantiopure protein crystal). The orders

of G and H are 2 and 8, respectively, and so this crystal may

suffer from up to three twin laws to form, at most, a twin with

four domain variants (the reference domain plus three others).

Coset decomposition yields the symmetry elements which

must be added to point group G to form the higher point

group H. Table 1 shows the output of the program TWIN-

LAWS, listing decomposition of point group 422 into cosets

with point group 2. Possible twin laws are twofold axes about

the [100], [110] and [110] directions. However, the twofold

rotation about [110] is an equivalent twin law to the 4ÿ (i.e. the

43) rotation about [001] and the twofold axis about [100] is

equivalent to that about [001].

The coset decomposition approach should clarify the rather

complicated system of twin laws, presented in x5, which apply

to trigonal crystals. A trigonal crystal structure in P3, P31 or

P32 belongs to point group 3 (order 3), but is built on a lattice

with 6/mmm symmetry (order 24). Twins with eight domain

variants are possible in this case! The twin laws are formed by

twofold rotations about [110], [110] and [001], the inversion

operator and mirror planes perpendicular to [110], [110] and

[001]. Of course, the last four of these can be ruled out in

crystals of enantiopure chiral compounds and it should be

stressed that such complicated multiple twinning is rather

uncommon in molecular crystals.

7. Examples of twinned crystal structures

Crystals of the compound C30H27N (1) (Fig. 2) diffracted

rather weakly. The unit cell appeared to be orthorhombic with

parameters a = 8.28, b = 12.92, c = 41.67 AÊ . The volume here

®ts for Z = 8 and the value of |E2ÿ 1| was 0.725. None of this is

especially unusual, although the space group assuming

orthorhombic symmetry appeared to be P2212, which is rare.

Merging statistics (Rint), were as follows: mmm, 0.14; 2/m, a

unique, 0.13; 2/m, b unique, 0.06; 2/m, c unique, 0.09. The

lowest Rint indicated monoclinic symmetry with the b axis of

the orthorhombic cell corresponding to the unique axis of the

monoclinic cell. Taken with the space-group information

described above this seemed to be a twin. The twin law used

was

1 0 0

0 ÿ1 0

0 0 ÿ1

0@ 1A
and space group P21 was assumed. The structure did not solve

by direct methods, but a position and orientation for one

molecule (there are four in the asymmetric unit) was obtained

by Patterson search methods (DIRDIF; Beurskens et al., 1996)

Table 1
Coset decomposition of point group 422 with respect to point group 2.

Output taken from the program TWINLAWS (Schlessman & Litvin, 1995).
The four rows represent the four different domains; either symmetry
operation in a row may be taken to generate that domain.

1 2 (Y)
2 (X) 2 (Z)
2 (X ÿ Y)² 4 (Z)
4(3) (Z)³ 2 (XY)§

² The notation indicates a twofold rotation about the [110] direction. ³ This is a 4ÿ or
43 rotation about [001]. § This is a twofold rotation about [110].

3 This program is available free of charge to academic users from http://
www.bk.psu.edu/faculty/litvin/Download.html or via the CCP14 web site
(http://www.ccp14.ac.uk).



using the rigid part of the molecule as a search fragment. The

structure was completed by iterative cycles of least squares

and Fourier syntheses (SHELXL97; Sheldrick, 1997). A

search for missed space-group symmetry did not reveal any

glide or mirror planes: the ®nal R factor was 10%.

Further examples, more relevant to macromolecular struc-

ture determination, are given by Dauter (2003) and Terwis-

scha van Scheltinga et al. (2003). Worked examples for several

twinning problems have been assembled by Herbst-Irmer

and are available from http://shelx.uni-ac.gwdg.de/~rherbst/

twin.html.

8. Non-merohedral twinning

In merohedral and pseudo-merohedral twinning, the nature of

the twin-law matrix means that all integral Miller indices are

converted into other integer triples, so that all reciprocal-

lattice points overlap. This usually means that all re¯ections

are affected by overlap, although re¯ections from one domain

may overlap with systematic absences from another. Twins in

which only certain zones of reciprocal-lattice points overlap

are classi®ed as being non-merohedral. In these cases, only

re¯ections which meet some special conditions on h, k and/or l

are affected by twinning.

A non-merohedral twin law is commonly a symmetry

operation belonging to a higher symmetry supercell. A simple

example which might be susceptible to this form of twinning is

an orthorhombic crystal structure where 2a ' b (Fig. 4). A

metrically tetragonal supercell can be formed by doubling the

length of a so that there is a pseudo-fourfold axis about c. The

diffraction pattern from one domain of the crystal is related to

that from the other by a 90� rotation about c*. Superposition

of the two diffraction patterns shows that data from the ®rst

domain are only affected by overlap with data from the second

domain when k is even (Fig. 4d). For the purposes of structure

analysis, this twin law needs to be expressed with respect to

the axes of the true orthorhombic cell. From Fig. 4(a),

a0 = ÿ0.5b, b0 = 2a, c0 = c, so that the twin law is

0 ÿ0:5 0

2 0 0

0 0 1

0@ 1A:
The effect of this matrix on the data is

0 ÿ0:5 0

2 0 0

0 0 1

0@ 1A h

k

l

0@ 1A � ÿk=2

2h

l

0@ 1A;
con®rming that only data with k = 2n are affected by the

twinning. Thus, the 143 re¯ection from the ®rst domain

(green) is overlapped with the ÿ223 re¯ection from the

second (blue) domain. The 413 re¯ection in the green domain

would be unaffected by twinning.

It is likely that the example given here would index readily

on the tetragonal supercell, but notice the bizarre systematic

absences in Fig. 4(d). Zones of unusual systematic absences

are frequently a sign that a crystal is non-merohedrally

twinned. This pseudotranslational symmetry should enable
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Figure 4
Non-merohedral twinning in an orthorhombic crystal where 2a = b. (a) The relationship of the unit cells in different domains is a 90� rotation about c. (b),
(c) Diffraction patterns from the two different domains in the crystal. The green spots in (b) arise from cells in the orientation shown in green in (a);
likewise, the blue spots in (c) come from the blue orientation in (a). (d) Superposition of (b) and (c) to illustrate the diffraction pattern that would be
measured for the twinned crystal. Note that blue and green spots only overlap where k is an even number. Both Figs. 3 and 4 were drawn using XPREP
(Sheldrick, 2001).
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the true orthorhombic cell to be inferred and it can be char-

acterized in a Patterson synthesis.

In orthorhombic and higher systems, potential non-mero-

hedral twins laws can often be derived from inspection of the

unit-cell parameters. In low-symmetry crystals the twin law is

usually less obvious (general procedures are given below), but

it is possible to make a few general observations which apply

to monoclinic crystals. In these cases, the twin law is often

found to be a twofold axis about the unit cell a or c axes. The

matrix for a twofold rotation about the a axis is

1 0 0

0 ÿ1 0

�2c cos��=a 0 ÿ1

24 35:
The corresponding rotation about c is

ÿ1 0 �2a cos��=c

0 ÿ1 0

0 0 1

24 35:
Likely twin laws can be derived for monoclinic crystals by

evaluating the off-diagonal terms in these matrices; if near-

rational values are obtained, the corresponding matrix should

be investigated as a possible twin law.

9. The derivation of non-merohedral twin laws

Diffraction patterns from non-merohedrally twinned crystals

contain many more spots than would be observed for an

untwinned sample. Since individual spots may come from

different domains of the twin, such diffraction patterns are

frequently dif®cult to index. Overlap between re¯ections may

be imperfect in some or all zones of data affected and inte-

gration and data reduction needs to be performed carefully.

Software for integrating data sets from non-merohedral twins

and performing absorption corrections has recently become

available [for example, SAINT (Bruker-Nonius, 2002);

EVAL-14 (Duisenberg et al., 2003) and TWINABS (Sheldrick,

2002)].

Excellent programs such as DIRAX (Duisenberg, 1992) and

GEMINI (Sparks, 1999) have been developed to index

diffraction patterns from non-merohedral twins. In many cases

a pattern can be completely indexed with two orientation

matrices and both these programs offer procedures by which

the relationship between these alternative matrices is analysed

to suggest a twin law. It is usually the case that twinning can be

described by a twofold rotation about a direct or reciprocal-

lattice direction. Indeed, if two such directions are parallel and

the vectors describing them have a dot product of greater than

two, then a higher-symmetry supercell can be derived. The

program CREDUC (Le Page, 1982) is extremely useful for

investigating this; it is available in the Xtal suite of software

(Hall et al., 1992), which can be downloaded from http://

www.ccp14.ac.uk; the algorithm is also used in the LEPAGE

routine in PLATON (Spek, 2003). A related program, called

OBLIQUE, has recently been described by Le Page (2002).

It is sometimes the case that the ®rst intimation that the

analyst has that a crystal is twinned is during re®nement.

Symptoms such as large inexplicable difference Fourier map

peaks and a high R factor may indicate that twinning is a

problem, while careful analysis of poorly ®tting data reveals

that they belong predominantly to certain distinct zones in

which |Fobs|
2 is systematically larger than |Fcalc|

2. If twinning is

not taken into account, it is likely that these zones are being

poorly modelled and that trends in their indices may provide a

clue to a possible twin law. The computer program ROTAX

(Cooper et al., 2002; also available from http://

www.ccp14.ac.uk) makes use of this idea to identify possible

twins laws. A set of data with the largest values of

[|Fobs|
2ÿ |Fcalc|

2]/u(|Fobs|
2) (where u is the standard uncertainty

of |Fobs|
2) is identi®ed and the indices transformed by twofold

rotations or other symmetry operations about possible direct

and reciprocal-lattice directions. Matrices which transform the

indices of the poorly ®tting data to integers are identi®ed as

possible twin laws. The analyst then has a set of potential

matrices which might explain the source of the re®nement

problems described above. A related procedure is available in

the TwinRotMat routine in PLATON, but this uses a set of

re¯ections from planes with similar d spacings rather than high

values of [|Fobs|
2 ÿ |Fcalc|

2]/u(|Fobs|
2).

10. Non-merohedral twinning: an example

Crystals of (2) grew as coaxially aligned aggregates of needles

(Smith, 2000). The diffraction pattern was completely indexed

using DIRAX using two orientation matrices. Some re¯ections

in the search list gave integral indices with only one of these

matrices, while others could be satisfactorily indexed with

both. The crystal system was monoclinic P, a = 7.28, b = 9.74,

c = 15.23 AÊ , � = 94.39�, space group P21/n. We describe below

how the program ROTAX can be used to evaluate the twin

law; however, the same matrix could also be obtained with the

program 2VIEW, which is part of the DIRAX system. Data

were collected using one of the matrices derived by DIRAX.

The structure was solved by Patterson methods (DIRDIF) and

re®nement (CRYSTALS; Watkin et al., 2002) converged to

R = 14.8%, with anisotropic displacement parameters and all

H atoms except that attached to the hydroxyl group placed in

calculated positions. The difference synthesis maximum of

1 e AÊ ÿ3 was close to the S atom, but in a chemically implau-

sible position.

The program ROTAX has been incorporated into the

CRYSTALS re®nement suite, the application and re®nement

of a twinning model being facilitated by a GUI. All poorly

®tting data had h = 3n and the twin law was readily identi®ed

as the matrix



ÿ1 0 0

0 ÿ1 0

0:33 0 1

0@ 1A;
which corresponds to a twofold axis about the [106] direct

lattice direction. This acts to overlap re¯ections hkl with h = 3n

from one domain with re¯ections ÿh, ÿk, (h/3 + l) from the

other domain. Incorporation of this twin law into the re®ne-

ment cleaned up the difference map considerably, allowing the

hydroxyl H atom to be located. The ®nal R factor was 5.16%,

with a twin scale factor of 0.437 (3).

In the case of this crystal, a supercell can be obtained by

application of the matrix

1 0 0

0 ÿ1 0

1 0 6

0@ 1A;
which transforms the true monoclinic cell to a metrically

orthorhombic cell with dimensions a = 7.29, b = 9.74,

c = 91.12 AÊ . It is important to attempt to identify the metric

symmetry of the supercell because the fact that this cell is

orthorhombic and no higher implies that there is no need to

search for further twin laws. Decomposition of mmm into

cosets with subgroup 2/m yields the identity operator and

either a twofold axis about a or c of the supercell, which has, of

course, already been identi®ed.

Further examples of non-merohedral twinning problems

are given by Dauter (2003), Choe et al. (2000), Colombo et al.

(2000), Gaudin et al. (2000), Guelylah et al. (2001), Cooper et

al. (2002) and Tang et al. (2001). A worked example

(Herbst-Irmer & Sheldrick, 1998) is available from http://

shelx.uni-ac.gwdg.de/~rherbst/twin.html.

Note added in proof: Padilla & Yeates (2003) have very

recently described a statistical test for the detection of hemi-

hedral twinning.
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