

STRUCTURAL CHEMISTRY

Received 20 November 2023
Accepted 18 January 2024

Edited by T. Ohhara, J-PARC Center, Japan Atomic Energy Agency, Japan

Keywords: powder diffraction; API; carbamazepine; naproxen; cocrystal; PXRD; crystal structure; liquid-assisted grinding.

CCDC reference: 2327306

Supporting information: this article has supporting information at journals.iucr.org/c

OPEN \odot ACCESS
Published under a CC BY 4.0 licence

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

Mathieu Guerain, ${ }^{\text {a }}{ }^{*}$ Natalia T. Correia, ${ }^{\text {a }}$ Luisa Roca-Paixão, ${ }^{\text {a }}$ Hubert Chevreau ${ }^{\text {b }}$ and Frederic Affouard ${ }^{\text {a }}$

${ }^{\text {a }}$ Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, F-59000 Lille, France, and ${ }^{\mathbf{b}}$ Synchrotron SOLEIL, L Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France. *Correspondence e-mail: mathieu.guerain@univ-lille.fr

The crystal structure of a new $1: 1$ cocrystal of carbamazepine and S-naproxen $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}\right)$ was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is orthorhombic with the space group $P 2_{2} 2_{1} 2_{1}$ (No. 19) and the following lattice parameters: $a=33.5486$ (9), $b=26.4223$ (6), $c=$ 5.3651 (10) \AA and $V=4755.83$ (19) \AA^{3}.

1. Introduction

In recent years, the design of functional pharmaceutical molecular materials by the cocrystallization technique has attracted increasing interest (Friščić \& Jones, 2010) when other classical approaches based, for example, on salt formation or metastable polymorphs are not possible. The strong development of this strategy has the consequence that many new active pharmaceutical ingredients (APIs) synthesized in the crystalline state exhibit poor solubility and bioavailability that is a major roadblock for pharmaceutical development. The aim is to construct an assembly of neutral multiple chemical species, in a stoichiometric ratio, in the same crystal lattice via weak supramolecular interactions of various natures, such as van der Waals, hydrogen, halogen or $\pi-\pi$ bonds. These multicomponent materials in the crystalline solid state have an obvious interest in terms of stability, but also in improving many physicochemical properties of an API, such as its aqueous solubility, dissolution, hygroscopicity or bioavailability. Up to now, pharmaceutical cocrystals generally consist of an API and a coformer present in the same crystal lattice (Friščić \& Jones, 2010; Vishweshwar et al., 2006; Schultheiss \& Newman, 2009; Brittain, 2013; Childs et al., 2009), for example, paracetamol-piperazine (Oswald et al., 2002), ibuprofen-nicotinamide (Berry et al., 2008), carbama-zepine-saccharin (Fleischman et al., 2003), carbamazepinetartaric acid (Guerain et al., 2020), etc. In general, the coformer is not an API. In certain cases that are still quite rare, two APIs can be combined (Drozd et al., 2017; Thakuria \& Sarma, 2018), a situation which is of obvious interest for multi-therapy approaches.

Carbamazepine (CBZ, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$, see Scheme 1), an API used as an anti-epileptic and analgesic drug, is a very common
model system for the study of crystallization and cocrystallization (Childs et al., 2009). CBZ is characterized by a rich polymorphism and five anhydrous crystalline forms (Grzesiak et al., 2003; Rustichelli et al., 2000; Arlin et al., 2011) have been reported in the literature. The structure of the stable phase at ambient temperature and atmospheric pressure, named Form III [CBZ(III)], is the commercial form. It is monoclinic with the space group $P 2_{1} / n$ and the following lattice parameters (Eccles et al., 2011): $a=7.55, b=11.186, c=13.954 \AA$ and $\beta=$ 92.938°.

Carbamazepine

Due to its high polymorphism, and the hydrogen-bonding group offering the possibility of dimer formation, CBZ is also an excellent candidate for cocrystallization, as well as hydrate or solvate formation, as shown by examples in the literature (Vishweshwar et al., 2006; Schultheiss \& Newman, 2009; Childs et al., 2009; Guerain et al., 2020; Roca-Paixão et al., 2019; Surov, Ramazanova et al., 2023; Surov, Drozd et al., 2023).

Naproxen (NAP, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$, see Scheme 1) is a nonsteroidal anti-inflammatory drug (NSAID) used to treat pain, menstrual cramps, inflammatory diseases, such as rheumatoid arthritis, gout and fever. The commercial form of S-naproxen (S-NAP) is the only known crystallographic form in the literature. It is monoclinic with the space group $P 2_{1}$ and the following lattice parameters (Tang et al., 2015): $a=7.876, b=$ 5.783, $c=13.323 \AA$ and $\beta=93.88^{\circ} . S$-NAP can form cocrystals with nicotinamide (Ando et al., 2012; Neurohr et al., 2015), isonicotinamide (Castro et al., 2011) and proline (Tilborg et al., 2013; Tumanova et al., 2018), such molecules being generally considered as safe.

In the present study it is shown that a cocrystal of CBZ and S-NAP (CBZ:S-NAP) can be been obtained from liquidassisted grinding. It has been verified by coupling the search/ match functionalities of Highscore software (Degen et al., 2014) with the Cambridge Structural Database (CSD; Groom et al., 2016), the Crystallographic Open Database (COD) (Gražulis et al., 2009) and the PDF-2 database of the International Center for Diffraction Data (ICDD) (Gates-Rector
\& Blanton, 2019), that this cocrystal has not been referenced in the literature.

A pharmaceutical composition that combines naproxen and carbamazepine is referred to in patent EA200200910 (A1) (Coe et al., 2003; A pharmaceutical composition for treatment of acute, chronic pain and/or neuropathic pain and migraines), but no reference is made to the elaboration of a cocrystal.

The present article aims to resolve the structure of the cocrystal CBZ:S-NAP obtained by liquid-assisted grinding in a 1:1 molar ratio. The structure was solved $a b$ initio from powder X-ray diffraction using a direct-space approach (simulated annealing) and refined by the Rietveld method. The positions of the H atoms were estimated from energy minimization simulation.

2. Experimental

2.1. Cocrystal synthesis

S-Naproxen (purity higher than 98%) was purchased from Sigma-Aldrich and the material was used without any purification. The analysis of the powder X-ray diffraction pattern has shown that the commercial material is in the stable monoclinic phase (CSD refcode COYRUD13; Tang et al., 2015).

Carbamazepine (purity 99.8\%) was purchased from Duchefa Farma BV and the material was used without any purification. The analysis of the powder X-ray diffraction pattern has shown that the commercial material is in the stable monoclinic phase (CSD refcode CBMZPN14; Eccles et al., 2011).

The cocrystal was obtained by liquid-assisted grinding of 200 mg of a mixture of CBZ and S-NAP, in a 1:1 molar ratio, at 30 Hz for a period of 30 min , adding $20 \mu \mathrm{l}$ of methanol to the mixture (Roca-Paixão et al., 2019). Differential scanning calorimetry (DSC, Q1000, TA Instruments) reveals a single sharp endotherm associated with the melting of the synthesized pure cocrystal at $T_{\text {m,onset }}=125^{\circ} \mathrm{C}$, which demonstrates a decrease of the melting temperature compared to both parent compounds $\left\{T_{\mathrm{m}}(\mathrm{NAP})=155^{\circ} \mathrm{C}\right.$ and $\left.T_{\mathrm{m}}[\mathrm{CBZ}(\mathrm{III})]=176^{\circ} \mathrm{C}\right\}$. As is often the case with cocrystals obtained by grinding, and already observed in the case of carbamazepine, it was not possible to obtain a single crystal which would have facilitated the crystal structure determination (Roca-Paixão et al., 2023; Guerain et al., 2020).

2.2. Data collection

The powder X-ray diffraction patterns were measured at the high-resolution powder diffraction beamline CRISTAL at the Synchrotron SOLEIL in France. The beamline is equipped with a 1D detector 'MYTHEN2 X'. The selected energy was 18.4 keV , corresponding to a wavelength $\lambda=0.67132 \AA$, and a NIST standard $\mathrm{LaB}_{6} 660$ a sample was used for calibration. The cocrystal powder was enclosed in a borosilicate capillary (diameter 0.5 mm) and mounted on the goniometer head. The capillary was rotated during the experiments to reduce the effect of a possible preferential orientation. Data were

Table 1
Crystallographic data, profile and structural parameters for the CBZ: S-NAP cocrystal obtained after Rietveld refinement.

Crystal data	
Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$
Molecular weight $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	933.1
Crystal system, space group	orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Temperature (K)	293
$a, b, c(\AA)$	$33.5486(9), 26.4223(6)$,
$V\left(\AA \AA^{3}\right)$	$5.36515(10)$
Z	$4755.83(19)$
$F(000)$	4
$\mu\left(\mathrm{~mm}^{-1}\right)$	1968
Specimen shape, size (mm)	0.077
2θ range $\left({ }^{\circ}\right)$	Cylinder, 0.5
	$1.5-20$
Data collection	
Beamline	CRISTAL (SOLEIL)
Specimen mounting	0.5 mm diameter Lindemann
	capillary
Data collection mode	Transmission
Scan method	Continuous scan
Radiation type	Synchrotron $18.47 \mathrm{KeV}, \lambda=$
	$0.67132 \AA$
Binning size $\left({ }^{\circ} 2 \theta\right)$	0.004
Refinement	$R=0.0413, R_{\text {wp,nb }}=0.0587, R_{\text {exp }}=$
R factors	0.0168

collected at room temperature in the $1.5-50^{\circ} 2 \theta$ range in less than 2 min to avoid radiation damage to the sample.

2.3. Structure solution and refinement

Regarding the indexation, the profiles of 20 reflections with a 2θ angle lower than 15° were refined individually with the program $D A S H$ (David et al., 2006) in order to obtain their 2θ angular positions. The 2θ values of these reflections were computed in the program DICVOL (Boultif \& Louër, 2004) and a unique orthorhombic cell was obtained: $a=$ $33.564 \pm 0.001, b=26.444 \pm 0.001, c=5.3666 \pm 0.001 \AA$ and $V=4763.22 \pm 0.2 \AA^{3}$. The calculated figures of merit are
$M(20)=19.2$ and $F(20)=136.3$ (de Wolff et al., 1968; Smith \& Snyder, 1979).

Regarding the space-group determination, the $D A S H$ probabilistic approach (Markvardsen et al., 2008), based on the systematic absences of Bragg peaks, was used. Eight individual peaks distributed over the whole 2θ range of the pattern were fitted to determine the peak-shape parameters, then the background, unit-cell and zero-point parameters were refined, and the most probable space group was calculated using Pawley refinement (Pawley, 1981). This method was repeated over ten times, each time on different sets of peaks. It led systematically to the space group $P 2_{1} 2_{1} 2_{1}$, which is the most probable space group for an orthorhombic cell, according to the CSD.

Using this space group $\left(P 2_{1} 2_{1} 2_{1}\right)$ and the unit-cell parameters obtained previously, the X-ray diffraction pattern was refined using Pawley fitting (Pawley, 1981) with the program DASH (David et al., 2006). The refinement was performed from $2 \theta=1.5$ to 15°. Again, eight individual peaks distributed over the whole 2θ range of the pattern were fitted to determine the peak-shape parameters. A five-term polynomial representing the background, the reflection intensities, the unit-cell parameters, the zero-point and the peak shape were refined. This led to a good correlation between the experimental diagram and the Pawley fitting to the profile, with $\chi^{2}=$ 23.34. This result was used for the structure solution. In order to determine a hypothetical structural model, the simulated annealing algorithm of the program $D A S H$ was used (David et al., 2006).

Here, the S-NAP molecule and the CBZ molecule were retrieved from the CSD, i.e. from the monoclinic S-NAP phase model (Tang et al., 2015) and from the monoclinic CBZ phase model (Eccles et al., 2011), respectively. The volume calculated from the indexation ($V=4763.22 \AA^{3}$) suggested the introduction of two molecules of CBZ and two molecules of S-NAP. The molecules were introduced randomly in the cell. The restraints options used for the calculations did not modify the bond lengths and angles. The translation and orientation

Figure 1
Final Rietveld plot of the CBZ:S-NAP cocrystal at room temperature. Observed intensities are indicated by dots, and solid lines represent the best-fit profile (upper trace) and the difference pattern (lower trace). The vertical bars correspond to the positions of the Bragg peaks.
parameters of the molecule in the cell, as well as the torsion angles, were defined as variables in the calculation. The maximum number of simulated annealing moves per run was fixed at 10000000 and led to the solution with a profile χ^{2} factor close to 56.2 . As a result, this structure was used for Rietveld refinement.

From this structural model, rigid-body Rietveld refinement was performed using $D A S H$. The refinement was performed in three steps: first, the global isotropic temperature factor, second, the translation and orientation parameters of the molecule, and third, the five torsion angles. Strong restraints on the bond lengths and angles were applied. In particular, the naphthalene ring of the S-NAP molecules and the benzene rings of the CBZ molecules were kept planar. The lattice parameters and the background parameters were set free.

The structural model obtained from the simulated annealing was also minimized using periodic density functional theory with fixed-cell dispersion-corrected density functional theory (DFT-D) (Giannozzi et al., 2009, 2017). In this minimization, the positions of the atoms were not constrained. The Perdew-Burke-Ernzerhof (PBE) function was used with projector-augmented wave pseudopotentials and the Grimme D3 correction, as implemented in the pw.x executable of the Quantum Espresso program (Giannozzi et al., 2009, 2017). Overall, only tiny differences are found between the atomic positions determined from the DFT minimization and from the Rietveld method (see supporting information).

Atomic coordinates found at the end of the Rietveld refinement were introduced in the programs JANA2020 (Petrícek et al., 2014) and MAUD (Materials Analysis Using Diffraction; Lutterotti, 2010). JANA2020 was used to generate the more accurate and complete CIF possible and $M A U D$ was used to graphically compare the calculated and experimental X-ray diffraction diagram. One can see in Fig. 1 the very reasonable agreement found between the calculated and the experimental X-ray diffraction diagram, reinforcing the validity of the reported structure.

At the end of the Rietveld refinements, the lattice parameters were $a=33.5486$ (9), $b=26.4223$ (6), $c=5.36515$ (10) \AA and $V=4755.83(19) \AA^{3}$. The final conventional Rietveld factors were $R=0.0413, R_{\mathrm{wp}}=0.0587$, and $R_{\exp }=0.0168$. Such factors reflect the good correlation between the observed and simulated X-ray diffraction diagram, as shown in Fig. 1. Crystallographic data, profile and structural parameters are given in Table 1.

3. Discussion

The structure obtained for the title cocrystal has a large unitcell volume ($4755.83 \AA^{3}$), i.e. more than four times the unitcell volume of commercial CBZ, and almost eight times the unit-cell volume of commercial S-NAP. This is related to the large lattice parameters a and b, of 33.5486 (9) and 26.4223 (6) A., respectively.

Such lattice parameters are not surprising and are often obtained in the case of pharmaceutical cocrystals, such as ibuprofen-nicotinamide (Berry et al., 2008), carbamazepine-
indomethacine (Al Rahal et al., 2020), carbamazepine-tartaric acid (Guerain et al., 2020), naproxen-nicotinamide (Ando et al., 2012; Neurohr et al., 2015) and naproxen-isonicotinamide (Castro et al., 2011).

It is closely related to the intricate arrangement of CBZ and S-NAP molecules within the crystal lattice (Fig. 2). The CBZ and S-NAP molecules are stacked without orientation change along the c direction, leading to a rather small c parameter of 5.36515 (10) A. However, the molecular arrangement exhibits a greater complexity in the a and b directions. Along the a direction, an alternation pattern of CBZ and S-NAP molecules is observed, with a 180° rotation between two S-NAP molecules and a 180° rotation of the CBZ amine group between two CBZ molecules, i.e. an alternation of a total of four molecules (two CBZ and two S-NAP), contributing to a substantial large a unit-cell parameter [33.5486 (9) \AA]. In the b direction, an alternation pattern of four molecules of either CBZ or S-NAP is observed. This alternation is attributed to the dimer formation between CBZ molecules, with each dimer experiencing a 180° rotation of the amine group. Such a dimer formation is commonly observed in cocrystals involving CBZ molecules (Roca-Paixão et al., 2023; Walsh et al., 2003; Al Rahal et al., 2020; Habgood et al., 2010; Oliveira et al., 2011). As regards the S-NAP molecules, an inversion of the molecules two by two is observed, with, between two inversions, a 180° rotation of the carboxylic acid group. These two different conformations of the S-NAP molecules (by rotations of the groups along the $\mathrm{C} 16-\mathrm{C} 17$ and $\mathrm{C} 30-\mathrm{C} 31$ bonds) and the CBZ molecules (by rotations of the groups along the $\mathrm{N} 1-\mathrm{C} 11$ and N3-C54 bonds) are closely related to the complexity of the unit cell (see supporting information). As a consequence of these rotations, two symmetry-independent molecules (energetically different) can be distinguished, leading to a crystal symmetry lower than for a theoretical structure without those rotations. Such rotations facilitate the dimer formation (no steric hindrance) and break the symmetry, so the molecules forming the dimer are not identical.

This structural arrangement is linked to the hydrogenbonding network of the cocrystal (Fig. 2). Notably, it is worth

Figure 2
Visualization of the hydrogen-bond network of the CBZ:S-NAP cocrystal and projection of the unit cell along the [001] direction.
emphasizing that a single CBZ molecule interacts through three different hydrogen bonds, involving the two H atoms of its amine group and its O atom:
(i) with another CBZ molecule, with two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds coming from one H atom of the amine group and forming a dimer as discussed previously;
(ii) with a S-NAP molecule, with an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the second H atom of the amine group and the carboxylic acid group of S-NAP;
(iii) with the same S-NAP molecule, with an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the O atoms of CBZ and the carboxylic acid group of S-NAP.

Consequently, the two S-NAP molecules also form a dimer which is based on the dimer of two CBZ molecules.

Also, the CBZ molecules are bound by hydrogen bonds of type (i), while the interactions between the two molecules composing the cocrystal are mainly related to hydrogen bonds of types (ii) and (iii), which bind the CBZ molecule to the S-NAP molecules. The whole forms a fairly rich and compact network of hydrogen bonds.

4. Conclusion

In this work, the cocrystal CBZ:S-NAP was synthesized by the liquid-assisted grinding in a 1:1 molar ratio. A search in the PDF-2, CSD and COD databases shows that the crystallographic structure of this cocrystal was unknown in the literature. It was solved using powder diffraction experiments at the beamline CRISTAL at the Synchrotron SOLEIL in France. Indexation of the diagram, simulated annealing, theoretical calculations and Rietveld refinement led to an orthorhombic cocrystal with the space group $P 2_{1} 2_{1} 2_{1}$ (No. 19) and the following lattice parameters: $a=33.5486$ (9), $b=$ 26.4223 (6), $c=5.36515$ (10) \AA and $V=4755.83$ (19) \AA^{3}.

Acknowledgements

This project has received funding from the Interreg 2 Seas program 2014-2020 co-funded by the European Regional Development Fund (FEDER). The authors greatly acknowledge Florence Danède (MMT-UMET, Université de Lille) for performing the laboratory powder X-ray diffraction experiments.

Funding information

Funding for this research was provided by: European Regional Development Fund (FEDER) (subsidiary contract No. 2S01-059_IMODE).

References

Al Rahal, O., Majumder, M., Spillman, M. J., van de Streek, J. \& Shankland, K. (2020). Crystals, 10, 42.
Ando, S., Kikuchi, J., Fujimura, Y., Ida, Y., Higashi, K., Moribe, K. \& Yamamoto, K. (2012). J. Pharm. Sci. 101, 3214-3221.

Arlin, J. B., Price, L. S., Price, S. L. \& Florence, A. J. (2011). Chem. Comтии. 47, 7074.
Berry, D. J., Seaton, C. C., Clegg, W., Harrington, R. W., Coles, S. J., Horton, P. N., Hursthouse, M. B., Storey, R., Jones, W., Friščić, T. \& Blagden, N. (2008). Cryst. Growth Des. 8, 1697-1712.
Boultif, A. \& Louër, D. (2004). J. Appl. Cryst. 37, 724-731.
Brittain, H. G. (2013). J. Pharm. Sci. 102, 311-317.
Castro, R. A. E., Ribeiro, J. D. B., Maria, T. M. R., Ramos Silva, M., Yuste-Vivas, C., Canotilho, J. \& Eusébio, M. E. S. (2011). Cryst. Growth Des. 11, 5396-5404.
Childs, S. L., Wood, P. A., Rodríguez-Hornedo, N., Reddy, L. S. \& Hardcastle, K. I. (2009). Cryst. Growth Des. 9, 1869-1888.
Coe, W. J., Harrigan, P. E., O'Neill, T. B., Sands, B. S. \& Watsky, J. E. (2003). Patent EA200200910 (A1).

David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. \& Cole, J. C. (2006). J. Appl. Cryst. 39, 910915.

Degen, T., Sadki, M., Bron, E., König, U. \& Nénert, G. (2014). Powder Diffr. 29, S13-S18.
Drozd, K. V., Manin, A. N., Churakov, A. V. \& Perlovich, G. L. (2017). CrystEngComm, 19, 4273-4286.
Eccles, K. S., Stokes, S. P., Daly, C. A., Barry, N. M., McSweeney, S. P., O’Neill, D. J., Kelly, D. M., Jennings, W. B., Ní Dhubhghaill, O. M., Moynihan, H. A., Maguire, A. R. \& Lawrence, S. E. (2011). J. Appl. Cryst. 44, 213-215.
Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. \& Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.
Friščić, T. \& Jones, W. (2010). J. Pharm. Pharmacol. 62, 1547-1559.
Gates-Rector, S. \& Blanton, T. (2019). Powder Diffr. 34, 352-360.
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Corso, A. D., de Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. \& Baroni, S. (2017). J. Phys. Condens. Matter, 29, 465901.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. \& Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502.
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. \& Le Bail, A. (2009). J. Appl. Cryst. 42, 726-729.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Grzesiak, A. L., Lang, M., Kim, K. \& Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260-2271.
Guerain, M., Derollez, P., Roca-Paixão, L., Dejoie, C., Correia, N. T. \& Affouard, F. (2020). Acta Cryst. C76, 225-230.
Habgood, M., Deij, M. A., Mazurek, J., Price, S. L. \& ter Horst, J. H. (2010). Cryst. Growth Des. 10, 903-912.

Lutterotti, L. (2010). Nucl. Instrum. Methods Phys. Res. B, 268, 334340.

Markvardsen, A. J., Shankland, K., David, W. I. F., Johnston, J. C., Ibberson, R. M., Tucker, M., Nowell, H. \& Griffin, T. (2008). J. Appl. Cryst. 41, 1177-1181.
Neurohr, C., Marchivie, M., Lecomte, S., Cartigny, Y., Couvrat, N., Sanselme, M. \& Subra-Paternault, P. (2015). Cryst. Growth Des. 15, 4616-4626.

Oliveira, M. A., Peterson, M. L. \& Davey, R. J. (2011). Cryst. Growth Des. 11, 449-457.
Oswald, I. D. H., Allan, D. R., McGregor, P. A., Motherwell, W. D. S., Parsons, S. \& Pulham, C. R. (2002). Acta Cryst. B58, 1057-1066. Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.
Petrícek, V., Dusek, M. \& Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345-352.
Roca-Paixão, L., Correia, N. T. \& Affouard, F. (2019). CrystEngComm, 21, 6991-7001.
Roca-Paixão, L., Correia, N. T., Danède, F., Guerain, M. \& Affouard, F. (2023). Cryst. Growth Des. 23, 1355-1369.

Rustichelli, C., Gamberini, G., Ferioli, V., Gamberini, M. C., Ficarra, R. \& Tommasini, S. (2000). J. Pharm. Biomed. Anal. 23, 41-54.

Schultheiss, N. \& Newman, A. (2009). Cryst. Growth Des. 9, 29502967.

Smith, G. S. \& Snyder, R. L. (1979). J. Appl. Cryst. 12, 60-65.
Surov, A. O., Drozd, K. V., Ramazanova, A. G., Churakov, A. V., Vologzhanina, A. V., Kulikova, E. S. \& Perlovich, G. L. (2023). Pharmaceutics, 15, 1747.

Surov, A. O., Ramazanova, A. G., Voronin, A. P., Drozd, K. V., Churakov, A. V. \& Perlovich, G. L. (2023). Pharmaceutics, 15, 836.

Tang, G.-M., Wang, J.-H., Zhao, C., Wang, Y.-T., Cui, Y.-Z., Cheng, F.-Y. \& Ng, S. W. (2015). CrystEngComm, 17, 7258-7261.

Thakuria, R. \& Sarma, B. (2018). Crystals, 8, 101.
Tilborg, A., Springuel, G., Norberg, B., Wouters, J. \& Leyssens, T. (2013). CrystEngComm, 15, 3341-3350.

Tumanova, N., Tumanov, N., Fischer, F., Morelle, F., Ban, V., Robeyns, K., Filinchuk, Y., Wouters, J., Emmerling, F. \& Leyssens, T. (2018). CrystEngComm, 20, 7308-7321.
Vishweshwar, P., McMahon, J. A., Bis, J. A. \& Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499-516.

Walsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. \& Zaworotko, M. J. (2003). Chem. Commun. pp. 186-187.
Wolff, P. M. de (1968). J. Appl. Cryst. 1, 108-113.

supporting information

Acta Cryst. (2024). C80, 37-42 [https://doi.org/10.1107/S2053229624000639]
Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

Mathieu Guerain, Natalia T. Correia, Luisa Roca-Paixão, Hubert Chevreau and Frederic Affouard

Computing details

2-Azatricyclo[9.4.0.0 ${ }^{3,8}$]pentadeca-1(11),3,5,7,9,12,14-heptaene-2-carboxamide; (2S)-2-(6-methoxynaphthalen-2-yl)propanoic acid

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$
$M_{r}=933.1$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2xab;2ybc;2zac
$a=33.5486$ (9) \AA
$b=26.4223$ (6) \AA
$c=5.36515(10) \AA$

Data collection

Synchrotron

 diffractometer
Refinement

$R_{\mathrm{p}}=0.041$
$R_{\text {wp }}=0.059$
$R_{\text {exp }}=0.017$
$R(F)=0.061$
4626 data points
Profile function: Pseudo-Voigt
18 parameters

$$
\begin{aligned}
& V=4755.83(19) \AA^{3} \\
& Z=4 \\
& F(000)=1968 \\
& D_{\mathrm{x}}=1.303 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Synchrotron radiation } \\
& T=293 \mathrm{~K} \\
& \text { white }
\end{aligned}
$$

Radiation source: synchrotron, synchrotron
$2 \theta_{\min }=1.5^{\circ}, 2 \theta_{\max }=20^{\circ}, 2 \theta_{\text {step }}=0.004^{\circ}$

0 restraints
0 constraints
H -atom parameters constrained
Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\text {max }}<0.001$
Background function: 8 Legendre polynoms
Preferred orientation correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	-0.03708	0.79805	-0.75688	0.0204^{*}
N1	-0.00202	0.86426	-0.5944	0.0204^{*}
N2	0.02941	0.80227	-0.82658	0.0204^{*}
H1	0.05247	0.8151	-0.80009	0.0407^{*}
H2	0.02947	0.77446	-0.91061	0.0407^{*}
C1	0.09551	0.88081	-0.27503	0.0204^{*}
H3	0.11052	0.86493	-0.15204	0.0407^{*}

C2	0.05877	0.86144	-0.34163	0.0204*
H4	0.04911	0.83264	-0.26252	0.0407*
C3	0.03627	0.88458	-0.52524	0.0204*
C4	-0.03623	0.89535	-0.54339	0.0204*
C5	-0.04183	0.94031	-0.67733	0.0204*
C6	-0.07707	0.96705	-0.63353	0.0204*
H5	-0.08178	0.99679	-0.72138	0.0407*
C7	-0.10505	0.95055	-0.46369	0.0204*
H6	-0.12832	0.96902	-0.43898	0.0407*
C8	0.10994	0.92362	-0.39067	0.0204*
H7	0.13461	0.93678	-0.34574	0.0407*
C9	0.08768	0.94677	-0.5727	0.0204*
H8	0.09776	0.97546	-0.65081	0.0407*
C10	0.05023	0.92835	-0.64399	0.0204*
C11	-0.0049	0.8199	-0.72844	0.0204*
C12	-0.06406	0.87937	-0.36864	0.0204*
H9	-0.05944	0.85009	-0.27671	0.0407*
C13	-0.09858	0.90685	-0.33082	0.0204*
H10	-0.11738	0.89579	-0.21586	0.0407*
C14	-0.01222	0.96034	-0.85026	0.0204*
H11	-0.02189	0.97839	-0.98618	0.0407*
C15	0.02731	0.95543	-0.83354	0.0204*
H12	0.04209	0.97122	-0.95782	0.0407*
O2	0.61529	0.25182	0.44673	0.0204*
O3	0.61376	0.1993	0.77426	0.0204*
H13	0.59031	0.19419	0.72567	0.0407*
O4	0.82124	0.014	0.82723	0.0204*
C16	0.63113	0.23257	0.62617	0.0204*
C17	0.673	0.24546	0.71131	0.0204*
H14	0.68691	0.26376	0.57338	0.0407*
C18	0.69468	0.19532	0.75826	0.0204*
C19	0.72531	0.18057	0.60479	0.0204*
H15	0.73189	0.20069	0.46404	0.0407*
C20	0.74722	0.13579	0.65344	0.0204*
C21	0.78048	0.12168	0.50486	0.0204*
H16	0.78657	0.14036	0.35857	0.0407*
C22	0.80374	0.08152	0.57065	0.0204*
H17	0.82634	0.07313	0.4724	0.0407*
C23	0.79456	0.05221	0.78338	0.0204*
C24	0.76167	0.063	0.92521	0.0204*
H18	0.755	0.04225	1.06351	0.0407*
C25	0.7375	0.1057	0.86336	0.0204*
C26	0.70467	0.12065	1.01286	0.0204*
H19	0.69689	0.10019	1.15002	0.0407*
C27	0.68404	0.16424	0.96221	0.0204*
H20	0.66229	0.17368	1.06554	0.0407*
C28	0.67241	0.27958	0.94087	0.0204*
H21	0.65965	0.31184	0.89884	0.0407*

H22	0.69978	0.2858	0.99658	0.0407*
H23	0.65738	0.263	1.07453	0.0407*
C29	0.81518	-0.01618	1.04426	0.0204*
H24	0.81497	0.00558	1.19192	0.0407*
H25	0.8368	-0.04094	1.0588	0.0407*
H26	0.78963	-0.03393	1.03096	0.0407*
O5	0.12427	0.79096	0.99754	0.0204*
O6	0.10916	0.72942	0.72646	0.0204*
H27	0.08578	0.73546	0.77371	0.0407*
O7	0.32033	0.98612	0.7212	0.0204*
C30	0.1342	0.75939	0.84598	0.0204*
C31	0.17724	0.74861	0.7784	0.0204*
H28	0.19015	0.73071	0.92129	0.0407*
C32	0.1979	0.79981	0.74249	0.0204*
C33	0.22754	0.81472	0.90301	0.0204*
H29	0.23403	0.79397	1.04171	0.0407*
C34	0.24857	0.86058	0.86465	0.0204*
C35	0.28087	0.87499	1.02061	0.0204*
H30	0.28681	0.85563	1.16499	0.0407*
C36	0.30342	0.9164	0.96465	0.0204*
H31	0.32541	0.925	1.06774	0.0407*
C37	0.2944	0.94667	0.75497	0.0204*
C38	0.26236	0.93556	0.60631	0.0204*
H32	0.25576	0.95692	0.47013	0.0407*
C39	0.23898	0.89161	0.65781	0.0204*
C40	0.20713	0.8764	0.50086	0.0204*
H33	0.19942	0.89741	0.36561	0.0407*
C41	0.18735	0.83175	0.54162	0.0204*
H34	0.16625	0.82216	0.43343	0.0407*
C42	0.18014	0.71492	0.54795	0.0204*
H35	0.16791	0.68202	0.58336	0.0407*
H36	0.20821	0.71008	0.50379	0.0407*
H37	0.16612	0.73106	0.40878	0.0407*
C43	0.31238	1.02005	0.52057	0.0204*
H38	0.31132	1.00109	0.36392	0.0407*
H39	0.3336	1.04545	0.51129	0.0407*
H40	0.28677	1.03691	0.54886	0.0407*
O8	0.46553	0.26164	0.21291	0.0204*
N3	0.4964	0.33546	0.10608	0.0204*
N4	0.52998	0.27322	0.32447	0.0204*
H41	0.55079	0.29173	0.34056	0.0407*
H42	0.53123	0.24423	0.39775	0.0407*
C44	0.3987	0.37502	-0.15742	0.0204*
H43	0.38096	0.36459	-0.28034	0.0407*
C45	0.43356	0.34836	-0.11794	0.0204*
H44	0.43924	0.32013	-0.21514	0.0407*
C46	0.46007	0.36336	0.06524	0.0204*
C47	0.53309	0.36155	0.05497	0.0204*

C48	0.54479	0.40195	0.20748	0.0204^{*}
C49	0.58211	0.42343	0.1609	0.0204^{*}
H45	0.59083	0.45001	0.26057	0.0407^{*}
C50	0.60635	0.40632	-0.02873	0.0204^{*}
H46	0.63112	0.42121	-0.05492	0.0407^{*}
C51	0.39018	0.41702	-0.01484	0.0204^{*}
H47	0.36678	0.43508	-0.04149	0.0407^{*}
C52	0.41644	0.4321	0.16689	0.0204^{*}
H48	0.41033	0.4603	0.26322	0.0407^{*}
C53	0.45216	0.40616	0.21116	0.0204^{*}
C54	0.49572	0.28829	0.21582	0.0204^{*}
C55	0.5572	0.34508	-0.1392	0.0204^{*}
H49	0.54858	0.31904	-0.24273	0.0407^{*}
C56	0.59395	0.36727	-0.17914	0.0204^{*}
H50	0.61023	0.35582	-0.30739	0.0407^{*}
C57	0.51934	0.42275	0.40268	0.0204^{*}
H51	0.53216	0.43591	0.54197	0.0407^{*}
C58	0.47957	0.42484	0.40198	0.0204^{*}
H52	0.46785	0.44008	0.53995	0.0407^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$?$	$?$	$?$	$?$	$?$	$?$	$?$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C11	1.2337 (1)	O5-C30	1.2116 (1)
N1-C3	1.4409 (1)	O6-H27	0.8396 (1)
N1-C4	1.4377 (1)	O6-C30	1.3206 (1)
N1-C11	1.3785 (1)	O7-C37	1.3697 (1)
N2-H1	0.8565 (1)	O7-C43	1.4260 (1)
N2-H2	0.8621 (1)	C30-C31	1.5158 (1)
N2-C11	1.3488 (1)	C31-H28	0.9995 (1)
C1-H3	0.9301 (1)	C31-C32	1.5322 (1)
C1-C2	1.3816 (1)	C31-C42	1.5266 (1)
C1-C8	1.3780 (1)	C32-C33	1.3732 (1)
C2-H4	0.9296 (1)	C32-C41	1.4138 (1)
C2-C3	1.3835 (1)	C33-H29	0.9496 (1)
C3-C10	1.4010 (1)	C33-C34	1.4172 (1)
C4-C5	1.4010 (1)	C34-C35	1.4210 (1)
C4-C12	1.3889 (1)	C34-C39	1.4168 (1)
C5-C6	1.3972 (1)	C35-H30	0.9494 (1)
C5-C14	1.4587 (1)	C35-C36	1.3637 (1)
C6-H5	0.9298 (1)	C36-H31	0.9496 (1)
C6-C7	1.3790 (1)	C36-C37	1.4131 (1)
C7-H6	0.9302 (1)	C37-C38	1.3703 (1)
C7-C13	1.3742 (1)	C38-H32	0.9494 (1)

C8-H7	0.9295 (1)	C38-C39	1.4283 (1)
C8-C9	1.3732 (1)	C39-C40	1.4186 (1)
C9-H8	0.9299 (1)	C40-H33	0.9495 (1)
C9-C10	1.4006 (1)	C40-C41	1.3711 (1)
C10-C15	1.4620 (1)	C41-H34	0.9499 (1)
C12-H9	0.9305 (1)	C42-H35	0.9799 (1)
C12-C13	1.3819 (1)	C42-H36	0.9794 (1)
C13-H10	0.9293 (1)	C42-H37	0.9801 (1)
C14-H11	0.9298 (1)	C43-H38	0.9791 (1)
C14-C15	1.3355 (1)	C43-H39	0.9796 (1)
C15-H12	0.9298 (1)	C43-H40	0.9796 (1)
O2-C16	1.2116 (1)	O8-C54	1.2337 (1)
$\mathrm{O} 3-\mathrm{H} 13$	0.8397 (1)	N3-C46	1.4412 (1)
$\mathrm{O} 3-\mathrm{C} 16$	1.3205 (1)	N3-C47	1.4372 (1)
$\mathrm{O} 4-\mathrm{C} 23$	1.3696 (1)	N3-C54	1.3786 (1)
O4-C29	1.4259 (1)	N4-H41	0.8568 (1)
C16-C17	1.5158 (1)	N4-H42	0.8620 (1)
C17-H14	0.9996 (1)	N4-C54	1.3489 (1)
C17-C18	1.5322 (1)	C44-H43	0.9301 (1)
C17-C28	1.5265 (1)	C44-C45	1.3816 (1)
C18-C19	1.3733 (1)	C44-C51	1.3778 (1)
C18-C27	1.4139 (1)	C45-H44	0.9299 (1)
C19-H15	0.9495 (1)	C45-C46	1.3835 (1)
C19-C20	1.4172 (1)	C46-C53	1.4008 (1)
C20-C21	1.4211 (1)	C47-C48	1.4011 (1)
C20-C25	1.4166 (1)	C47-C55	1.3888 (1)
C21-H16	0.9494 (1)	C48-C49	1.3972 (1)
C21-C22	1.3636 (1)	C48-C57	1.4587 (1)
C22-H17	0.9497 (1)	C49-H45	0.9299 (1)
C22-C23	1.4132 (1)	C49-C50	1.3787 (1)
$\mathrm{C} 23-\mathrm{C} 24$	1.3703 (1)	C50-H46	0.9301 (1)
C24-H18	0.9493 (1)	C50-C56	1.3744 (1)
C24-C25	1.4285 (1)	C51-H47	0.9298 (1)
C25-C26	1.4186 (1)	C51-C52	1.3732 (1)
C26-H19	0.9497 (1)	C52-H48	0.9297 (1)
C26-C27	1.3709 (1)	C52-C53	1.4008 (1)
C27-H20	0.9497 (1)	C53-C58	1.4620 (1)
C28-H21	0.9801 (1)	C55-H49	0.9304 (1)
C28-H22	0.9795 (1)	C55-C56	1.3819 (1)
C28-H23	0.9800 (1)	C56-H50	0.9291 (1)
C29-H24	0.9789 (1)	C57-H51	0.9297 (1)
C29-H25	0.9799 (1)	C57-C58	1.3354 (1)
C29-H26	0.9797 (1)	C58-H52	0.9299 (1)
C3-N1-C4	116.7294 (16)	H27-O6-C30	109.4922 (14)
C3-N1-C11	120.9078 (6)	C37-O7-C43	117.3545 (10)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 11$	121.9500 (10)	O5-C30-O6	124.3195 (13)
$\mathrm{H} 1-\mathrm{N} 2-\mathrm{H} 2$	114.9620 (7)	O5-C30-C31	123.49

H1-N2-C11
H2-N2-C11
H3-C1-C2
H3-C1-C8
C2-C1-C8
C1-C2-H4
C1-C2-C3
H4-C2-C3
N1-C3-C2
N1-C3-C10
C2-C3-C10
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$
N1-C4-C12
C5-C4-C12
C4-C5-C6
C4-C5-C14
C6-C5-C14
C5-C6-H5
C5-C6-C7
H5-C6-C7
C6-C7- H 6
C6-C7-C13
H6-C7-C13
C1-C8-H7
C1-C8-C9
H7-C8-C9
C8-C9—H8
C8-C9-C10
H8-C9-C10
C3-C10-C9
C3-C10-C15
C9-C10-C15
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{N} 1$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{N} 2$
N1—C11-N2
C4-C12- H 9
C4-C12-C13
H9-C12-C13
C7-C13-C12
C7-C13- H 10
C12-C13-H10
C5-C14-H11
C5-C14-C15
H11-C14-C15
C10-C15-C14
C10-C15-H12
C14-C15- H12
H13-O3-C16

124.7054 (14)	O6-C30-C31
120.0349 (7)	C30-C31-H28
119.9594 (10)	C30-C31-C32
119.9702 (12)	C30-C31-C42
120.0704 (6)	H28-C31-C32
119.7453 (6)	H28-C31-C42
120.4772 (10)	C32-C31-C42
119.7775 (12)	C31-C32-C33
120.3393 (10)	C31-C32-C41
119.2435 (6)	C33-C32-C41
120.4130 (11)	C32-C33-H29
119.5966 (8)	C32-C33-C34
119.4354 (12)	H29-C33-C34
120.9213 (9)	C33-C34-C35
117.1273 (7)	C33-C34-C39
122.8582 (9)	C35-C34-C39
119.9841 (13)	C34-C35-H30
119.0707 (7)	C34-C35-C36
121.8213 (12)	H30-C35-C36
119.1080 (9)	C35-C36-H31
119.9758 (12)	C35-C36-C37
120.0598 (9)	H31-C36-C37
119.9644 (7)	O7-C37-C36
120.2072 (6)	O7-C37-C38
119.6576 (12)	C36-C37-C38
120.1352 (10)	C37-C38-H32
119.0709 (12)	C37-C38-C39
121.8215 (10)	H32-C38-C39
119.1076 (6)	C34-C39-C38
117.5511 (6)	C34-C39-C40
122.9915 (11)	C38-C39-C40
119.4513 (10)	C39-C40-H33
121.5827 (7)	C39-C40-C41
122.4722 (14)	H33-C40-C41
115.9442 (8)	C32-C41-C40
119.9074 (9)	C32-C41-H34
120.1830 (12)	C40-C41-H34
119.9097 (7)	C31-C42-H35
119.8468 (7)	C31-C42-H36
120.0860 (9)	C31-C42-H37
120.0672 (12)	H35-C42-H36
116.5743 (14)	H35-C42-H37
126.7471 (10)	H36-C42-H37
116.6787 (4)	O7-C43-H38
128.0632 (6)	O7-C43-H39
115.9733 (15)	O7-C43-H40
115.9634 (10)	H38-C43-H39
109.4938 (10)	H38-C43-H40

112.1571 (13)
108.5568 (10)
107.1631 (11)
111.3469 (4)
108.5553 (11)
108.5216 (14)
112.5920 (10)
120.1333 (7)
120.6391 (9)
119.2148 (10)
119.4628 (10)
120.9788 (8)
119.5584 (9)
121.5477 (7)
119.7029 (9)
118.6419 (9)
119.7430 (9)
120.5557 (9)
119.7012 (9)
119.6524 (9)
120.7039 (9)
119.6437 (9)
113.5800 (10)
125.7488 (9)
120.6709 (8)
120.2332 (9)
119.4948 (9)
120.2720 (10)
119.8226 (10)
118.1683 (10)
121.9480 (9)
119.5503 (10)
120.9065 (7)
119.5432 (10)
120.9313 (10)
119.5473 (10)
119.5213 (8)
109.4871 (11)
109.4705 (3)
109.4327 (13)
109.4918 (10)
109.4372 (10)
109.5081 (11)
109.4555 (15)
109.4594 (11)
109.4493 (7)
109.4692 (7)
109.5010 (7)

C23-O4-C29
$\mathrm{O} 2-\mathrm{C} 16-\mathrm{O} 3$
O2-C16
O3-C16
C16-C17-H14
C16-C17-C18
C16-C17-C28
H14-C17-C18
$\mathrm{H} 14-\mathrm{C} 17-\mathrm{C} 28$
C18-C17-C28
C17-C18-C19
C17-C18-C27
C19-C18-C27
C18-C19-H15
C18-C19-C20
H15-C19-C20
C19
C19-C20-C25
C21-C20-C25
C20-C21-H16
C20-C21-C22
H16-C21-C22
C21-C22-H17
C21-C22-C23
H17-C22-C23
O4
O4-C23-C2
C22-C23-C24
C23-C24-H18
C23-C24-C25
H18-C24-C25
C20-C25-C24
C20-C25-C26
C24-C25-C26
C25-C26-H19
C25-C26-C27
H19-C26-C27
C18-C27-C26
C18-C27-H20
C26-C27-H20
C17-C28- H 21
C17-C28- H 22
C17-C28-H23
H21-C28-H22
$\mathrm{H} 21-\mathrm{C} 28-\mathrm{H} 23$
$\mathrm{H} 22-\mathrm{C} 28-\mathrm{H} 23$
4-C29- H 24
O4-C29-H25

$\left.\begin{array}{l}117.3454(9) \\ 124.3346(12) \\ 123.4746(6) \\ 112.1610(9) \\ 108.5547(11) \\ 107.1671(12) \\ 111.3352(6) \\ 108.5630(11) \\ 108.5233(14) \\ 112.5927(10) \\ 120.1347(7) \\ 120.6362(9) \\ 119.2163(10) \\ 119.4671(9) \\ 120.9729(8) \\ 119.5600(9) \\ 121.5319(8) \\ 119.7090(9) \\ 118.6503(9) \\ 119.7563(8) \\ 120.5488(10) \\ 119.6949(9) \\ 119.6596(10) \\ 120.7144(10) \\ 119.6260(8) \\ 113.5941(10) \\ 125.7472(9) \\ 120.6585(8) \\ 120.2427(8) \\ 119.4986(9) \\ 120.2587(10) \\ 119.8201(10) \\ 118.1607(9) \\ 121.9581(9) \\ 119.5374(9) \\ 120.9190(8) \\ 119.5436(10) \\ 120.9244(10) \\ 119.5496(9) \\ 119.5260(8) \\ 109.4910(11) \\ 109.4595(6) \\ 109.4549(13) \\ 109.4942(10) \\ 109.4135(11) \\ 109.5143(12) \\ 109.4783(16) \\ 109.4424(9) \\ 1\end{array}\right)$

H39-C43-H40	109.4929 (17)
C46-N3-C47	116.7413 (17)
C46-N3-C54	120.8892 (9)
C47-N3-C54	121.9580 (8)
H41-N4-H42	114.9388 (10)
H41-N4-C54	124.7071 (14)
H42-N4-C54	120.0579 (6)
H43-C44-C45	119.9531 (11)
H43-C44-C51	119.9712 (10)
C45-C44-C51	120.0757 (7)
C44-C45-H44	119.7674 (7)
C44-C45-C46	120.4658 (11)
H44-C45-C46	119.7668 (10)
N3-C46-C45	120.3412 (11)
N3-C46-C53	119.2222 (7)
C45-C46-C53	120.4324 (10)
N3-C47-C48	119.6008 (7)
N3-C47-C55	119.4473 (10)
C48-C47-C55	120.9050 (11)
C47-C48-C49	117.1338 (6)
C47-C48-C57	122.8436 (11)
C49-C48-C57	119.9922 (11)
C48-C49-H45	119.0668 (6)
C48-C49-C50	121.8271 (10)
H45-C49-C50	119.1061 (12)
C49-C50-H46	119.9854 (10)
C49-C50-C56	120.0613 (11)
H46-C50-C56	119.9533 (6)
C44-C51-H47	120.2096 (7)
C44-C51-C52	119.6588 (10)
H47-C51-C52	120.1316 (11)
C51-C52-H48	119.0669 (10)
C51-C52-C53	121.8217 (11)
H48-C52-C53	119.1114 (7)
C46-C53-C52	117.5364 (7)
C46-C53-C58	123.0090 (10)
C52-C53-C58	119.4486 (11)
O8-C54-N3	121.6149 (9)
O8-C54-N4	122.4495 (14)
N3-C54-N4	115.9347 (7)
C47-C55-H49	119.9024 (12)
C47-C55-C56	120.1963 (10)
H49-C55-C56	119.9013 (6)
C50-C56-C55	119.8360 (6)
C50-C56-H50	120.0894 (11)
C55-C56-H50	120.0746 (10)
C48-C57-H51	116.5660 (15)
C48-C57-C58	126.7540 (8)

supporting information

$\mathrm{O} 4-\mathrm{C} 29-\mathrm{H} 26$	$109.4512(6)$	$\mathrm{H} 51-\mathrm{C} 57-\mathrm{C} 58$	$116.6800(7)$
$\mathrm{H} 24-\mathrm{C} 29-\mathrm{H} 25$	$109.4533(8)$	$\mathrm{C} 53-\mathrm{C} 58-\mathrm{C} 57$	$128.0583(9)$
$\mathrm{H} 24-\mathrm{C} 29-\mathrm{H} 26$	$109.5011(7)$	$\mathrm{C} 53-\mathrm{C} 58-\mathrm{H} 52$	$115.9562(15)$
$\mathrm{H} 25-\mathrm{C} 29-\mathrm{H} 26$	$109.5010(18)$	C57-C58-H52	$115.9855(6)$

Hydrogen-bond geometry ($A,{ }^{o}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 8^{\text {i }}$	0.86	2.24	2.9975	146.58
$\mathrm{C} 1-\mathrm{H} 3 \cdots \mathrm{O} 5^{\text {ii }}$	0.93	2.16	2.9505	141.86
$\mathrm{O} 3-\mathrm{H} 13 \cdots \mathrm{O} 1^{\text {iii }}$	0.84	1.80	2.5789	153.52
$\mathrm{C} 28-\mathrm{H} 23 \cdots \mathrm{O} 2^{\text {iv }}$	0.98	2.46	3.4024	160.33
O6-H27 ${ }^{\text {O }} 8^{v}$	0.84	1.75	2.5179	150.36
$\mathrm{N} 4-\mathrm{H} 41 \cdots \mathrm{O} 2$	0.86	2.47	2.9902	119.52
N4-H42 $\cdots \mathrm{O} 1^{\text {iii }}$	0.86	2.17	2.9407	148.25
C51-H47 $\cdots{ }^{\text {O }} 4^{\text {vi }}$	0.93	2.34	3.1120	140.49

Symmetry codes: (i) $-x+1 / 2,-y+1, z-3 / 2$; (ii) $x, y, z-1$; (iii) $-x+1 / 2,-y+1, z+3 / 2$; (iv) $x, y, z+1 ;$ (v) $-x+1 / 2,-y+1, z+1 / 2$; (vi) $x-1 / 2,-y+1 / 2,-z+1$.

