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Collaborative Computational Project Number 4 (CCP4) was

established in 1979 to promote collaboration between UK

groups writing software for protein crystallography. From

these beginnings, CCP4 now distributes a large software suite

and is active in developing new software. In this article, an

overview is given of recent and ongoing developments in the

CCP4 software suite, in particular as they pertain to high-

throughput studies. Developments in individual programs are

discussed ®rst, although these are covered in more detail

elsewhere. The bulk of the article focusses on the infra-

structure of the software suite which allows the user to move

effortlessly between different programs or to create auto-

mated schemas. Major changes to the software library at the

heart of the CCP4 suite, developments in the CCP4 graphical

user interface, and data management within CCP4 are

discussed. The latter is crucial to high-throughput studies,

where a large number of data are imported, created and ®nally

archived.
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1. Introduction

The Collaborative Computational Project Number 4 (CCP4)

supports the development and use of software in macro-

molecular crystallography (Collaborative Computational

Project, Number 4, 1994; Dodson et al., 1997). A suite of

programs is released periodically to user groups around the

world, with new releases typically including several recently

developed programs as well as updates to old favourites.

Coherent use of the programs is facilitated by standard ®le

formats, common data ®les and a graphical user interface.

As the producer of a self-contained and portable software

suite, CCP4 does not address directly the problem of setting

up structure-solution protocols within a particular structural

genomics programme. However, CCP4 programs do feature in

many such protocols and therefore CCP4 has an important

role in providing the correct tools for high-throughput studies.

Recent examples of procedures based at least partly around

CCP4 programs include the validation script developed by

Badger & Hendle (2002) and the Elves automated structure-

solution package (Holton, 2002).

In this article, we give an overview of CCP4 developments

as they pertain to high-throughput initiatives. We consider

four broad areas, although the division is somewhat arbitrary.

In x2, we highlight a few programs which are under active

development. The underlying algorithms of these programs

are becoming more sophisticated, with, for example,

increasing use of advanced statistical methods. In addition,

however, these programs are becoming more self-contained

and therefore more suited to automation, although the ability

to intervene when problems are encountered is retained.
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The individual programs of the CCP4 software suite

provide the essential functionality for structure solution.

Nevertheless, structure solution requires the use of several

programs and communication between the programs is

essential and is where much of the effort towards automation

is expended. This communication depends on the infra-

structure of the CCP4 suite, in particular the software library

which provides a common set of functionality shared by most

applications. In x3, we describe the ongoing development of a

new software library for CCP4 which will provide the basis for

future high-throughput solutions.

The CCP4 graphical user interface `ccp4i' is now well

established. While, in principle, user intervention is minimized

in high-throughput structure determination, it is likely to

remain necessary for some time and easing the task for the

user is a valuable aim. Moreover, ccp4i as an intermediate

layer between programs and users provides a mechanism for

automation. The role of ccp4i is discussed in x4.

Last, but certainly not least, x5 discusses data management

within the CCP4 suite. High throughput requires the seamless

transfer of data from the experiment, through structure

solution, to ®nal deposition in the Protein Data Bank (PDB).

CCP4's role in the Data Harvesting initiative is described,

along with other areas of data management.

It is in the nature of CCP4 that developments involve the

participation of many people, from the contributing software

developers to the practicing crystallographers who provide

suggestions and a testbed for new software. Many of the

developments discussed here in the context of CCP4 are

important in their own right and the reader is referred where

appropriate to the original work.

2. Program developments

The CCP4 software suite consists of a large number of indi-

vidual programs (around 160 binaries at the time of writing).

Many of these programs continue to be actively developed

and we do not attempt to cover them all. In this section, we

highlight brie¯y a few programs which are or will be important

components of high-throughput studies.

The program MOSFLM performs data processing for image

plate and CCD data, including autoindexing, determination of

data-collection strategy and integration of images (Leslie,

1992). The MOSFLM program is currently being rewritten

with a separate program and graphical interface, linked by a

controlling server. The new modular program is in turn being

included in an integrated data-collection and data-processing

scheme which will handle communication between the

different software components (the so-called `DNA' project).

The aim is to reduce the need for human intervention in

straightforward cases. This is described in more detail in Leslie

et al. (2002).

As an independent development, Randy Read and co-

workers are developing the PHASER program which uses

multivariate statistical methods to develop likelihood func-

tions for SIR/MIR, SAD/MAD and molecular replacement

within a uni®ed framework. The method includes a treatment

for pairwise correlations, for example between the F(+) and

F(ÿ) datasets in a SAD experiment. The MR likelihood target

has been implemented in the program BEAST described in

Read (2001). The aim is to have a fully integrated program for

experimental phasing and molecular replacement, including

heavy-atom location where appropriate. PHASER will be

included in the CCP4 suite and CCP4 is funding the devel-

opment of a ccp4i interface to the program.

Many CCP4 programs are in principle amenable to paral-

lelization, for example where calculations are performed

independently on each re¯ection in a set, and would bene®t

from the gain in speed on parallel or distributed architectures.

Diederichs (2000) has developed parallel versions of ESSENS

(Kleywegt & Jones, 1997) and SHELXL (Schneider & Shel-

drick, 1997) using the OpenMP speci®cation for shared

memory architectures and has subsequently implemented

OpenMP directives for BEAST, which are included in the

version in CCP4 4.2.

ACORN is a ¯exible and ef®cient ab initio procedure to

solve a protein structure when atomic resolution data are

available. Initial phases are generated from a fragment, which

can be random atoms, heavy atoms (sulfur or heavier)

including anomalous scatterers or a feature such as a standard

�-helix or a motif from a similar structure. ACORN integrates

the separate tasks of locating the correct orientation and

position of the initial fragment and re®nement of the initial

phases. In the case of the metalloproteinase deuterolysin, a

solution was obtained in a few minutes from 5000 trials of a

single atom in a random position (McAuley et al., 2001). The

program is included in the CCP4 suite from version 4.2.

Further details are given in Yao (2002; see also Foadi et al.,

2000).

Other CCP4 programs which are undergoing active devel-

opment include the automated molecular-replacement

program MOLREP (Vagin & Teplyakov, 1997) and the

maximum re®nement program REFMAC (Murshudov et al.,

1997). Details of recent developments in REFMAC were given

in the Study Weekend talk by Garib Murshudov.

3. Library developments

The CCP4 software suite is based around a library of routines

which cover common tasks such as ®le opening, parsing

keyworded input, reading and writing of standard data

formats, applying symmetry operations etc. Otherwise inde-

pendent programs in the CCP4 suite, such as those described

above, call these shared routines which, as well as saving

programmer effort, ensure that the programs in the suite have

a similar look and feel.

The current CCP4 library is now a mature and extensively

tested product and within the context of traditional CCP4

software it performs well. However, it was not designed to

cater for the demands now being placed on software by

automation initiatives. From a conceptual point of view, the

library does not re¯ect the data structures which are being

evolved to describe the crystallographic experiment. From a

programming point of view, most library functionality is only



available to Fortran programs, whereas the trend nowadays is

towards extensive use of scripting languages to glue compu-

tational modules together.

Over the past year or so, therefore, there has been a major

effort to rewrite much of the CCP4 library. The new library is

being written in a mixture of C and C++ with the following

aims.

(i) To implement a better representation of the underlying

data model. For example, Eugene Krissinel's MMDB library

acts on a data structure which represents the hierarchical

structure of a protein model. The CMTZ library encapsulates

the crystal/dataset hierarchy that is increasingly being used by

programs.

(ii) To provide support for scripting. It is possible to

generate Application Programming Interfaces (APIs) to the

Python, Tcl and Perl scripting languages automatically from

the core C code. Thus, much of the standard CCP4 function-

ality can be made available to scripts such as those used in

ccp4i or the CCP4 Molecular Graphics project.

(iii) To maintain support for existing programs. In parti-

cular, the existing Fortran APIs will be maintained, although

they will now often be only wrappers to functions in the new

library. It is intended that many existing programs will be

migrated to using the new library directly.

The last point highlights the incremental approach being

adopted, in which existing programs can be rewritten to use

the new library at the discretion of the individual authors and

on a timescale to suit them. This clearly adds a constraint to

the new library, but is very important for CCP4 in its role as a

collaborative project.

Fig. 1 shows a schematic of the new library. At the centre,

the low-level library and the modules MMDB, CMTZ, CMAP

and CSYM provide much of the core functionality for crys-

tallographic computing. Built on top of this there are APIs for

C, Fortran, Python, Tcl and Perl. The Fortran API is a rela-

tively thick layer, as backwards compatibility with the existing

API requires extra manipulations to be performed. For

example, Fortran channel numbers are converted to pointers

to the appropriate data structures. In contrast, the Python, Tcl

and Perl interfaces are generated automatically using SWIG

(Simpli®ed Wrapper and Interface Generator; http://

www.swig.org) and re¯ect closely the underlying C library.

In the current incarnation of the new library, there are still

some important components which have not been rewritten

(indicated by `F lib' in Fig. 1). The most important example

here is the FFT library, but there are also Fortran routines for

handling Data Harvesting, for writing HTML log ®les etc.

These routines continue to be available to existing Fortran

programs, but are not yet available to newer applications.

We now consider some of the components of the new

library in more detail. The MMDB library is designed to assist

CCP4 developers in working with coordinate data. Coordi-

nates can be held in PDB or mmCIF format ®les or in an

internal binary format portable between different platforms.

At the level of the library's interface function there is no

difference in handling different formats. The MMDB library

provides a number of tools for working with coordinate data,

including orthogonal-fractional coordinate transformations,

generation of symmetry mates, editing of the molecular

structure and ®nding atomic contacts. More information can

be found on the project web pages (http://www.ebi.ac.uk/~keb/

cldoc/).

From the point of view of the user, an important develop-

ment is the speci®cation of an atom-selection syntax which will

be standard across CCP4. For example, the C� atom of residue

13 of chain A is speci®ed as A/13/CA[C]. Omissions are

interpreted as suitable defaults, so that A/13 means all atoms

in residue 13 of chain A. Lists and ranges can be speci®ed, so

that A,B/10-50 means all atoms in the residue range 10±50 in

both chains A and B. Finally, provision is made for model

numbers, residue types, insertion codes and alternative loca-

tion indicators. The use of a standard syntax replaces the

program-dependent syntax currently in use and will aid

communication between programs.

In the longer term, CCP4 is developing a Molecular

Graphics viewer (see Potterton, 2001; Potterton, McNicholas

et al., 2002). Non-graphical components of the MG viewer,

which prepare the model for display and perform calculations

on the model, are being written as extensions of the MMDB

library. Extensions will include calculation of bond lengths,

angles and dihedral angles, calculation of solvent-accessible

surface area and assignment of secondary structure. This

functionality will also be available to non-graphical CCP4

applications.

The CMTZ library is centred on a reinterpretation of the

MTZ re¯ection ®le. Data are still arranged in columns iden-

ti®ed by user-de®nable column labels, but these columns are

now grouped according to the dataset to which they belong.

From version 3.5 of the CCP4 suite, DATASET records in the

MTZ ®le header list the datasets included in the ®le and each

COLUMN record includes a reference to the associated

dataset. Data sets are further grouped into projects, identi®ed

by PROJECT records in the MTZ ®le header. The project and

dataset information was ®rst used for Data Harvesting (see

x5), but is now being used more generally.

A further level of description is currently being imple-

mented, namely the crystal level included as CRYSTAL
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Figure 1
A schematic of the new CCP4 software library. Rectangles represent C
language modules, which exist as groups of source ®les. Parallelograms
represent interfaces to different programming languages and diamonds
represent applications. Further details are given in the text.
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records in the MTZ ®le header. Fig. 2 illustrates the new

hierarchy. Data in an MTZ ®le is segregated according to the

crystal from which it was measured or derived. Each crystal is

further divided into datasets, which represent distinct

measurements on the crystal, for example at different radia-

tion wavelengths. Finally, each dataset consists of several

columns of data. The dataset level corresponds to the dataset

introduced previously. The project name does not ®t naturally

into the new hierarchy and is treated as an attribute of the

crystal. For the purposes of this classi®cation, derived data

columns are assigned to the most appropriate dataset,

although there may sometimes be ambiguity. Thus, for

example, a calculated structure factor would belong to the

dataset against which the model was re®ned.

The data hierarchy is encoded by records in the MTZ ®le

header. This is clearly not a true representation of the hier-

archy, but ensures compatability with older MTZ ®les. On

loading an MTZ ®le, the CMTZ library reconstructs the true

hierarchy in memory and all further manipulations are

performed on this hierarchy. In the current implementation,

all re¯ections are held in memory as column-associated arrays.

The re¯ection-data model is beginning to be utilized in

some CCP4 programs and will increasingly become central to

the way data is manipulated in CCP4. SCALEIT and

FHSCAL are CCP4 programs which scale together native and

derivative datasets. Scale factors are estimated and applied to

the derivative data. The user speci®es the MTZ columns which

comprise the derivative data via the LABIN keyword.

However, inconsistencies would result if say only FPH and

DPH columns (the mean structure factor and the anomalous

difference) were scaled and not F(+) and F(ÿ) columns (the

Bijvoet pair). Data set information is used to identify columns

of data that should be scaled in a consistent manner. Use of

the AUTO keyword in SCALEIT and FHSCAL activates

dataset-based scaling; otherwise a warning is issued if poten-

tial inconsistencies are detected. This is an example of using a

proper data model to maintain data integrity.

Dataset information is also being used in the CCP4 program

SCALA, which scales and merges multiple observations of a

re¯ection. Unmerged data ®les processed by SCALA typically

contain a single dataset, but may contain multiple datasets if

for instance multiple-wavelength datasets are being scaled

together or if a reference set is present. Each batch in the

unmerged ®le (corresponding to a diffraction image) is

assigned to a speci®c dataset. When there is more than one

dataset, the dataset classi®cation is used as follows. The scaling

algorithm works on sets of batches termed `runs' and by

default a run is assigned for each dataset. A dataset may need

to be split into multiple runs, but the default assignment is the

minimum division that is required. After scaling and merging,

the merged re¯ections are output to MTZ ®les and a separate

®le is created for each dataset. Finally, various analyses are

performed between datasets, comparing the anomalous

differences and the dispersive differences from a de®ned base

set. Thus, in SCALA, datasets are used to control the handling

of a large number of images and to automate (in the sense of

providing sensible defaults) the running of the program.

CMAP is principally an i/o library for CCP4-format map

®les. There are functions to read and write map ®le headers,

functions to retrieve and set speci®c values in the header and

functions to read and write map sections or parts of sections.

In addition, there is a Fortran interface which mimics the

current maplib.f.

CCP4 software uses several aspects of crystallographic

symmetry, for example symmetry operators, reciprocal- and

real-space asymmetric units, centric and epsilon zones,

Patterson groups etc. The CCP4 approach has been to hold

some space-group information in a ®le symop.lib, namely

space-group number and name, associated point group and

crystal class and a list of symmetry operators, and derive all

other information as needed. Although this approach has been

made to work for all commonly occurring space groups, there

are problems. Firstly, symop.lib is incomplete, with only a

handful of alternative space-group settings being included.

Secondly, the derivation of some quantities, such as the

reciprocal-space asymmetric units, is buried in Fortran

routines and is not easily maintainable or extensible.

Grosse-Kunstleve and coworkers (Grosse-Kunstleve, 1999;

Grosse-Kunstleve & Adams, 2002) have developed general

methods for generating symmetry information for all space

groups in all settings. These methods have been implemented

in the sgtbx component of the Computational Crystallography

Toolbox. Rather than duplicate their work, we have opted to

use sgtbx to generate an extended data ®le, named syminfo.lib,

which will be distributed with the CCP4 software suite. The

information derived from sgtbx is supplemented by CCP4-

Figure 2
A schematic of the re¯ection-data hierarchy implemented in the CMTZ
software library, as described in the text. Attributes of each level of the
hierarchy are listed in the boxes.



speci®c data for backwards compatibility. syminfo.lib contains

entries for all space groups in all settings. For each entry, the

following items are listed: true space-group number, the CCP4

space-group number (for example, 1003 for space group 3 with

c axis unique), the change of basis for non-standard settings, a

variety of symbols for the space group and the associated

Laue, Patterson and point groups, the reciprocal-space

asymmetric unit, a choice of real-space asymmetric units, the

primitive symmetry operators and the centring operators for

non-primitive groups.

The CSYM library has been written to read in symmetry

information for a particular space group from the syminfo.lib

®le, as identi®ed by its number, name or symmetry operators.

This information is held in memory and is accessible directly

to programs. In addition, there is a Fortran API which mimics

the current symlib.f.

As an independent development, Kevin Cowtan has

developed Clipper, which is a set of object-oriented libraries

for the organization of crystallographic data and for

crystallographic computation. Clipper provides classes for cell

and space-group objects, re¯ection-data objects, crystallo-

graphic and non-crystallographic map objects etc. It is likely

that some CCP4 applications will make use of the Clipper

libraries. For more details, see the project web site (http://

www.yorvic.york.ac.uk/~cowtan/clipper/clipper.html).

In this section, we have described brie¯y some of the new

libraries being developed by CCP4. These libraries will allow

development in languages other than Fortran and will provide

advanced functionality so that applications can be written

more quickly. From the point of view of high-throughput

methodologies, the most important aspect of the new CCP4

library is the availability of crystallographic functions to

scripting languages. Scripting allows rapid development and

testing of applications and allows easy customization for local

projects. Within CCP4, the Tcl interface for example will allow

direct access to crystallographic functionality from ccp4i.

Interfaces to scripting languages are provided by SWIG

(Simpli®ed Wrapper and Interface Generator; http://

www.swig.org). For C language libraries such as CMTZ and

CMAP, the interface can be generated directly from the C

header ®les. Thus, the interfaces automatically keep track of

changes in the underlying libraries. For the C++ language

libraries such as MMDB, there are additional problems which

require manual maintenance of the interface. For example,

scripting languages do not support function overloading and

explicit renaming of functions is required.

4. Improving the user interface

One of the major developments in the CCP4 software suite

recently has been the development of a graphical user inter-

face `ccp4i' (Potterton, Briggs et al., 2002). User interfaces may

be considered to be the antithesis of automation and in some

ways this is true. However, when a process involves many

steps, as is the case with using CCP4 programs, the interface

can provide a framework in which complex sequences are

automated. Thus, ccp4i includes a signi®cant amount of

scripting between the user-visible interface and the CCP4

programs, which provides the glue between individual

programs, automates routine tasks and provides data-

management facilities. In this section, we discuss ccp4i in this

context, rather than the user interface per se.

The principal unit of ccp4i is the task. A task is often

based around a single run of a program, for example

ACORN, MOLREP or REFMAC. In these cases, additional

jiffy programs are often run to perform ®le-format conver-

sions or post-processing such as generating maps. These

additional steps are invisible to the user or are selectable by a

single check button. In other cases, the

task may perform a more complicated

sequence of programs, for example

the AMoRe task which runs the

AMoRe program multiple times, or

the NCS Phased Re®nement task,

which cycles through the programs

PDBSET, LSQKAB, DM and

REFMAC.

ccp4i continues to be under active

development, with CCP4 version

4.2 containing new tasks for

BEAST, ACORN, OASIS, TLSANL,

ANISOANL and others. Additional

utilities include a built-in map viewer,

named MAPSLICER, suitable for

checking map sections (this effectively

replaces the old npo plus plot84driver

combination). MAPSLICER allows

easy traversal through map sections,

selection of Harker sections, interactive

setting of contouring levels and scale

factor, and choice of sectioning axis. A
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Figure 3
A snapshot of the MAPSLICER utility from ccp4i. On the right is a tear-off menu for navigating
through map sections.
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snapshot of the viewer is shown in Fig. 3.

ccp4i-style interfaces are beginning to be used in other

contexts. A number of third-party programs are developing

graphical user interfaces using the ccp4i toolkit, for example

ARP/wARP (Perrakis et al., 1999) and SHELXD (Sheldrick,

1997). These interfaces remain under the control of the

program authors, but can be imported into ccp4i via a

specialized import task accessible from the main ccp4i window.

The CCP4 Molecular Graphics viewer (Potterton, 2001;

Potterton, McNicholas et al., 2002) will also incorporate

command interfaces based on ccp4i.

The current incarnation of ccp4i eases the burden on the

user and thus facilitates fast structure solution, but it is still

very much user-driven. The challenge is to allow larger

portions of the structure-solution process to be performed

without user intervention. This in turn requires ccp4i to make

sensible decisions based on the current state and some

elementary decision-making is now being used. As mentioned

above, the program SCALA outputs a separate ®le for each

dataset that is processed. The SCALA task in ccp4i detects the

number of datasets and runs each output ®le through

TRUNCATE, merges the resultant ®les with CAD and ®nally

runs UNIQUEIFY. Thus, a signi®cant amount of processing is

performed automatically in a data-dependent way.

A recurrent theme of automation is error checking. Error

checking through strong data typing, in particular the use of

MTZ column types, has long been a part of CCP4. The ccp4i

layer adds an additional set of types for program parameters

which can be used for checking and setting automated actions.

For example, cell parameters have types _cell_length and

_cell_angle, while program-speci®c parameters can be de®ned

as _int, _positiveint etc. More sophisticated checking is

continually being added to the suite. As a recent example, the

Merge Datasets task in the Experimental Phasing module

includes a single button which activates a checking procedure

for consistent indexing between datasets in different MTZ

®les. If inconsistent indexing is detected, then the relevant

datasets are reindexed automatically.

A direct consequence of high-throughput studies is the

increasing number of projects each user may be involved with.

In addition, projects are not the property of a single user and

in a production-line setup will be passed between persons with

different expertise. ccp4i provides some simple project-

management tools which allow organization of the work

within a project. A simple database (implemented as a

collection of ¯at ®les) keeps a record of all jobs run and for

each job it records the parameters used, the name of the log

®le and the names of the input and output ®les. This system

allows the user to review earlier steps and to rerun a job with

the same or similar parameters. In principle, the same facilities

could be used by an automated procedure to rerun the same

task many times, varying either certain parameters of interest

or varying the data supplied.

A ccp4i database is created for each project de®ned by the

user. A user may have access to many projects, but can only

work within one project at a time. Several users may have

access to one project. Future plans include tools to package

and transport projects between sites, to merge projects which

were created separately but belong together and to archive

completed projects. The ccp4i database is a simple example of

data management, which we now discuss in more detail.

5. Data management

Handling large amounts of data is an integral part of high-

throughput structure determination. At the most basic level,

this means increased storage capacity, faster networking and

more processing power. However, correct management of the

data is also vital in order to maintain data integrity and

completeness. There should be extensive use of metadata to

annotate the data which is measured or derived.

Within a particular laboratory or collaborative project, data

management can be performed by a Laboratory Information

Management System (LIMS; see, for example, Haebel et al.,

2001). Such a system can manage data for many projects,

keeping track of evolving data in a central database facility.

LIMS are best customized to the requirements of a particular

site and are therefore not a realistic option for the CCP4

software suite. In the context of CCP4, we must look for

simpler and more generic solutions to data management.

Data management in CCP4 is currently based around

standard ®le formats, the most important of which is probably

the MTZ ®le. The latter consists of a re¯ection-data block

together with a header section which holds a description of the

data. The data block can hold columns of native data, deri-

vative data, MAD datasets for different wavelengths, experi-

mental phases, calculated structure factors, map coef®cients,

etc.; in short, all measured and derived data for a particular

project are kept together (subject to the sole restriction of a

common space group). The header section contains metadata

such as column labels, column types, cell dimensions, history

etc., which makes the data ®le self-documenting to a large

extent

The other standard CCP4 ®le formats are the map format

for electron-density maps and masks, and a limited PDB ®le

for coordinate data. In addition, CCP4 uses mmCIF ®les in

some situations, for example holding restraint information in

REFMAC5. Central to the mmCIF format is the dictionary of

allowed data items, which provides a catalogue of explicitly

de®ned tokens of crystallographic interest. The mmCIF

dictionary is designed to be extensible and new data items are

added with new versions. Although the mmCIF ®le format is

not suitable for all applications, the dictionary is an important

central resource for macromolecular crystallography. The

imgCIF/CBF project for two-dimensional image data is also

relevant to macromolecular crystallographers.

While the standard ®le formats are the principle repository

of data during structure solution, they do not hold all infor-

mation that is of interest. Administrative information about a

project, in particular details of the jobs run, is held in the ccp4i

`database' and has been described above. In addition, there

are various quantities that are required for steps in the

structure-solution process which are calculated in earlier steps.

Traditionally, these are copied manually from the output of



one job to the input of the later job. A simple example is the

estimate of the number of molecules in the asymmetric unit,

which is an input parameter to a molecular-replacement

search. Manual copying is clearly error prone, as well as

explicitly requiring human intervention.

A number of automated procedures (see e.g. Badger &

Hendle, 2002) parse the log output of programs to capture this

additional information. While this approach can be made to

work, it is at the mercy of changes in the program output. We

therefore intend to adapt critical programs to output the

required information into separate XML-formatted ®les. The

use of separate ®les allows this approach to be implemented in

a piecemeal fashion without disrupting established ®le

formats. The output needs to be marked up to enable input to

subsequent programs and XML is a convenient choice with

many established tools. The XML format is not suitable for

large quantities of data, such as re¯ection data, and there is no

question of it replacing the standard CCP4 ®le formats.

The result is a number of XML ®les each holding pieces of

information generated earlier in the process. By default, the

XML ®les will be stored in the ccp4i database of the project to

which they refer. In principle, the XML ®les could be

uploaded to a full project relational database, perhaps as part

of a local LIMS, but as mentioned above CCP4 is not in a

position to impose such a solution on users. On launching a

task in ccp4i, the project database is checked for relevant

XML ®les and if any are found then default parameters are set

from them. For example, in the MOLREP task interface, the

number of molecules and the vector for translational NCS can

be set in this way. Note that these automatically generated

parameters can always be overridden by the user.

In this context, XML is used to communicate between jobs

which may be separated in time. XML ®les may also be used

for communication in automated procedures that consist of

separate steps which are run together. As described above,

there is a task option in ccp4i to check consistent indexing

between datasets that are to be merged. An XML ®le

containing the reindexing operator is used to communicate

between the program which detects that reindexing is neces-

sary and the program which performs the reindexing. As a

further example of XML, the DNA project for integrated data

collection and processing uses XML for passing information

between components (see Leslie et al., 2002).

Data management is important not only for easing and

automating structure solution, but also for allowing all rele-

vant information to be deposited correctly in the Protein Data

Bank and related databases. `Relevant' here means informa-

tion on how the ®nal model was arrived at, as well as the

model itself, and thus covers experimental data (Dodson et al.,

1996) and details of the structure-solution process.

One of the main technologies for ensuring complete and

accurate deposition is `Data Harvesting' (Winn, 1999). This

protocol means that software used in structure solution

outputs to a deposition ®le details of the method used and

results obtained, for example heavy-atom sites used in

phasing. By the time the user is ready to deposit the model

coordinates, there should be a collection of ®les holding details

of how the model was obtained. These ®les can be sent directly

to the deposition centre, thereby bypassing much of the

manual input of data traditionally required. Version 3.1 of

AutoDep supports uploading of harvest ®les from CCP4 and

CNS (BruÈ nger et al., 1998). CCP4 currently produces harvest

®les from MOSFLM, SCALA, TRUNCATE, MLPHARE,

RESTRAIN and REFMAC.

During the structure-solution process, harvesting ®les are

categorized according to a Project Name and a Dataset Name.

The Project Name speci®es the structure-solution project and

is equivalent to what will become a PDB ID code (or in

mmCIF terms the _entry.id). The Dataset Name identi®es the

particular dataset within the project that is being used

(_diffrn.id in mmCIF). The latter may for example be X-ray

diffraction structure factors or experimentally determined

NMR data. Thus, a particular structure solution may involve

several datasets with the same Project Name but distinguished

by different Dataset Names (e.g. for native and heavy-atom

derivatives or for different wavelengths in a MAD experi-

ment). Alternatively, one may have several datasets for an

apoprotein and its complexes and these would be distin-

guished by different Project Names, since they correspond to

different structure solutions.

Project Names and Dataset Names are carried in the MTZ

®le header. They need only be set once and this should be

done when an MTZ ®le is ®rst created, e.g. in the programs

MOSFLM, COMBAT, SCALEPACK2MTZ or F2MTZ.

Data-harvesting programs output a ®le into a subdirectory

named after the Project Name. The ®le itself has the name

hDataset Namei.hProgram Namei. In the current imple-

mentation, only the latest ®le from a particular program run

on a particular dataset is retained. The NOHARVEST

keyword can be used to prevent output from trial runs over-

writing earlier harvest ®les.

In addition to exporting data to databases such as the PDB,

usage of the CCP4 suite increasingly requires the import of

data from databases. A new ccp4i task allows one to import a

protein sequence into the suite based on its Swiss-Prot refer-

ence code. Some editing of the sequence is allowed to account

for Swiss-Prot errors, mutations or domain selection. A record

of the original sequence and the editing operations is kept

along with the edited sequence. The protein sequence may

subsequently be used in molecular replacement, for model

building and for structure deposition.
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