### research papers



Received 15 August 2020 Accepted 18 September 2020

Edited by D. S. Yufit, University of Durham, United Kingdom

Keywords: dyes; salt forms; sulfonates; monoazo; coordination polymers; crystal structure.

CCDC references: 2032738; 2032737; 2032736; 2032735; 2032734

Supporting information: this article has supporting information at journals.iucr.org/c





# Structures of five salt forms of disulfonated monoazo dyes

#### Heather C. Gardner,<sup>a</sup> Alan R. Kennedy,<sup>a</sup>\* Karen M. McCarney,<sup>a</sup> Edward Staunton,<sup>a</sup> Heather Stewart<sup>a</sup> and Simon J. Teat<sup>b</sup>

<sup>a</sup>Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and <sup>b</sup>Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA. \*Correspondence e-mail: a.r.kennedy@strath.ac.uk

The structures of five s-block metal salt forms of three disulfonated monoazo dyes are presented. These are poly[di- $\mu$ -aqua-diaqua[ $\mu_4$ -3,3'-(diazane-1,2-diyl)bis(benzenesulfonato)]disodium(I)],  $[Na_2(C_{12}H_8N_2O_6S_2)(H_2O_4)]_n$ , (I), catenapoly[[tetraaquacalcium(II)]- $\mu$ -3,3'-(diazane-1,2-diyl)bis(benzenesulfonato)],  $[Ca(C_{12}H_8N_2O_6S_2)(H_2O_4)_n, (II), catena-poly[[[diaquacalcium(II)]-\mu-2-(4-amino-$ 3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium] dihydrate], {[Na(C<sub>12</sub>H<sub>10</sub>- $N_3O_6S_2(H_2O_2)$ :2H<sub>2</sub>O<sub>1</sub>, (III), hexaaquamagnesium bis[2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium] octahydrate,  $[Mg(H_2O)_6](C_{12}H_{10}N_3 O_6S_2$ )<sub>2</sub>·8H<sub>2</sub>O, (IV), and poly[[{ $\mu_2$ -4-[2-(4-amino-2-methyl-5-methoxyphenyl)diazen-1-yl]benzene-1,3-disulfonato}di-µ-aqua-diaquabarium(II)] dihydrate],  $\{[Ba(C_{14}H_{13}N_3O_7S_2)(H_2O)_4]\cdot 2H_2O\}_n, (V).$  Compound (III) is that obtained on crystallizing the commercial dyestuff Acid Yellow 9 [74543-21-8]. The Mg species is a solvent-separated ion-pair structure and the others are all coordination polymers with bonds from the metal atoms to sulfonate groups. Compound (I) is a three-dimensional coordination polymer, (V) is a twodimensional coordination polymer and both (II) and (III) are one-dimensional coordination polymers. The coordination behaviour of the azo ligands and the water ligands, the dimensionality of the coordination polymers and the overall packing motifs of these five structures are contrasted to those of monosulfonate monoazo congers. It is found that (I) and (II) adopt similar structural types to those of monosulfonate species but that the other three structures do not.

#### 1. Introduction

Azo compounds have a long history of use as both dyes and pigments. One of the commonest subclasses is that of sulfonated azo species, where the sulfonate group is typically added to aid water solubility and/or to decrease toxicity (Hunger et al., 2003). Despite being widely referred to as organic colourants, the commercial products of sulfonated azo species are commonly metal complexes and often s-block metal salt forms (Christie & Mackay, 2008). Even before large-scale crystallographic studies were available, it was recognized that small structural changes systematically changed the colour and material properties of such dyestuffs (Greenwood et al., 1986). These structure-property relationships led to an interest in more detailed structural investigations. A reasonable number of crystal structures of the salt forms of monosulfonated azo dyes and even pigments are now known (e.g. Kennedy et al., 2000, 2004, 2009; Tapmeyer et al., 2020; Aiken et al., 2013). However, far fewer relevant structures of disulfonated azo species are known, despite these being commercially commonplace. The only azobenzene-based disulfonate structures that we are aware of are those of azobenzene-4,4'-disulfonate (Soegiarto & Ward, 2009; Soegiarto et al., 2010,

2011). In these structures, the disulfonate ions are utilized as framework hosts for a series of functional organic guests and thus they are not of particular relevance to commercial colourant materials. Some s-block metal salt structures of more complicated disulfonated dyes, with naphthalene- rather than azobenzene-based azo fragments, are also known (e.g. Black et al., 2019; Kennedy et al., 2006; Ojala et al., 1994). The azo moiety in all these examples exists in the hydrazone tautomeric form and in all cases both sulfonate groups lie on only one ring system at one end of the azo bond. The only colourant relevant disulfonate structures with sulfonate groups on both the ring systems, at either end of an azo bond, are the Ca lake structures of Pigment Yellow 183 and Pigment Yellow 191 determined by Schmidt and co-workers (Ivashevskaya et al., 2009; Schmidt et al., 2009). These are relatively complex materials with pyrazolone groups between the two sulfonated aryl rings. Herein we present five new structures of s-block metal salt forms of azobenzene disulfonate derivatives (Scheme 1), namely,  $[Na_2L1(OH_2)_4]_n$ , (I), and  $[CaL1(OH_2)_4]_n$ , (II), where L1 is azobenzene-3,3'disulfonate;  $\{[NaL2(OH_2)_2] \cdot 2H_2O\}_n$ , (III), and  $[Mg(OH_2)_6]$ -[L2]<sub>2</sub>·8H<sub>2</sub>O, (IV), where L2 is 4-aminodiazeniumylbenzene-3,4'-disulfonate; and { $[BaL3(OH_2)_4] \cdot 2H_2O_{n}$  (V), where L3 is 4-amino-2-methyl-5-methoxyazobenzene-2',4'-disulfonate. Structure (III) is notable as it was obtained from recrystallizing the commercial dyestuff Acid Yellow 9 [74543-21-8].



#### 2. Experimental

#### 2.1. Synthesis and crystallization

The Raman spectra of solid samples were measured using a Reinshaw Ramascope 2000 instrument with excitation at 785 nm. IR samples were prepared as KBr discs and spectra were measured using a Nicolet Avatar 360 FT–IR.

The Na salt of azobenzene-3,3'-disulfonate, (I), was produced by the alkaline reduction of 3-nitrobenzenesulfonic acid by glucose (Galbraith *et al.*, 1951). Yellow crystals suitable for analysis were obtained directly from the aqueous reaction mixture. IR (KBr): 1645 (*br*), 1470, 1419, 1235, 1199, 1107, 1081, 1045, 999, 902, 810, 712, 685, 620, 569, 528 cm<sup>-1</sup>. Raman: 1477, 1413, 1183, 1163, 1104, 995, 283 cm<sup>-1</sup>. Microanalysis found (expected) (%): C 31.57 (31.44), H 3.56 (3.53), N 5.90 (6.11), S 13.66 (13.99).

The Ca salt (II) was prepared by adding excess  $CaCl_2$  to an aqueous solution of (I). After filtration, the resulting solution deposited yellow–orange crystals of (II) after slow evaporation (four weeks). IR (KBr): 1629, 1465, 1204, 1102, 1076, 1050, 999, 794, 712, 682, 615 cm<sup>-1</sup>. Raman: 1592, 1420, 1376, 1325, 1198, 1162, 1124, 978, 822, 602, 381, 350, 277 cm<sup>-1</sup>. The crystals were somewhat hygroscopic and an acceptable microanalysis was not obtained.

The monosodium salt of Acid Yellow 9 was purchased from Sigma–Aldrich and recrystallized from water to give fibrous red crystals of (III). The Mg salt (IV) was prepared by adding an equimolar amount of MgCl<sub>2</sub> to an aqueous solution of the monosodium salt of Acid Yellow 9. After filtering off the initial dark precipitate, allowing the remaining solution to evaporate to dryness gave red crystals of (IV). IR (KBr): 1625, 1574, 1528, 1392, 1162, 1008, 879 cm<sup>-1</sup>.

The free acid equivalent of (V) was provided by Dystar UK. Treatment of an aqueous solution with  $Ba(OH)_2$  gave an orange solution. After several attempts, a simple slow evaporation (approximately four weeks) from water gave a few suitable orange crystals of (V).

#### 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Data for (III) were measured at the Daresbury SRS Station 9.8 (Cernik *et al.*, 1997) and for (V), data were measured by the UK National Crystallography Service (Cole & Gale, 2012).

Disorder models were used for one non-metal-bound water molecule of both (III) and (IV), and also for one  $SO_3$  group of (IV). In all cases, a two-site model was used and site-occupancy factors were refined. Suitable restraints and constraints were applied to the bond lengths and displacement parameters of the disordered units to ensure that they displayed approximately normal behaviour.

For all structures, H atoms bound to C atoms were placed in the expected geometric positions and treated in riding mode, with C-H = 0.95 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  for C-H groups, and C-H = 0.98 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$  for CH<sub>3</sub> groups. H atoms bound to N or O atoms were located by difference synthesis and placed accordingly. For (III) and (IV), H atoms bound to N atoms were refined freely and isotropically. For (V), the N-H distances were restrained to 0.88 (1) Å. All water H atoms were restrained such that O-H = 0.88 (1) Å and H···H = 1.33 (2) Å. For the water H atoms of (V) and the H atoms of the disordered groups,  $U_{iso}$  values were allowed to

### research papers

## Table 1Experimental details.

|                                                                              | (I)                                                                                                            |                                | (II)                                                                                |                                  | (III)                                       |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|
| Crystal data<br>Chemical formula                                             | [Na <sub>2</sub> (C <sub>12</sub> H <sub>8</sub> N <sub>2</sub> O <sub>6</sub> S <sub>2</sub> )(H <sub>2</sub> | <sub>2</sub> O) <sub>4</sub> ] | [Ca(C <sub>12</sub> H <sub>8</sub> N <sub>2</sub> O <sub>6</sub> S <sub>2</sub> )(H | [ <sub>2</sub> O) <sub>4</sub> ] | $[Na(C_{12}H_{10}N_3O_6S_2)(H_2O)_2]$ -     |
| М                                                                            | 458 37                                                                                                         |                                | 452 47                                                                              |                                  | $2\Pi_2 O$<br>451 40                        |
| Crystal system, space group                                                  | Monoclinic, C2/c                                                                                               |                                | Triclinic, $P\overline{1}$                                                          |                                  | Monoclinic. $P2_1/c$                        |
| Temperature (K)                                                              | 130                                                                                                            |                                | 123                                                                                 |                                  | 150                                         |
| a, b, c (Å)                                                                  | 21.2141 (9), 5.5370 (3),                                                                                       | 15.3045 (8)                    | 6.3875 (2), 6.7470 (2),<br>11.3030 (5)                                              | ,                                | 13.9454 (18), 19.517 (3), 6.9014 (9)        |
| $lpha,eta,\gamma(^\circ)$                                                    | 90, 90.310 (2), 90                                                                                             |                                | 94.289 (2), 103.160 (2<br>108 456 (2)                                               | ),                               | 90, 93.838 (2), 90                          |
| $V(\text{\AA}^3)$                                                            | 1797.68 (16)                                                                                                   |                                | 444.21 (3)                                                                          |                                  | 1874.2 (4)                                  |
| Radiation type                                                               | 4<br>Μο <i>Κα</i>                                                                                              |                                | Μο Κα                                                                               |                                  | Synchrotron, $\lambda = 0.6775 \text{ Å}$   |
| $\mu (\text{mm}^{-1})$                                                       | 0.40                                                                                                           |                                | 0.65                                                                                |                                  | 0.32                                        |
| Crystal size (mm)                                                            | $0.50\times0.32\times0.08$                                                                                     |                                | $0.50\times0.25\times0.05$                                                          |                                  | $0.50 \times 0.01 \times 0.01$              |
| Data collection                                                              | N . K COD                                                                                                      |                                |                                                                                     |                                  |                                             |
| Diffractometer                                                               | Nonius KappaCCD                                                                                                |                                | Nonius Kappa CCD                                                                    |                                  | Bruker APEXII<br>Multi coor (SADAPS: Druker |
| Absorption correction                                                        | -                                                                                                              |                                | -                                                                                   |                                  | 2012)                                       |
| T <sub>min</sub> , T <sub>max</sub>                                          | _                                                                                                              |                                | _                                                                                   |                                  | 0.676, 1.000                                |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 3500, 1865, 1414                                                                                               |                                | 3837, 2038, 1775                                                                    |                                  | 15360, 3531, 2772                           |
| $R_{\rm int}$                                                                | 0.035                                                                                                          |                                | 0.020                                                                               |                                  | 0.049                                       |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                         | 0.629                                                                                                          |                                | 0.651                                                                               |                                  | 0.608                                       |
| Refinement                                                                   |                                                                                                                |                                |                                                                                     |                                  |                                             |
| $R[F^{2} > 2\sigma(F^{2})], wR(F^{2}), S$                                    | 0.038, 0.090, 1.04                                                                                             |                                | 0.027, 0.070, 1.05                                                                  |                                  | 0.040, 0.107, 1.04                          |
| No. of peremeters                                                            | 1805                                                                                                           |                                | 2038                                                                                |                                  | 3531<br>311                                 |
| No. of restraints                                                            | 6                                                                                                              |                                | 140<br>6                                                                            |                                  | 15                                          |
| H-atom treatment                                                             | H atoms treated by a r                                                                                         | mixture of                     | H atoms treated by a                                                                | mixture of                       | H atoms treated by a mixture of             |
|                                                                              | independent and con                                                                                            | nstrained                      | independent and c                                                                   | onstrained                       | independent and constrained                 |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.43, -0.32                                                                                                    |                                | 0.40, -0.46                                                                         |                                  | 0.35, -0.44                                 |
|                                                                              | (IV)                                                                                                           |                                |                                                                                     | (V)                              |                                             |
| Crystal data                                                                 |                                                                                                                |                                |                                                                                     |                                  |                                             |
| Chemical formula                                                             | [Mg(H <sub>2</sub> O)                                                                                          | el(C12H10N2O                   | (S2)2.8H2O                                                                          | [Ba(Ct4F                         | $I_{12}N_2O_2S_2)(H_2O)_4]\cdot 2H_2O$      |
| M <sub>r</sub>                                                               | 989.23                                                                                                         | /6J(0121101.30                 | 662) <u>2</u> 611 <u>2</u> 0                                                        | 644.83                           | 13. (30 /02)(120 /4] 21220                  |
| Crystal system, space group                                                  | Monoclini                                                                                                      | c, C2/c                        |                                                                                     | Orthorho                         | ombic, Pbca                                 |
| Temperature (K)                                                              | 123                                                                                                            |                                |                                                                                     | 123                              |                                             |
| <i>a</i> , <i>b</i> , <i>c</i> (A)                                           | 36.896 (3),                                                                                                    | , 6.7806 (4), 17               | 2.9140 (12)                                                                         | 7.1293 (4                        | ), 18.8368 (11), 34.752 (2)                 |
| $\alpha, \beta, \gamma$ (°)                                                  | 90, 111.178                                                                                                    | 8 (9), 90                      |                                                                                     | 90, 90, 90                       | )                                           |
| $V(A^{-})$                                                                   | 41/9.0 (6)                                                                                                     |                                |                                                                                     | 4667.0 (5                        | )                                           |
| Z<br>Radiation type                                                          | 4<br>Cu <i>Ka</i>                                                                                              |                                |                                                                                     | ο<br>Μο Κα                       |                                             |
| $\mu \text{ (mm}^{-1})$                                                      | 3.12                                                                                                           |                                |                                                                                     | 1.95                             |                                             |
| Crystal size (mm)                                                            | $0.5 \times 0.05$                                                                                              | $5 \times 0.03$                |                                                                                     | $0.25 \times 0.25$               | $10 \times 0.04$                            |
| Data collection                                                              |                                                                                                                |                                |                                                                                     | <b>.</b>                         |                                             |
| Diffractometer                                                               | Oxford Di<br>Multi agai                                                                                        | iffraction Gem                 | lini S<br>PO: Disselve OD 2010)                                                     | Nonius K                         | CappaCCD                                    |
| Absorption correction $T$ $T$                                                | Multi-scan                                                                                                     | ( <i>CrysAlls</i> PK           | (O; Rigaku OD, 2019)                                                                | Multi-sca                        | in (SADABS; Bruker, 2012)                   |
| No. of measured, independent and ob<br>$[I > 2\pi(D)]$ reflections           | served 7541, 4093                                                                                              | 3, 3287                        |                                                                                     | 7914, 448                        | 9, 3554                                     |
| [I > 2O(I)] reflections                                                      | 0.039                                                                                                          |                                |                                                                                     | 0.037                            |                                             |
| $(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$                           | 0.621                                                                                                          |                                |                                                                                     | 0.616                            |                                             |
| Refinement                                                                   |                                                                                                                |                                |                                                                                     |                                  |                                             |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.050, 0.14                                                                                                    | 3, 1.06                        |                                                                                     | 0.042, 0.0                       | 996, 1.15                                   |
| No. of reflections                                                           | 4093                                                                                                           |                                |                                                                                     | 4489                             |                                             |
| No. of parameters                                                            | 359                                                                                                            |                                |                                                                                     | 344                              |                                             |
| H-atom treatment                                                             | H atoms t                                                                                                      | reated by a m                  | ixture of independent                                                               | 20<br>H atoms                    | treated by a mixture of independent         |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å <sup>-3</sup> )          | and con<br>0.800.3                                                                                             | strained refine                | ement                                                                               | and co<br>1.651.                 | nstrained refinement<br>23                  |
| Committee measures COLLECT (Heaft 1                                          | 000) 641NT (Deulser 2012) (                                                                                    | Come Alia DDO (E               | Disala OD 2010) DENZO (                                                             | turin annalai fa Min             | an 1007) SHELVS (Shaldnink 2015) SID02      |

Computer programs: COLLECT (Hooft, 1998), SAINT (Bruker, 2012), CrysAlis PRO (Rigaku OD, 2019), DENZO (Otwinowski & Minor, 1997), SHELXS (Sheldrick, 2015), SIR92 (Altomare et al., 1994), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2020), ORTEP-3 (Farrugia, 2012) and SHELXL2014 (Sheldrick, 2015).

ride on the parent O atom and for all other water H atoms,  $U_{iso}$  values were allowed to refine freely.

#### 3. Results and discussion

Previous work on the salt forms of monosulfonated dyes and pigments has shown that many structural features can be predicted from knowledge of the cation identity and the position of the sulfonate group (Kennedy et al., 2009, 2012). With respect to L1 and the metal cations used herein, relevant observations on monosulfonated species with a similar meta relationship between the azo and SO<sub>3</sub> groups are as follows. Na structures are expected to feature high-dimensionality coordination polymers with both SO<sub>3</sub> and H<sub>2</sub>O groups bridging between Na centres. However, if metal-to-sulfonate bonds exist at all, then Ca structures should either be nonpolymeric entities or simple one-dimensional polymers with H<sub>2</sub>O ligands adopting only terminal positions. L2 has both meta and para relationships between its azo and SO<sub>3</sub> groups. Again extrapolation from what is known of monosulfonated azo salt forms would suggest that for L2 an Mg species should be a solvent-separated ion-pair structure with no Mg-O<sub>3</sub>S bonds, whilst Na species should have a highdimensional coordination polymer structure similar to those predicted for an Na salt of L1 above (Kennedy et al., 2004). In all cases, the overall packing should feature simple alternating layers of hydrophilic groups (e.g. cations, SO<sub>3</sub> and H<sub>2</sub>O) and hydrophobic groups (the aryl azo body of the anions) (Kennedy et al., 2009).

The structure of disulfonate (I) fits well with these predictions from monosulfonates. It is indeed a three-dimensional coordination polymer with both SO<sub>3</sub> and H<sub>2</sub>O groups bridging between metal centres, and it forms a simple layered structure as expected. In more detail, the asymmetric unit of (I) contains two separate Na sites, both of which occupy special positions (Na1 sits on a twofold axis and Na2 on a centre of symmetry in the space group C2/c). It also contains two water ligands and



Figure 1

The asymmetric unit of (I) expanded to show the coordination shell about Na1 and Na2, and the conformation of *L*1. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.

| Table 2                       |                   |
|-------------------------------|-------------------|
| Selected geometric parameters | s (Å. °) for (I). |

| 0 1                                      |             | , , ,                    |             |
|------------------------------------------|-------------|--------------------------|-------------|
| Na1-O3 <sup>i</sup>                      | 2.4174 (19) | Na2-O2                   | 2.3340 (18) |
| Na1–O3 <sup>ii</sup>                     | 2.4175 (19) | Na2-O1W                  | 2.3688 (17) |
| Na1-O1                                   | 2.419 (2)   | $Na2-O1W^{iv}$           | 2.3688 (17) |
| Na1–O1 <sup>iii</sup>                    | 2.419 (2)   | $Na2-O2W^{iv}$           | 2.4480 (17) |
| $Na1 - O1W^{iii}$                        | 2.5019 (18) | Na2–O2W                  | 2.4480 (17) |
| Na1 - O1W                                | 2.5019 (18) | $N1-N1^{v}$              | 1.262 (4)   |
| Na2–O2 <sup>iv</sup>                     | 2.3340 (18) | N1-C3                    | 1.431 (3)   |
| O3 <sup>i</sup> -Na1-O3 <sup>ii</sup>    | 100.81 (10) | O2 <sup>iv</sup> -Na2-O2 | 180.0       |
| O3 <sup>i</sup> -Na1-O1                  | 85.49 (6)   | $O2^{iv}$ -Na2-O1W       | 91.49 (7)   |
| O3 <sup>ii</sup> -Na1-O1                 | 163.62 (6)  | O2-Na2-O1W               | 88.51 (7)   |
| O1-Na1-O1 <sup>iii</sup>                 | 92.59 (9)   | $O1W$ -Na2- $O1W^{iv}$   | 180.0       |
| $O3^{i}$ -Na1-O1 $W^{iii}$               | 86.52 (7)   | O2–Na2–O2W <sup>iv</sup> | 98.30 (6)   |
| O3 <sup>ii</sup> –Na1–O1W <sup>iii</sup> | 75.28 (6)   | $O1W$ –Na2– $O2W^{iv}$   | 87.42 (6)   |
| $O1-Na1-O1W^{iii}$                       | 90.17 (6)   | O2-Na2-O2W               | 81.70 (6)   |
| O1-Na1-O1W                               | 109.77 (6)  | O1W-Na2-O2W              | 92.58 (6)   |
| $O1W^{iii}$ -Na1-O1W                     | 151.40 (10) |                          |             |

Symmetry codes: (i) x, y - 1, z; (ii)  $-x, y - 1, -z + \frac{1}{2}$ ; (iii)  $-x, y, -z + \frac{1}{2}$ ; (iv) -x, -y + 1, -z + 1; (v)  $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ .

 Table 3

 Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (I).

| $D - H \cdots A$                       | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $O1W - H2W \cdot \cdot \cdot O2W^{i}$  | 0.87(1)  | 2.07 (2)                | 2.919 (3)    | 163 (3)                              |
| $O1W-H1W\cdots O2^{i}$                 | 0.87(1)  | 2.29 (2)                | 3.044 (3)    | 145 (3)                              |
| $O1W-H1W\cdots O3^{i}$                 | 0.87(1)  | 2.32 (3)                | 3.005 (3)    | 136 (3)                              |
| $O2W - H3W \cdot \cdot \cdot O1^{iii}$ | 0.87(1)  | 1.94 (1)                | 2.807(2)     | 175 (3)                              |
| $O2W-H4W \cdot \cdot \cdot N1^{vi}$    | 0.87 (1) | 2.22 (1)                | 3.076 (3)    | 168 (3)                              |

Symmetry codes: (i) x, y - 1, z; (iii)  $-x, y, -z + \frac{1}{2}$ ; (vi)  $x - \frac{1}{2}, y + \frac{1}{2}, z$ .

half of an L1 dianion. A crystallographic centre of symmetry is located at the centre of the azo bond, giving a planar dianion with mutually *anti* SO<sub>3</sub> groups (Fig. 1). As can be seen from Table 2, each Na centre is approximately octahedral, with Na1



Figure 2

Packing diagram of (I), viewed down the b axis. Note the alternating hydrophobic and hydrophilic layers that lie parallel to the bc plane.



Figure 3

The asymmetric unit of (II) expanded to show the coordination shell about Ca1 and the conformation of L1. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.

bonding to two bridging water molecules and to four O atoms of four different L1 dianions. Na2 bonds to two O atoms of two L1 dianions and to four water ligands, two of which form terminal bonds and two of which bridge to Na1 centres. Note that the bond lengths involving Na1 are systematically longer than those of Na2 [ranges 2.4174 (19)-2.5019 (18) and 2.3340 (18)–2.4480 (17) Å for Na1 and Na2, respectively]. The SO<sub>3</sub> units each form three bonds to Na centres, one from each O atom. Within the hydrophilic layers, pairs of Na1 centres are linked by eight-membered [NaOSO]<sub>2</sub> rings, whilst the Na1 and Na2 centres are linked by six-membered [NaOSONaO] rings, with both bridging sulfonate and water ligands. As can be seen from Fig. 2, the layers expand parallel to the bc plane, with the disulfonate dianions bridging between neighbouring hydrophilic layers to give the overall three-dimensional coordination polymer. The hydrogen-bond details for (I) are given in Table 3.

The asymmetric unit of (II) contains half of an L1 dianion, two water ligands and a Ca site. Both the Ca1 site and the centre of the azo N=N bond occupy crystallographic inversion centres. As with (I), this gives a planar dianion with *anti* SO<sub>3</sub> groups and an octahedral metal centre (Fig. 3 and Table 4). Ca1 forms bonds to O atoms from two *trans* SO<sub>3</sub> groups and to four terminal water ligands. Each SO<sub>3</sub> group makes a single Ca-O bond and thus the disulfonate dianion

| Table 4     |               |              |             |
|-------------|---------------|--------------|-------------|
| Selected ge | ometric param | eters (Å. °` | ) for (II). |

| Ca1-O3                                                          | 2.3050 (11)             | Ca1-O2W <sup>i</sup>      | 2.3385 (12) |
|-----------------------------------------------------------------|-------------------------|---------------------------|-------------|
| Ca1-O3 <sup>i</sup>                                             | 2.3051 (11)             | Ca1 - O2W                 | 2.3385 (12) |
| Ca1 - O1W                                                       | 2.3235 (12)             | $N1-N1^{ii}$              | 1.256 (3)   |
| $Ca1-O1W^i$                                                     | 2.3236 (12)             | N1-C3                     | 1.432 (2)   |
| O3–Ca1–O3 <sup>i</sup>                                          | 180.0                   | $O1W-Ca1-O2W^{i}$         | 90.52 (5)   |
| O3-Ca1-O1W                                                      | 87.66 (4)               | O3-Ca1-O2W                | 86.93 (5)   |
| $O3-Ca1-O1W^{i}$                                                | 92.34 (4)               | O1W-Ca1-O2W               | 89.48 (5)   |
| $O1W-Ca1-O1W^{i}$                                               | 180.00 (6)              | $O2W^i$ -Ca1-O2W          | 180.0       |
| $O3-Ca1-O2W^{i}$                                                | 93.07 (4)               |                           |             |
| $\begin{array}{c} O1W-Ca1-O1W^{i}\\ O3-Ca1-O2W^{i} \end{array}$ | 180.00 (6)<br>93.07 (4) | O2W <sup>i</sup> -Ca1-O2W | 180.0       |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z.

| Table 5       |            |        |         |    |
|---------------|------------|--------|---------|----|
| Hydrogen-bond | geometry ( | (Å, °) | for (II | ). |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                                                                      |                                              |                                              |                                                          |                                          |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $D - \mathbf{H} \cdot \cdot \cdot A$                                                                                 | D-H                                          | $H \cdot \cdot \cdot A$                      | $D \cdot \cdot \cdot A$                                  | $D - \mathbf{H} \cdot \cdot \cdot A$     |
|                                                       | $O1W - H1W \cdots O2^{iii}$<br>$O1W - H2W \cdots O1^{iv}$<br>$O2W - H3W \cdots O2^{iv}$<br>$O2W - H4W \cdots O1^{v}$ | 0.87 (1)<br>0.86 (1)<br>0.86 (1)<br>0.86 (1) | 2.01 (1)<br>2.00 (1)<br>1.95 (1)<br>1.94 (1) | 2.8521 (17)<br>2.8454 (17)<br>2.8119 (16)<br>2.7907 (16) | 162 (2)<br>165 (2)<br>174 (2)<br>168 (2) |

Symmetry codes: (iii) -x + 2, -y + 1, -z + 1; (iv) -x + 2, -y + 2, -z + 1; (v) -x + 1, -y + 2, -z + 1.

links Ca centres into a one-dimensional coordination polymer (Fig. 4). These features combine to give the layered structure shown in Fig. 5. Within the hydrophilic layers, hydrogen bonding between the water ligands and the two noncoordinating O atoms of SO<sub>3</sub> link neighbouring coordination chains (Table 5). Thus, structure (II) also follows the rules proposed for monosulfonated azo dye salts. There are Ca $-O_3S$  bonds, but these are relatively few in number and, even with the two-headed nature of the disulfonate ligand, they combine to give only a one-dimensional coordination polymer. The H<sub>2</sub>O ligands take no part in bridging between metal centres and the overall packing motif is one of simple alternating hydrophobic and hydrophilic layers.

Structure (III) was obtained from aqueous recrystallization of the commercial product called 'Acid Yellow 9, monosodium salt'. An interesting problem here was to discover the protonation site. The crystal structures of three acidic sulfonated azobenzene-based dyes with amino substituents are known. 4-Aminoazobenzene-4'-sulfonic acid crystallizes with protonation of the amino group, giving an –NH<sub>3</sub>-bearing zwitterion, whilst the other two known structures crystallize with protonation of the azo N atom furthest from the neutral –NH<sub>2</sub> group (Lu *et al.*, 2009; Miyano *et al.*, 2016; Kennedy *et al.*,



Figure 4 Part of the one-dimensional coordination polymer of (II).

Table 6 Selected geometric parameters (Å, °) for (III). Na1 - O1W2.275 (2) N1-N2 1.294 (3) 2.335 (2)  $Na1 - O2W^{i}$ N1-C41.411 (3) 2.369 (2) 1.341 (3) Na1 - O2WN2 - C7Na1-O6 2.409(2)N3-C10 1.316(3)Na1-O6<sup>i</sup> 2.425(2) $O1W-Na1-O2W^{i}$ 154.18 (9) O2W-Na1-O6 75.46 (7) O1W-Na1-O2W  $O1W-Na1-O6^{i}$ 96 67 (9) 85.06 (8)  $O2W^{i}-Na1-O2W$ 95.44 (7) O2W<sup>i</sup>-Na1-O6<sup>i</sup> 75.79(7) O1W-Na1-O6 88.23 (8) O2W-Na1-O6<sup>i</sup> 159.34 (8) O2W<sup>i</sup>-Na1-O6  $O6-Na1-O6^i$ 116.93 (8) 125.20 (8)

Symmetry code: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ .

 Table 7

 Hydrogen-bond geometry (Å, °) for (III).

| $D - H \cdot \cdot \cdot A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|--------------------------------------|----------|-------------------------|--------------|------------------|
| N1-H1N···O3 $W^{ii}$                 | 0.84 (3) | 2.10 (3)                | 2.878 (3)    | 153 (3)          |
| $N3-H2N\cdots O4W$                   | 0.82(3)  | 2.04 (3)                | 2.847 (5)    | 170 (3)          |
| $N3-H2N\cdots O5W$                   | 0.82(3)  | 2.05 (4)                | 2.843 (11)   | 163 (3)          |
| N3-H3N····O4                         | 0.81(3)  | 2.60 (3)                | 3.084 (3)    | 120 (3)          |
| N3-H3N····O4 <sup>iii</sup>          | 0.81(3)  | 2.20 (3)                | 2.923 (3)    | 150 (3)          |
| N3-H3N···O5                          | 0.81(3)  | 2.61 (3)                | 3.095 (3)    | 120 (3)          |
| $O1W-H1W\cdots O5^{iv}$              | 0.88(1)  | 1.93 (2)                | 2.773 (3)    | 160 (4)          |
| $O1W-H2W\cdots O4^{i}$               | 0.88(1)  | 1.93 (2)                | 2.756 (3)    | 157 (4)          |
| $O2W - H3W \cdot \cdot \cdot O3^{v}$ | 0.88(1)  | 1.90 (1)                | 2.774 (2)    | 176 (4)          |
| $O2W-H4W\cdots O1^{vi}$              | 0.88(1)  | 1.88 (1)                | 2.746 (3)    | 171 (3)          |
| O3W−H5W···O2 <sup>vii</sup>          | 0.86(1)  | 2.03 (1)                | 2.866 (3)    | 164 (3)          |
| O3W−H6W···O3 <sup>vi</sup>           | 0.87(1)  | 2.22 (1)                | 3.081 (3)    | 171 (3)          |
| $O4W - H7W \cdot \cdot \cdot O3^{i}$ | 0.88(1)  | 2.02 (1)                | 2.887 (5)    | 175 (4)          |
| O4W−H8W···O1 <sup>iv</sup>           | 0.88(1)  | 1.97 (1)                | 2.846 (5)    | 173 (5)          |
| O5W−H9W···O3 <sup>i</sup>            | 0.88(1)  | 2.08(2)                 | 2.947 (13)   | 170 (10)         |
| $O5W-H10W\cdots O1^{iv}$             | 0.88 (1) | 1.89 (2)                | 2.765 (9)    | 171 (10)         |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii) x - 1, y, z; (iii) -x, -y + 1, -z; (iv)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (v) -x, -y, -z; (vi)  $-x, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (vii) -x, -y, -z + 1.

2020). The azo group is the commonest protonation site for the free acid forms of sulfonated azo dyes that do not bear a more basic substituent (Kennedy *et al.*, 2001, 2020). The asymmetric unit of (III) was found to contain an Na centre, a monoanionic L2 ligand with protonation at azo atom N1, two



Figure 6

The asymmetric unit of (III) expanded to show the coordination shell about Na1. The minor-disorder component at O4W is not shown. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.

metal-coordinated water ligands and two non-bound water molecules, one of which is disordered (Fig. 6). Unusually for an Na salt of an aryl sulfonate, only one of the six independent  $SO_3$  O atoms is involved in bonding to Na. This Na1-O6interaction involves the SO<sub>3</sub> group meta to the azo bond. Na1 exists in a distorted square-pyramidal and hence five-coordinate environment, where one bond is to a terminal water ligand and the other four bonds (from two water ligands and two SO<sub>3</sub> groups) all bridge to neighbouring Na centres (see Table 6 for geometric details). The Na-O bond lengths of (III) [range 2.275 (2)–2.425 (2) Å] are understandably shorter than those of the six-coordinate Na centres of (I). An interesting detail is that in (III) the Na-to-OH<sub>2</sub> distances are shorter that the Na-to-SO<sub>3</sub> distances. This is the opposite of the case in (I). The one-dimensional coordination polymers in (III) are formed by chains of [Na1-O2W-Na1-O6] rings



Figure 5 Packing diagram of (II), viewed down the *a* axis. Note the alternating hydrophobic and hydrophilic layers that lie parallel to the *ab* plane.

### research papers

| Table 8               | , e .          |                          |           |
|-----------------------|----------------|--------------------------|-----------|
| Selected geometric pa | rameters (A, ° | ) for (IV).              |           |
| Mg1-O2W               | 2.0322 (19)    | N1-C4                    | 1.413 (3) |
| Mg1 - O1W             | 2.0472 (18)    | N2-C7                    | 1.342 (4) |
| Mg1-O3W               | 2.0769 (19)    | N3-C10                   | 1.309 (4) |
| N1-N2                 | 1.294 (4)      |                          |           |
| $O2W^{i}-Mg1-O2W$     | 180.0          | O1W-Mg1-O3W <sup>i</sup> | 88.07 (8) |
| $O2W^{i}-Mg1-O1W$     | 88.72 (8)      | O2W - Mg1 - O3W          | 91.69 (8) |
| O2W-Mg1-O1W           | 91.28 (8)      | O1W - Mg1 - O3W          | 91.93 (8) |
| $O1W - Mg1 - O1W^{i}$ | 180.0          | $O3W^{i}-Mg1-O3W$        | 180.0     |
| $O2W - Mg1 - O3W^{i}$ | 88.31 (8)      |                          |           |

Symmetry code: (i)  $-x - \frac{1}{2}, -y + \frac{1}{2}, -z$ .

| Table 9       |          |     |    |     |       |
|---------------|----------|-----|----|-----|-------|
| Hydrogen-bond | geometry | (Å, | °) | for | (IV). |

| $D - H \cdot \cdot \cdot A$            | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N1-H1N\cdots O7W$                     | 0.84 (4) | 1.99 (5)                | 2.80 (2)     | 164 (4)                              |
| $N1-H1N\cdots O8W$                     | 0.84 (4) | 2.00 (6)                | 2.83 (4)     | 170 (4)                              |
| $N3-H2N\cdots O5W^{ii}$                | 0.87 (4) | 2.02(4)                 | 2.881 (3)    | 174 (4)                              |
| N3-H3N···O6                            | 0.84 (5) | 2.03 (5)                | 2.700 (7)    | 137 (4)                              |
| $N3-H3N\cdots O6A$                     | 0.84 (5) | 2.10 (5)                | 2.763 (14)   | 136 (4)                              |
| $O1W - H1W \cdots O3$                  | 0.87(1)  | 1.92 (1)                | 2.769 (3)    | 167 (3)                              |
| $O1W - H2W \cdot \cdot \cdot O1^{iii}$ | 0.87(1)  | 1.84 (1)                | 2.714 (3)    | 177 (4)                              |
| $O2W - H3W \cdots O4W$                 | 0.87(1)  | 1.88 (1)                | 2.727 (3)    | 165 (3)                              |
| $O2W - H4W \cdot \cdot \cdot O2^{iv}$  | 0.87(1)  | 1.95 (1)                | 2.812 (3)    | 173 (4)                              |
| $O3W - H5W \cdots O4W^{v}$             | 0.87(1)  | 1.85 (1)                | 2.707 (3)    | 169 (4)                              |
| O3W−H6W···O6 <sup>vi</sup>             | 0.87(1)  | 2.04 (2)                | 2.897 (6)    | 169 (4)                              |
| O3W−H6W···O6A <sup>vi</sup>            | 0.87(1)  | 2.18 (2)                | 2.983 (11)   | 153 (3)                              |
| $O4W - H8W \cdots O5W$                 | 0.87(1)  | 1.95 (2)                | 2.803 (3)    | 166 (4)                              |
| $O4W - H7W \cdot \cdot \cdot O6W$      | 0.87(1)  | 1.86(1)                 | 2.706 (3)    | 162 (3)                              |
| $O5W-H10W \cdot \cdot \cdot O2^{i}$    | 0.87(1)  | 2.16 (3)                | 2.829 (3)    | 133 (3)                              |
| O5W−H9W···O3 <sup>vii</sup>            | 0.87(1)  | 1.99(1)                 | 2.820 (3)    | 160 (3)                              |
| $O5W-H10W \cdot \cdot \cdot O3^{viii}$ | 0.87(1)  | 2.52 (3)                | 3.251 (3)    | 141 (3)                              |
| $O6W-H11W \cdot \cdot \cdot O4^{vi}$   | 0.87(1)  | 2.18 (2)                | 3.028 (13)   | 167 (4)                              |
| $O6W-H11W \cdot \cdot \cdot O4A^{vi}$  | 0.87(1)  | 1.94 (3)                | 2.81 (2)     | 174 (4)                              |
| $O6W-H12W\cdots O5^{ix}$               | 0.87(1)  | 2.02 (2)                | 2.878 (8)    | 170 (5)                              |
| $O6W-H12W\cdots O5A^{ix}$              | 0.87(1)  | 2.43 (2)                | 3.276 (14)   | 163 (4)                              |
| $O6W-H12W\cdots O6A^{ix}$              | 0.87(1)  | 2.52 (3)                | 3.220 (17)   | 139 (4)                              |
| $O7W-H13W \cdot \cdot \cdot O5^{x}$    | 0.89(1)  | 2.35 (6)                | 2.89 (2)     | 119 (5)                              |
| $O7W-H14W \cdot \cdot \cdot O6W^{ii}$  | 0.88(1)  | 2.52 (3)                | 3.354 (18)   | 159 (5)                              |
| $O7W-H14W\cdots O4^{xi}$               | 0.88(1)  | 2.35 (5)                | 2.92 (2)     | 123 (4)                              |
| $O8W-H16W\cdots O5A^{x}$               | 0.89     | 2.01                    | 2.87 (4)     | 163                                  |
| $O8W-H15W\cdots O4A^{xi}$              | 0.88     | 2.18                    | 2.81 (4)     | 128                                  |

Symmetry codes: (i)  $-x - \frac{1}{2}, -y + \frac{1}{2}, -z;$  (ii)  $x + \frac{1}{2}, y - \frac{1}{2}, z;$  (iii)  $-x - \frac{1}{2}, y - \frac{1}{2}, -z - \frac{1}{2};$  (iv)  $-x - \frac{1}{2}, y + \frac{1}{2}, -z - \frac{1}{2};$  (v) x, y - 1, z; (vi)  $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$  (vii)  $-x - \frac{1}{2}, -y + \frac{3}{2}, -z;$  (viii)  $x, -y + 1, z + \frac{1}{2};$  (ix)  $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2};$  (x)  $x, -y + 1, z - \frac{1}{2};$  (xi)  $x, -y, z - \frac{1}{2}.$ 









and propagate parallel to the crystallographic c direction. Each chain is asymmetric, with the L2 anions on one side and the water ligands on the other (Fig. 7). This structure is thus unlike those of the monosulfonated azo Na salts as, despite having an extra potential metal-bonding group in the form of the second SO<sub>3</sub> substituent, it does not form a higher-dimensional coordination polymer. A further difference is highlighted by Fig. 8, which shows that (III) is not a simple alternating layer structure. Note the hydrate channels running parallel to c. A reason for this may be that the simple alternate layering seen elsewhere is a function of the azo anions' approximation to linear spacers, with hydrophilic head and tail groups separated by a hydrophobic central region (Kennedy et al., 2009). As L2 is protonated on the azo group, this introduces a hydrophilic group and strong hydrogen-bond donor to the centre of the azo anion. It may be that the need to provide a hydrogen-bond acceptor to this formally charged N-H group is what breaks the otherwise common simple layering





The asymmetric unit of (IV) expanded to show the coordination shell about Mg1. The minor-disorder components of the sulfonate groups of S2 and the O7W water molecule are not shown. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.

Table 10 Selected geometric parameters (Å,  $^\circ)$  for (V).

| Ba1-O2W                               | 2.704 (4)   | Ba1-O3W                                  | 2.911 (4)   |
|---------------------------------------|-------------|------------------------------------------|-------------|
| Ba1 - O1W                             | 2.747 (4)   | Ba1-O3W <sup>iii</sup>                   | 3.105 (4)   |
| Ba1-O4 <sup>i</sup>                   | 2.753 (4)   | N1-N2                                    | 1.277 (6)   |
| Ba1-O1                                | 2.759 (4)   | N1-C4                                    | 1.426 (6)   |
| Ba1-O5 <sup>ii</sup>                  | 2.788 (4)   | N2-C7                                    | 1.393 (6)   |
| Ba1-O4W                               | 2.819 (4)   | N3-C10                                   | 1.354 (7)   |
| O2W-Ba1-O1W                           | 72.69 (14)  | O1-Ba1-O3W                               | 85.63 (11)  |
| O2W-Ba1-O4 <sup>i</sup>               | 68.74 (12)  | O5 <sup>ii</sup> –Ba1–O3W                | 87.04 (11)  |
| O1W-Ba1-O4 <sup>i</sup>               | 83.39 (12)  | O4W-Ba1-O3W                              | 76.65 (11)  |
| O2W-Ba1-O1                            | 73.66 (13)  | O2W-Ba1-O3W <sup>iii</sup>               | 124.26 (12) |
| O1W-Ba1-O1                            | 146.32 (12) | $O1W-Ba1-O3W^{iii}$                      | 126.70 (12) |
| O4 <sup>i</sup> -Ba1-O1               | 85.75 (11)  | O4 <sup>i</sup> -Ba1-O3W <sup>iii</sup>  | 64.01 (10)  |
| O2W-Ba1-O5 <sup>ii</sup>              | 63.22 (12)  | O1-Ba1-O3W <sup>iii</sup>                | 75.02 (10)  |
| O1W-Ba1-O5 <sup>ii</sup>              | 85.47 (12)  | O5 <sup>ii</sup> -Ba1-O3W <sup>iii</sup> | 147.67 (10) |
| O4 <sup>i</sup> -Ba1-O5 <sup>ii</sup> | 131.85 (10) | O4W-Ba1-O3W <sup>iii</sup>               | 60.15 (10)  |
| O1-Ba1-O5 <sup>ii</sup>               | 78.35 (11)  | O3W-Ba1-O3W <sup>iii</sup>               | 73.06 (5)   |
| O2W-Ba1-O4W                           | 136.43 (13) | O2W-Ba1-O4W <sup>iv</sup>                | 115.49 (11) |
| O1W-Ba1-O4W                           | 74.19 (12)  | $O1W-Ba1-O4W^{iv}$                       | 67.73 (11)  |
| $O4^{i}$ -Ba1-O4W                     | 80.10 (11)  | O4 <sup>i</sup> -Ba1-O4W <sup>iv</sup>   | 146.32 (10) |
| O1-Ba1-O4W                            | 134.80 (11) | $O1-Ba1-O4W^{iv}$                        | 127.91 (11) |
| O5 <sup>ii</sup> -Ba1-O4W             | 140.16 (11) | $O5^{ii}$ -Ba1-O4 $W^{iv}$               | 64.82 (10)  |
| O2W-Ba1-O3W                           | 146.29 (13) | $O4W-Ba1-O4W^{iv}$                       | 75.76 (7)   |
| O1W-Ba1-O3W                           | 123.10 (12) | $O3W-Ba1-O4W^{iv}$                       | 58.23 (10)  |
| O4 <sup>i</sup> -Ba1-O3W              | 136.99 (11) | $O3W^{iii}$ -Ba1-O4 $W^{iv}$             | 120.18 (10) |
|                                       |             |                                          |             |

Symmetry codes: (i)  $-x + \frac{1}{2}, y - \frac{1}{2}, z$ ; (ii)  $-x + \frac{3}{2}, y - \frac{1}{2}, z$ ; (iii)  $x - \frac{1}{2}, y, -z + \frac{1}{2}$ ; (iv)  $x + \frac{1}{2}, y, -z + \frac{1}{2}$ ; (iv)

motif (Table 7). In this respect, the packing of (III) is more similar to the packing of free acid sulfonated azo structures than it is to the packing of equivalent salt forms (Kennedy *et al.*, 2020).

All known Mg salt forms of sulfonated azo dyes and pigments are solvent-separated ion pairs, with no direct bond between Mg and SO<sub>3</sub> (Kennedy *et al.*, 2006, 2009, 2012). As is shown in Fig. 9, the structure of (IV) is also of this type. Its asymmetric unit contains an L2 anion that is protonated at the azo N1 atom, half of an octahedral [Mg(OH<sub>2</sub>)]<sub>6</sub> dication (with Mg1 situated at a crystallographic inversion centre) and four noncoordinated water molecules (Table 8). One of the water molecules and the SO<sub>3</sub> group *ortho* to NH<sub>2</sub> are disordered. As shown in the packing diagram (Fig. 10), there are hydrophilic layers that extend parallel to the *bc* plane. The organic anions

lie between these but their azobenzene cores do not form continuous hydrophobic layers – instead water molecules are dispersed within these layers. Thus, rather than true two-dimensional layers, the hydrophobic azobenzene units form stacks parallel to the *b* direction surrounded by  $[Mg(OH_2)_6]^{2+}$  ions and water molecules. As with (III) above, the protonation of the azo unit at the centre of the anion appears to mitigate against the simple alternating layer structures seen elsewhere. In both (III) and (IV), the protonated azo group acts as a hydrogen-bond donor to water molecules (see Tables 7 and 9).

Fig. 11 shows the contents of the asymmetric unit of (V) extended to give the complete coordination geometry (Table 10). The asymmetric unit consists of an azo dianion, a Ba<sup>II</sup> cation with four coordinated water ligands and two nonbound water molecules. The Ba centre is nonacoordinated, with three bonds to O atoms of SO<sub>3</sub> groups and six bonds to water ligands. The Ba-O-Ba bridges all involve water O atoms. Both SO<sub>3</sub> groups interact with the Ba atom, with the group *ortho* to the azo group making two Ba-O bonds and the *para* SO<sub>3</sub> groups are generally unfavourable coordination sites compared to *para* SO<sub>3</sub> groups (Kennedy *et al.*, 2009). As with both *L*2 structures, here the amino group of *L*3 takes no part in coordination to the metal atom.

Complex (V) forms a two-dimensional coordination polymer. Ba-O-Ba bridges involving the water molecules extend the polymer parallel to the *a* direction, whilst parallel to the *b* direction, the polymer propagates through the coordination of the two SO<sub>3</sub> groups to give the large [Ba(OH<sub>2</sub>)<sub>4</sub>-Ba(L3)]<sub>2</sub> cyclic structures shown in Fig. 12. The overall packing (Fig. 13) shows a layered structure with hydrophobic and hydrophilic layers parallel to the *ab* plane. As with (III) and (IV), the amine group of (V) is essentially planar rather than pyramidal. However, it differs by acting as a hydrogenbond donor to only SO<sub>3</sub> groups (Table 11), whilst the amine groups of (III) and (IV) donate hydrogen bonds to both SO<sub>3</sub> and water groups. None of the amine groups act as hydrogen-



#### Figure 10

Packing diagram of (IV), viewed down the b axis. H atoms have been omitted for clarity. Note the solvent water molecules lying within the layers of azo dianions that lie parallel to the bc plane.





The asymmetric unit of (V) expanded to show the coordination shell about Ba1 and all dative bonds originating from the modelled dianion. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.

### research papers



Figure 12

Part of the two-dimensional coordination polymer of (V), viewed down the *a* axis, showing the coordination polymer extending by  $SO_3$ coordination parallel to the *b* direction.

bond acceptors. Azo atom N1 of (V) does act as a hydrogenbond acceptor from water, as do both azo N atoms of (I), but this is not the case for any of the other azo N atoms, see hydrogen-bond tables for details.

The literature on the Ba salt forms of monosulfonated azo dyes predicts structures with no bridging water ligands and with discrete coordination complexes or simple one-dimensional coordination polymers (Kennedy *et al.*, 2004, 2009). Neither prediction is true for disulfonate (V).

For L2, with its protonated azo group, the N=N bond lengths of (III) and (IV) are 1.294(3) and 1.294(4) Å, respectively. The N2-C7 bond lengths are also equivalent at

| Table 11      |          |     |      |    |      |
|---------------|----------|-----|------|----|------|
| Hydrogen-bond | geometry | (Å, | °) f | or | (V). |

| $D - H \cdot \cdot \cdot A$              | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------------------------------|----------|-------------------------|--------------|------------------|
| $N3-H1N\cdots O2^{v}$                    | 0.88(1)  | 2.27 (2)                | 3.144 (6)    | 172 (6)          |
| $N3-H2N\cdots O6^{vi}$                   | 0.88(1)  | 2.28 (5)                | 2.984 (6)    | 138 (6)          |
| $O1W-H1W \cdot \cdot \cdot O2^{i}$       | 0.87(1)  | 2.21(3)                 | 2.987 (5)    | 148 (5)          |
| $O1W - H2W \cdot \cdot \cdot O6W^{vii}$  | 0.87(1)  | 1.92 (2)                | 2.766 (6)    | 161 (6)          |
| $O2W-H3W\cdots O6^{i}$                   | 0.88(1)  | 2.03 (3)                | 2.772 (6)    | 141 (5)          |
| $O2W - H4W \cdot \cdot \cdot N1^{ii}$    | 0.88(1)  | 2.10(2)                 | 2.948 (6)    | 162 (5)          |
| $O3W - H5W \cdot \cdot \cdot O5W^{viii}$ | 0.88(1)  | 2.04 (3)                | 2.805 (5)    | 145 (4)          |
| $O3W - H6W \cdot \cdot \cdot O5W^{iv}$   | 0.88(1)  | 1.97 (1)                | 2.833 (6)    | 168 (5)          |
| $O4W - H7W \cdot \cdot \cdot O4^{vii}$   | 0.88(1)  | 2.06(2)                 | 2.901 (5)    | 160 (4)          |
| $O4W - H8W \cdot \cdot \cdot O6W^{i}$    | 0.88(1)  | 1.87 (2)                | 2.741 (5)    | 171 (5)          |
| $O5W - H9W \cdot \cdot \cdot O2$         | 0.88(1)  | 1.97 (3)                | 2.805 (5)    | 158 (6)          |
| $O5W-H10WO5^{i}$                         | 0.88(1)  | 2.17 (3)                | 2.917 (5)    | 143 (5)          |
| $O6W-H11W\cdots O3$                      | 0.88(1)  | 1.88 (2)                | 2.737 (5)    | 166 (6)          |
| $O6W-H12W\cdots O3^{iii}$                | 0.88 (1) | 1.93 (1)                | 2.800 (6)    | 174 (5)          |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ , z; (ii)  $-x + \frac{3}{2}$ ,  $y - \frac{1}{2}$ , z; (iii)  $x - \frac{1}{2}$ , y,  $-z + \frac{1}{2}$ ; (iv)  $x + \frac{1}{2}$ , y,  $-z + \frac{1}{2}$ ; (v) -x + 1, -y + 1, -z; (vi)  $x + \frac{1}{2}$ ,  $-y + \frac{3}{2}$ , -z; (vii) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (viii) x + 1, y, z.

1.341 (3) and 1.342 (4) Å. These values are as expected for a protonated azo unit bound to an aniline fragment and, despite being for an anionic ligand, are close matches to those found for the overall neutral but zwitterionic free acid forms of those monosulfonated azo dyes which also feature protonated azo groups (Kennedy *et al.*, 2020). At 1.256 (3) and 1.432 (2) Å, the N=N and N2-C7 bond lengths of *L*1 in (II) are clearly much shorter and longer, respectively, than their equivalents in *L*2. They fit well with the ranges found for the 4,4' isomer and with those found for monosulfonated azo species with no strong electron-donating ring substituents (Soegiarto *et al.*, 2009, 2010, 2011; Kennedy *et al.*, 2001, 2020). The N=N bond in (I) is 1.262 (4) Å and is thus outside the ranges of the literature



Figure 13 Packing diagram of (V), viewed down the *a* axis. H atoms have been omitted for clarity.

- Black, D. T., Kennedy, A. R. & Lobato, K. M. (2019). Acta Cryst. C75, 633–642.
- Bruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279–286.
- Christie, R. M. & Mackay, J. L. (2008). Coloration Technol. 124, 133-144.
- Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Galbraith, H. W., Degering, E. F. & Hitch, E. F. (1951). J. Am. Chem. Soc. 73, 1323–1324.
- Greenwood, D., Hutchings, M. G. & Lamble, B. (1986). J. Chem. Soc. Perkin Trans. II, pp. 1107–1114.
- Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539-3544.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Hunger, K., Gregory, P., Meiderer, P., Berneth, H., Heid, C. & Mennicke, W. (2003). *Important Chemical Chromophores of Dye Classes*, in *Industrial Dyes: Chemistry, Properties, Applications*, edited by K. Hunge. Weinheim: Wiley-VCH.
- Ivashevskaya, S. N., van de Streek, J., Djanhan, J. E., Brüning, J., Alig, E., Bolte, M., Schmidt, M. U., Blaschka, P., Höffken, H. W. & Erk, P. (2009). Acta Cryst. B65, 212–222.
- Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). *Chem. Eur. J.* 15, 9494–9504.
- Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). *Crystals*, **10**, article No. 662.
- Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, E. W. (2001). J. Chem. Soc. Dalton Trans. pp. 2199–2205.
- Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). *Chem. Eur. J.* **10**, 4606–4615.
- Kennedy, A. R., Kirkhouse, J. B. A. & Whyte, L. (2006). *Inorg. Chem.* 45, 2965–2971.
- Kennedy, A. R., McNair, C., Smith, W. E., Chisholm, G. & Teat, S. J. (2000). Angew. Chem. Int. Ed. 39, 638–640.
- Kennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064–3069.
- Lü, J., Gao, S.-Y., Lin, J.-X., Shi, L.-X., Cao, R. & Batten, S. R. (2009). Dalton Trans. pp. 1944–1953.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Miyano, T., Sakai, T., Hisaki, I., Ichida, H., Kanematsu, Y. & Tohnai, N. (2016). *Chem. Commun.* 52, 13710–13713.
- Ojala, W. H., Lu, L. K., Albers, K. E., Gleason, W. B., Richardson, T. I., Lovrien, R. E. & Sudbeck, E. A. (1994). Acta Cryst. B50, 684–694.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Schmidt, M. U., van de Streek, J. & Ivashevskaya, S. N. (2009). Chem. Eur. J. 15, 338–341.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Soegiarto, A. C., Comotti, A. & Ward, M. D. (2010). J. Am. Chem. Soc. 132, 14603–14616.
- Soegiarto, A. C. & Ward, M. D. (2009). Cryst. Growth Des. 9, 3803– 3815.
- Soegiarto, A. C., Yan, W., Kent, A. D. & Ward, M. D. (2011). J. Mater. Chem. 21, 2204–2219.
- Tapmeyer, L., Hill, S., Bolte, M. & Hützler, W. M. (2020). *Acta Cryst.* C76, 716–722.

significant. For (V), the N=N and N2-C7 bond lengths of L3 are intermediate between the lengths reported for L1 and L2 above at 1.277 (6) and 1.393 (6) Å. Such distortions from the expected geometry of azobenzene (Harada & Ogawa, 2004) can be explained by the resonance electron-donating ability of the NH<sub>2</sub> group para to the azo group (Kennedy et al., 2020). The values found for dianion L3 are, however, slightly more distorted from the azobenzene base than has been found for metal complexes of related monoanions, such as 4-aminoazobenzene-4'-sulfonate (Kennedy et al., 2004; Lu et al., 2009). A final point about the geometries of the azo species herein is that in (I)-(IV), the azo moiety is essentially planar [range of dihedral angles between ring planes = 0.00 (6)-14.13 (6)°]. In comparison, the dianion of (V) is distinctly twisted [dihedral angle between the ring planes =  $34.0(2)^{\circ}$ ] and stepped [e.g. atom N2 lies 0.905 (9) Å out of the plane defined by atoms C1-C6].

structures above; however, the difference is not statistically

#### 4. Conclusion

Compounds (I) and (II) both contain the simple disulfonate L1 and both have structures that fit with the structural types seen for equivalent monosulfonate salt species - they give the expected dimensionality coordination polymers in which the bonding roles of water ligands are predictable and their packing structures have the expected alternating layer motifs (Kennedy et al., 2004). However, the other three structures presented herein do not have the same structural features as their monosulfonate cognates. Structures (III) and (IV) both contain the monoanion L2. Neither adopts the expected simple alternating layer structure and Na salt (III) is a onedimensional coordination polymer rather than the expected two- or three-dimensional coordination polymer. The strong hydrogen-bonding N-H group at the centre of L2 is a feature not seen in other salt structures. This difference gives a rational explanation for the difference in packing behaviour. Finally, the Ba salt of L3, i.e. (V), does give the expected layered packing, but has metal-centre-bridging water ligands and an unexpected two-dimensional rather than a onedimensional coordination polymer structure. The extra dimensionality of the coordination polymer may simply be related to the extra  $SO_3$  group in L3 compared to literature structures, but it is less clear why the coordination role of the water ligands should also change.

#### Acknowledgements

The authors thank the UK National Crystallography Service (University of Southampton) for the data collection on (V) and Mrs Margaret Adams (University of Strathclyde) for microanalysis. The CCLRC is thanked for providing a beamtime award at Daresbury SRS and Dystar UK are thanked for providing L3 as the free acid form.

#### References

Aiken, S., Gabbutt, C. D., Gillie, L. J., Heywood, J. D., Jacquemin, D., Rice, C. R. & Heron, B. M. (2013). Eur. J. Org. Chem. 2013, 8097–8107.

Acta Cryst. (2020). C76, 972-981 [https://doi.org/10.1107/S2053229620012735]

### Structures of five salt forms of disulfonated monoazo dyes

### Heather C. Gardner, Alan R. Kennedy, Karen M. McCarney, Edward Staunton, Heather Stewart and Simon J. Teat

#### **Computing details**

Data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998) for (I), (II), (V); *SAINT* (Bruker, 2012) for (III); *CrysAlis PRO* (Rigaku OD, 2019) for (IV). Cell refinement: *DENZO* (Otwinowski & Minor, 1997) for (I), (II), (V); *SAINT* (Bruker, 2012) for (III); *CrysAlis PRO* (Rigaku OD, 2019) for (IV). Data reduction: *DENZO* (Otwinowski & Minor, 1997) for (I), (II), (V); *SAINT* (Bruker, 2012) for (III); *CrysAlis PRO* (Rigaku OD, 2019) for (IV). Data reduction: *DENZO* (Otwinowski & Minor, 1997) for (I), (II), (V); *SAINT* (Bruker, 2012) for (III); *CrysAlis PRO* (Rigaku OD, 2019) for (IV).
Program(s) used to solve structure: *SHELXS* (Sheldrick, 2015) for (I), (III); *SIR92* (Altomare *et al.*, 1994) for (II), (IV), (V). For all structures, program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015) and *WinGX* (Farrugia, 2012); molecular graphics: *Mercury* (Macrae *et al.*, 2020) and *ORTEP-3* (Farrugia, 2012). Software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015) for (I), (II), (IV), (V).

 $Poly[di-\mu-aqua-diaqua[\mu_4-3,3'-(diazane-1,2-diyl)bis(benzenesulfonato)]disodium(I)] (I)$ 

Crystal data [Na<sub>2</sub>(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub>)(H<sub>2</sub>O)<sub>4</sub>]  $M_r = 458.37$ Monoclinic, C2/c a = 21.2141 (9) Å b = 5.5370 (3) Å c = 15.3045 (8) Å  $\beta = 90.310$  (2)° V = 1797.68 (16) Å<sup>3</sup> Z = 4

#### Data collection

Nonius KappaCCD diffractometer Radiation source: sealed tube ω and phi scans 3500 measured reflections 1865 independent reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.038$  $wR(F^2) = 0.090$ S = 1.041865 reflections F(000) = 944  $D_x = 1.694 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2025 reflections  $\theta = 1.0-26.4^{\circ}$   $\mu = 0.40 \text{ mm}^{-1}$  T = 130 KPlate, yellow  $0.50 \times 0.32 \times 0.08 \text{ mm}$ 

1414 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.035$   $\theta_{max} = 26.6^{\circ}, \ \theta_{min} = 1.9^{\circ}$   $h = 0 \rightarrow 26$   $k = -6 \rightarrow 6$  $l = -19 \rightarrow 19$ 

145 parameters6 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0342P)^2 + 3.0179P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} < 0.001$   $\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|--------------|--------------|--------------|-----------------------------|--|
| <b>S</b> 1 | 0.09144 (3)  | 0.74864 (11) | 0.31076 (4)  | 0.01712 (16)                |  |
| Nal        | 0.0000       | 0.2759 (2)   | 0.2500       | 0.0219 (3)                  |  |
| Na2        | 0.0000       | 0.5000       | 0.5000       | 0.0195 (3)                  |  |
| 01         | 0.08204 (8)  | 0.5777 (3)   | 0.23944 (11) | 0.0253 (4)                  |  |
| O2         | 0.05412 (8)  | 0.6889 (4)   | 0.38656 (11) | 0.0351 (5)                  |  |
| 03         | 0.08455 (8)  | 0.9976 (3)   | 0.28351 (12) | 0.0293 (4)                  |  |
| O1W        | -0.01637 (9) | 0.1643 (3)   | 0.40666 (11) | 0.0237 (4)                  |  |
| O2W        | -0.08853 (8) | 0.7231 (3)   | 0.43599 (11) | 0.0256 (4)                  |  |
| N1         | 0.27167 (9)  | 0.3035 (3)   | 0.47962 (12) | 0.0186 (4)                  |  |
| C1         | 0.17132 (11) | 0.7150 (4)   | 0.34449 (14) | 0.0157 (5)                  |  |
| C2         | 0.18751 (11) | 0.5193 (4)   | 0.39621 (15) | 0.0180 (5)                  |  |
| H2         | 0.1567       | 0.4030       | 0.4121       | 0.022*                      |  |
| C3         | 0.24990 (11) | 0.4954 (4)   | 0.42461 (14) | 0.0182 (5)                  |  |
| C4         | 0.29542 (11) | 0.6610 (4)   | 0.39847 (15) | 0.0196 (5)                  |  |
| H4         | 0.3380       | 0.6416       | 0.4168       | 0.023*                      |  |
| C5         | 0.27865 (11) | 0.8541 (5)   | 0.34576 (15) | 0.0205 (5)                  |  |
| Н5         | 0.3098       | 0.9664       | 0.3275       | 0.025*                      |  |
| C6         | 0.21610(11)  | 0.8837 (4)   | 0.31940 (15) | 0.0182 (5)                  |  |
| H6         | 0.2042       | 1.0183       | 0.2845       | 0.022*                      |  |
| H1W        | 0.0172 (9)   | 0.076 (5)    | 0.399 (2)    | 0.066 (12)*                 |  |
| H2W        | -0.0447 (11) | 0.052 (5)    | 0.415 (2)    | 0.076 (13)*                 |  |
| H3W        | -0.0888 (13) | 0.676 (6)    | 0.3820 (9)   | 0.053 (11)*                 |  |
| H4W        | -0.1281 (6)  | 0.723 (6)    | 0.4498 (18)  | 0.053 (10)*                 |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$   | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|------------|-------------|-------------|
| S1  | 0.0161 (3)  | 0.0178 (3)  | 0.0175 (3)  | 0.0025 (3) | 0.0005 (2)  | 0.0031 (3)  |
| Na1 | 0.0230 (7)  | 0.0185 (7)  | 0.0242 (7)  | 0.000      | 0.0003 (5)  | 0.000       |
| Na2 | 0.0220 (7)  | 0.0179 (7)  | 0.0185 (7)  | 0.0000 (6) | 0.0002 (5)  | 0.0003 (6)  |
| 01  | 0.0213 (9)  | 0.0257 (10) | 0.0291 (10) | 0.0017 (8) | -0.0031 (7) | -0.0061 (8) |
| O2  | 0.0229 (10) | 0.0565 (14) | 0.0259 (10) | 0.0079 (9) | 0.0063 (8)  | 0.0157 (9)  |
| 03  | 0.0258 (10) | 0.0193 (9)  | 0.0425 (11) | 0.0045 (8) | -0.0077 (8) | 0.0058 (8)  |
| O1W | 0.0255 (10) | 0.0207 (9)  | 0.0250 (10) | 0.0017 (8) | 0.0000 (8)  | -0.0023 (8) |
| O2W | 0.0201 (10) | 0.0336 (11) | 0.0230 (10) | 0.0017 (8) | -0.0005 (7) | 0.0021 (9)  |
| N1  | 0.0194 (10) | 0.0184 (11) | 0.0181 (10) | 0.0028 (8) | -0.0014 (8) | -0.0002 (8) |

| C1 | 0.0161 (11) | 0.0174 (12) | 0.0135 (11) | 0.0023 (10)  | 0.0009 (9)  | -0.0020 (9)  |
|----|-------------|-------------|-------------|--------------|-------------|--------------|
| C2 | 0.0189 (13) | 0.0157 (12) | 0.0194 (12) | 0.0003 (10)  | 0.0022 (9)  | 0.0015 (10)  |
| C3 | 0.0225 (13) | 0.0166 (12) | 0.0155 (11) | 0.0024 (10)  | -0.0010 (9) | -0.0001 (10) |
| C4 | 0.0170 (12) | 0.0230 (13) | 0.0188 (12) | 0.0011 (10)  | -0.0013 (9) | -0.0031 (10) |
| C5 | 0.0215 (13) | 0.0201 (12) | 0.0200 (12) | -0.0053 (10) | 0.0015 (10) | -0.0012 (11) |
| C6 | 0.0245 (13) | 0.0152 (12) | 0.0149 (11) | 0.0003 (10)  | 0.0002 (9)  | 0.0006 (10)  |

Geometric parameters (Å, °)

| S1—O2                                    | 1.4464 (18) | Na2—O2W                                  | 2.4480 (17) |
|------------------------------------------|-------------|------------------------------------------|-------------|
| S1—O3                                    | 1.4474 (18) | Na2—Na1 <sup>iv</sup>                    | 4.0223 (4)  |
| S1—O1                                    | 1.4575 (18) | O3—Na1 <sup>v</sup>                      | 2.4174 (19) |
| S1—C1                                    | 1.779 (2)   | O1W—H1W                                  | 0.871 (10)  |
| S1—Na1                                   | 3.3852 (12) | O1W—H2W                                  | 0.872 (10)  |
| Na1—O3 <sup>i</sup>                      | 2.4174 (19) | O2W—H3W                                  | 0.867 (10)  |
| Na1—O3 <sup>ii</sup>                     | 2.4175 (19) | O2W—H4W                                  | 0.866 (10)  |
| Nal—O1                                   | 2.419 (2)   | N1—N1 <sup>vi</sup>                      | 1.262 (4)   |
| Na1—O1 <sup>iii</sup>                    | 2.419 (2)   | N1—C3                                    | 1.431 (3)   |
| Na1—O1W <sup>iii</sup>                   | 2.5019 (18) | C1—C2                                    | 1.384 (3)   |
| Nal—O1W                                  | 2.5019 (18) | C1—C6                                    | 1.388 (3)   |
| Na1—S1 <sup>iii</sup>                    | 3.3853 (12) | C2—C3                                    | 1.397 (3)   |
| Na1—Na2                                  | 4.0223 (5)  | С2—Н2                                    | 0.9500      |
| Na1—Na2 <sup>iii</sup>                   | 4.0223 (5)  | C3—C4                                    | 1.392 (3)   |
| Na1—H1W                                  | 2.56 (3)    | C4—C5                                    | 1.384 (3)   |
| Na2—O2 <sup>iv</sup>                     | 2.3340 (18) | C4—H4                                    | 0.9500      |
| Na2—O2                                   | 2.3340 (18) | C5—C6                                    | 1.395 (3)   |
| Na2—O1W                                  | 2.3688 (17) | С5—Н5                                    | 0.9500      |
| Na2—O1W <sup>iv</sup>                    | 2.3688 (17) | С6—Н6                                    | 0.9500      |
| Na2—O2W <sup>iv</sup>                    | 2.4480 (17) |                                          |             |
|                                          |             |                                          |             |
| O2—S1—O3                                 | 113.21 (12) | S1 <sup>iii</sup> —Na1—H1W               | 131.1 (4)   |
| O2—S1—O1                                 | 112.26 (12) | Na2—Na1—H1W                              | 44.4 (6)    |
| O3—S1—O1                                 | 112.92 (11) | Na2 <sup>iii</sup> —Na1—H1W              | 168.6 (3)   |
| O2—S1—C1                                 | 105.55 (10) | O2 <sup>iv</sup> —Na2—O2                 | 180.0       |
| O3—S1—C1                                 | 106.13 (11) | O2 <sup>iv</sup> —Na2—O1W                | 91.49 (7)   |
| O1—S1—C1                                 | 106.00 (10) | O2—Na2—O1W                               | 88.51 (7)   |
| O2—S1—Na1                                | 74.22 (9)   | $O2^{iv}$ —Na2—O1 $W^{iv}$               | 88.51 (7)   |
| O3—S1—Na1                                | 126.91 (8)  | O2—Na2—O1W <sup>iv</sup>                 | 91.49 (7)   |
| O1—S1—Na1                                | 38.41 (7)   | O1W—Na2—O1W <sup>iv</sup>                | 180.0       |
| C1—S1—Na1                                | 122.85 (8)  | $O2^{iv}$ —Na2—O2 $W^{iv}$               | 81.69 (6)   |
| O3 <sup>i</sup> —Na1—O3 <sup>ii</sup>    | 100.81 (10) | O2—Na2—O2W <sup>iv</sup>                 | 98.30 (6)   |
| O3 <sup>i</sup> —Na1—O1                  | 85.49 (6)   | O1W—Na2—O2W <sup>iv</sup>                | 87.42 (6)   |
| O3 <sup>ii</sup> —Na1—O1                 | 163.62 (6)  | O1W <sup>iv</sup> —Na2—O2W <sup>iv</sup> | 92.58 (6)   |
| O3 <sup>i</sup> —Na1—O1 <sup>iii</sup>   | 163.62 (6)  | O2 <sup>iv</sup> —Na2—O2W                | 98.31 (6)   |
| O3 <sup>ii</sup> —Na1—O1 <sup>iii</sup>  | 85.49 (6)   | O2—Na2—O2W                               | 81.70 (6)   |
| O1—Na1—O1 <sup>iii</sup>                 | 92.59 (9)   | O1W—Na2—O2W                              | 92.58 (6)   |
| O3 <sup>i</sup> —Na1—O1W <sup>iii</sup>  | 86.52 (7)   | O1W <sup>iv</sup> —Na2—O2W               | 87.42 (6)   |
| O3 <sup>ii</sup> —Na1—O1W <sup>iii</sup> | 75.28 (6)   | O2W <sup>iv</sup> —Na2—O2W               | 180.0       |

| O1—Na1—O1W <sup>iii</sup>                 | 90.17 (6)    | O2 <sup>iv</sup> —Na2—Na1                     | 124.88 (5)       |
|-------------------------------------------|--------------|-----------------------------------------------|------------------|
| O1 <sup>iii</sup> —Na1—O1W <sup>iii</sup> | 109.77 (6)   | O2—Na2—Na1                                    | 55.12 (5)        |
| O3 <sup>i</sup> —Na1—O1W                  | 75.28 (6)    | O1W—Na2—Na1                                   | 35.41 (5)        |
| O3 <sup>ii</sup> —Na1—O1W                 | 86.52 (7)    | O1W <sup>iv</sup> —Na2—Na1                    | 144.59 (5)       |
| O1—Na1—O1W                                | 109.77 (6)   | O2W <sup>iv</sup> —Na2—Na1                    | 102.77 (4)       |
| O1 <sup>iii</sup> —Na1—O1W                | 90.17 (6)    | O2W—Na2—Na1                                   | 77.23 (4)        |
| O1W <sup>iii</sup> —Na1—O1W               | 151.40 (10)  | O2 <sup>iv</sup> —Na2—Na1 <sup>iv</sup>       | 55.12 (5)        |
| O3 <sup>i</sup> —Na1—S1                   | 90.64 (4)    | O2—Na2—Na1 <sup>iv</sup>                      | 124.88 (5)       |
| O3 <sup>ii</sup> —Na1—S1                  | 167.03 (6)   | O1W—Na2—Na1 <sup>iv</sup>                     | 144.59 (5)       |
| 01—Na1—S1                                 | 21.98 (4)    | $01W^{iv}$ Na2 Na1 <sup>iv</sup>              | 35.41 (5)        |
| $01^{iii}$ Na1 S1                         | 81 88 (5)    | O2W <sup>iv</sup> —Na2—Na1 <sup>iv</sup>      | 77 23 (4)        |
| $01W^{iii}$ Na1 S1                        | 111 83 (5)   | $\Omega^2 W = Na^2 = Na^{1iv}$                | 102.77(4)        |
| 01W Na1-S1                                | 90 57 (5)    | $Na1$ — $Na2$ — $Na1^{iv}$                    | 180.0            |
| $O3^{i}$ Na1 S1                           | 167.03.(6)   | S1-01-Nal                                     | 119.61 (10)      |
| $03^{ii}$ Na1 S1                          | 90 64 (4)    | $S1 = 02 = Na^2$                              | 166 59 (14)      |
| 01 Na1 S1                                 | 81 88 (5)    | $S1 = O2 = Na1^{\vee}$                        | 137.88 (11)      |
| $O1^{iii}$ Na1 $S1^{iii}$                 | 21.08(3)     | $N_{2} = 0.1 W = N_{2} 1$                     | 111 31 (8)       |
| O1 - Na1 - S1                             | 21.98(4)     | $N_{a2} = 01W = H1W$                          | 111.31(0)        |
| $O1W$ No1 $S1^{iii}$                      | 50.58(5)     | Nal OlW HIW                                   | 114(2)<br>84(2)  |
| S1 No1 $S1$                               | 79.70(2)     | $N_{a2} = 01W = H2W$                          | 64(2)            |
| S1 Na1 Na2                                | 78.70(3)     | $N_{a2}$ $O1W$ $H2W$                          | 123(2)<br>114(3) |
| $O_{2ii}$ No1 No2                         | 09.92(4)     | $H_1W = 01W + 12W$                            | 114(3)           |
| $O_3 = Na_1 = Na_2$                       | 115.24(5)    | $M_{1} = 01 = 01 = 01 = 01 = 01 = 01 = 01 = $ | 101(2)<br>103(2) |
| O1—Na1—Na2<br>O1 <sup>iii</sup> Na1 Na2   | (4)          | Na2 = O2W = H4W                               | 103(2)           |
| Olwiii N. 1 N. 2                          | /3./1 (4)    | Na2 - O2 W - H4 W                             | 130(2)           |
| OlW_Nal_Na2                               | 1/1.28 (5)   | $H_3 W - O_2 W - H_4 W$                       | 103.3 (19)       |
| Olw—Nal—Na2                               | 33.27 (4)    | $NI^{*}$ $NI^{*}$ $C3$                        | 113.9 (2)        |
| S1—Na1—Na2                                | 60.206 (15)  | $C_2 = C_1 = C_0$                             | 121.1(2)         |
| SI <sup></sup> —NaI—Na2                   | 91.13 (2)    | $C_2 = C_1 = S_1$                             | 118./4 (18)      |
| O3 <sup>1</sup> —Na1—Na2 <sup>m</sup>     | 113.24 (5)   | C6-C1-S1                                      | 120.12 (17)      |
| $O3^{n}$ —Na1—Na2 <sup>m</sup>            | 89.92 (4)    | C1 - C2 - C3                                  | 118.9 (2)        |
| OI—NaI—Na2 <sup>III</sup>                 | 73.71 (4)    | C1—C2—H2                                      | 120.5            |
| Ol <sup>m</sup> —Nal—Na <sup>2m</sup>     | 81.61 (4)    | C3—C2—H2                                      | 120.5            |
| O1W <sup>m</sup> —Na1—Na2 <sup>m</sup>    | 33.27 (4)    | C4—C3—C2                                      | 120.4 (2)        |
| O1W—Na1—Na2 <sup>in</sup>                 | 171.28 (5)   | C4—C3—N1                                      | 115.9 (2)        |
| S1—Na1—Na2 <sup>m</sup>                   | 91.13 (2)    | C2—C3—N1                                      | 123.7 (2)        |
| S1 <sup>m</sup> —Na1—Na2 <sup>m</sup>     | 60.207 (15)  | C5—C4—C3                                      | 120.0 (2)        |
| Na2—Na1—Na2 <sup>m</sup>                  | 144.06 (4)   | C5—C4—H4                                      | 120.0            |
| O3 <sup>i</sup> —Na1—H1W                  | 55.5 (3)     | C3—C4—H4                                      | 120.0            |
| O3 <sup>ii</sup> —Na1—H1W                 | 90.9 (7)     | C4—C5—C6                                      | 120.0 (2)        |
| O1—Na1—H1W                                | 105.0 (7)    | C4—C5—H5                                      | 120.0            |
| O1 <sup>iii</sup> —Na1—H1W                | 109.8 (3)    | С6—С5—Н5                                      | 120.0            |
| O1W <sup>iii</sup> —Na1—H1W               | 136.7 (5)    | C1—C6—C5                                      | 119.5 (2)        |
| O1W—Na1—H1W                               | 19.8 (3)     | C1—C6—H6                                      | 120.2            |
| S1—Na1—H1W                                | 90.6 (7)     | С5—С6—Н6                                      | 120.2            |
| O2—S1—O1—Na1                              | 8.38 (15)    | O3—S1—C1—C6                                   | -17.6 (2)        |
| O3—S1—O1—Na1                              | -121.08 (12) | O1—S1—C1—C6                                   | 102.7 (2)        |
| C1—S1—O1—Na1                              | 123.13 (11)  | Na1—S1—C1—C6                                  | 140.94 (16)      |

| 00 01 00 NL 0              |              |                                | 1.0.(2)      |
|----------------------------|--------------|--------------------------------|--------------|
| 03—S1—O2—Na2               | 167.7 (5)    | C6-C1-C2-C3                    | 1.2 (3)      |
| O1—S1—O2—Na2               | 38.4 (5)     | S1—C1—C2—C3                    | -178.45 (17) |
| C1—S1—O2—Na2               | -76.6 (5)    | C1—C2—C3—C4                    | -2.4 (3)     |
| Na1—S1—O2—Na2              | 43.8 (5)     | C1—C2—C3—N1                    | 178.7 (2)    |
| O2—S1—O3—Na1 <sup>v</sup>  | -51.3 (2)    | $N1^{vi}$ — $N1$ — $C3$ — $C4$ | 162.2 (2)    |
| O1—S1—O3—Na1 <sup>v</sup>  | 77.64 (18)   | N1 <sup>vi</sup> —N1—C3—C2     | -18.9 (4)    |
| C1—S1—O3—Na1 <sup>v</sup>  | -166.65 (15) | C2—C3—C4—C5                    | 1.6 (3)      |
| Na1—S1—O3—Na1 <sup>v</sup> | 35.9 (2)     | N1—C3—C4—C5                    | -179.4 (2)   |
| O2—S1—C1—C2                | 41.6 (2)     | C3—C4—C5—C6                    | 0.5 (3)      |
| O3—S1—C1—C2                | 162.04 (18)  | C2-C1-C6-C5                    | 0.8 (3)      |
| O1—S1—C1—C2                | -77.7 (2)    | S1—C1—C6—C5                    | -179.51 (18) |
| Na1—S1—C1—C2               | -39.4 (2)    | C4—C5—C6—C1                    | -1.7 (3)     |
| O2—S1—C1—C6                | -138.1 (2)   |                                |              |
|                            |              |                                |              |

Symmetry codes: (i) x, y-1, z; (ii) -x, y-1, -z+1/2; (iii) -x, y, -z+1/2; (iv) -x, -y+1, -z+1; (v) x, y+1, z; (vi) -x+1/2, -y+1/2, -z+1.

#### Hydrogen-bond geometry (Å, °)

| D—H···A                                        | D—H      | H···A    | D····A    | D—H···A |
|------------------------------------------------|----------|----------|-----------|---------|
| $O1W$ —H2 $W$ ···O2 $W^{i}$                    | 0.87(1)  | 2.07 (2) | 2.919 (3) | 163 (3) |
| $O1W$ — $H1W$ ··· $O2^{i}$                     | 0.87(1)  | 2.29 (2) | 3.044 (3) | 145 (3) |
| O1 <i>W</i> —H1 <i>W</i> ····O3 <sup>i</sup>   | 0.87(1)  | 2.32 (3) | 3.005 (3) | 136 (3) |
| O2 <i>W</i> —H3 <i>W</i> ····O1 <sup>iii</sup> | 0.87(1)  | 1.94 (1) | 2.807 (2) | 175 (3) |
| O2 <i>W</i> —H4 <i>W</i> ····N1 <sup>vii</sup> | 0.87 (1) | 2.22 (1) | 3.076 (3) | 168 (3) |
|                                                |          |          |           |         |

Symmetry codes: (i) *x*, *y*–1, *z*; (iii) –*x*, *y*, –*z*+1/2; (vii) *x*–1/2, *y*+1/2, *z*.

catena-Poly[[tetraaquacalcium(II)]-µ-3,3'-(diazane-1,2-diyl)bis(benzenesulfonato)] (II)

#### Crystal data

| $\begin{bmatrix} Ca(C_{12}H_8N_2O_6S_2)(H_2O)_4 \end{bmatrix}$<br>$M_r = 452.47$<br>Triclinic, $PI$<br>a = 6.3875 (2) Å<br>b = 6.7470 (2) Å<br>c = 11.3030 (5) Å<br>a = 94.289 (2)°<br>$\beta = 103.160$ (2)°<br>$\gamma = 108.456$ (2)°<br>V = 444.21 (3) Å <sup>3</sup> | Z = 1<br>F(000) = 234<br>$D_x = 1.691 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 1934 reflections<br>$\theta = 1.0-27.5^{\circ}$<br>$\mu = 0.65 \text{ mm}^{-1}$<br>T = 123  K<br>Plate, yellow-orange<br>$0.50 \times 0.25 \times 0.05 \text{ mm}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Nonius Kappa CCD<br/>diffractometer</li> <li>Radiation source: sealed tube<br/>phi and ω scans</li> <li>3837 measured reflections</li> <li>2038 independent reflections</li> </ul>                                                                               | 1775 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.020$<br>$\theta_{max} = 27.6^\circ, \ \theta_{min} = 1.9^\circ$<br>$h = -8 \rightarrow 8$<br>$k = -8 \rightarrow 8$<br>$l = -14 \rightarrow 14$                                                                                                     |
| Refinement                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                            |
| Refinement on $F^2$<br>Least-squares matrix: full                                                                                                                                                                                                                         | $R[F^2 > 2\sigma(F^2)] = 0.027$<br>wR(F <sup>2</sup> ) = 0.070                                                                                                                                                                                                                                             |

| S = 1.05                      | H atoms treated by a mixture of independent                                                                                                        |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2038 reflections              | and constrained refinement                                                                                                                         |
| 140 parameters                | $w = 1/[\sigma^2(F_0^2) + (0.0253P)^2 + 0.2861P]$                                                                                                  |
| 6 restraints                  | where $P = (F_0^2 + 2F_c^2)/3$                                                                                                                     |
| Hydrogen site location: mixed | $(\Delta/\sigma)_{max} < 0.001$<br>$\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$<br>$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|---------------|-----------------------------|--|
| Cal | 0.5000       | 0.5000       | 0.5000        | 0.01202 (12)                |  |
| S1  | 0.81011 (6)  | 0.85257 (6)  | 0.30913 (3)   | 0.01227 (11)                |  |
| 01  | 0.82484 (19) | 1.06481 (17) | 0.35704 (11)  | 0.0180 (3)                  |  |
| 02  | 1.03284 (18) | 0.83889 (18) | 0.30803 (10)  | 0.0167 (2)                  |  |
| 03  | 0.6843 (2)   | 0.69091 (18) | 0.37004 (11)  | 0.0202 (3)                  |  |
| O1W | 0.8574 (2)   | 0.5188 (2)   | 0.61733 (12)  | 0.0230 (3)                  |  |
| O2W | 0.5467 (2)   | 0.82518 (18) | 0.61047 (12)  | 0.0229 (3)                  |  |
| N1  | 0.0426 (2)   | 0.5479 (2)   | -0.03915 (13) | 0.0170 (3)                  |  |
| C1  | 0.6455 (3)   | 0.7956 (2)   | 0.15386 (14)  | 0.0125 (3)                  |  |
| C2  | 0.4105 (3)   | 0.6926 (2)   | 0.12544 (15)  | 0.0143 (3)                  |  |
| H2  | 0.3369       | 0.6498       | 0.1881        | 0.017*                      |  |
| C3  | 0.2852 (3)   | 0.6534 (2)   | 0.00261 (15)  | 0.0147 (3)                  |  |
| C4  | 0.3926 (3)   | 0.7176 (2)   | -0.08881 (15) | 0.0165 (3)                  |  |
| H4  | 0.3047       | 0.6926       | -0.1719       | 0.020*                      |  |
| C5  | 0.6283 (3)   | 0.8181 (3)   | -0.05911 (15) | 0.0173 (3)                  |  |
| Н5  | 0.7019       | 0.8592       | -0.1220       | 0.021*                      |  |
| C6  | 0.7562 (3)   | 0.8584 (2)   | 0.06276 (15)  | 0.0157 (3)                  |  |
| H6  | 0.9173       | 0.9280       | 0.0839        | 0.019*                      |  |
| H1W | 0.922 (4)    | 0.429 (3)    | 0.644 (2)     | 0.045 (7)*                  |  |
| H2W | 0.973 (3)    | 0.635 (2)    | 0.630 (2)     | 0.057 (8)*                  |  |
| H3W | 0.671 (2)    | 0.933 (3)    | 0.632 (2)     | 0.048 (7)*                  |  |
| H4W | 0.442 (3)    | 0.877 (3)    | 0.618 (2)     | 0.040 (7)*                  |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Cal | 0.0106 (2)   | 0.0102 (2)   | 0.0134 (2)   | 0.00197 (16) | 0.00191 (16) | 0.00172 (16) |
| S1  | 0.00967 (19) | 0.01111 (19) | 0.01310 (19) | 0.00092 (14) | 0.00129 (14) | 0.00152 (14) |
| 01  | 0.0153 (6)   | 0.0142 (6)   | 0.0206 (6)   | 0.0038 (4)   | 0.0011 (5)   | -0.0032 (5)  |
| 02  | 0.0114 (5)   | 0.0185 (6)   | 0.0182 (6)   | 0.0048 (4)   | 0.0008 (4)   | 0.0020 (5)   |
| 03  | 0.0173 (6)   | 0.0215 (6)   | 0.0152 (6)   | -0.0019 (5)  | 0.0021 (5)   | 0.0072 (5)   |
| O1W | 0.0130 (6)   | 0.0183 (6)   | 0.0330 (7)   | 0.0039 (5)   | -0.0018 (5)  | 0.0069 (5)   |

| O2W            | 0.0156 (6)                             | 0.0147 (6)                                           | 0.0348 (7)                             | 0.0022 (5)                             | 0.0067 (5)                                                                                    | -0.0055 (5)                            |  |
|----------------|----------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|--|
| N1             | 0.0120 (7)                             | 0.0160 (7)                                           | 0.0189 (7)                             | 0.0020 (5)                             | 0.0006 (5)                                                                                    | 0.0007 (5)                             |  |
| C1             | 0.0123 (7)                             | 0.0093 (7)                                           | 0.0142 (7)                             | 0.0027 (6)                             | 0.0016 (6)                                                                                    | 0.0014 (6)                             |  |
| C2             | 0.0126 (7)                             | 0.0120 (7)                                           | 0.0175 (8)                             | 0.0036 (6)                             | 0.0036 (6)                                                                                    | 0.0027 (6)                             |  |
| C3             | 0.0113 (7)                             | 0.0120 (7)                                           | 0.0184 (8)                             | 0.0030 (6)                             | 0.0012 (6)                                                                                    | 0.0013 (6)                             |  |
| C4<br>C5<br>C6 | 0.0173 (8)<br>0.0176 (8)<br>0.0124 (7) | 0.0120 (7)<br>0.0141 (8)<br>0.0174 (8)<br>0.0128 (7) | 0.0143 (8)<br>0.0163 (8)<br>0.0196 (8) | 0.0038 (6)<br>0.0044 (6)<br>0.0018 (6) | $\begin{array}{c} -0.0012 \ (6) \\ -0.0003 \ (6) \\ 0.0058 \ (6) \\ 0.0035 \ (6) \end{array}$ | 0.0013 (6)<br>0.0031 (6)<br>0.0017 (6) |  |

#### Geometric parameters (Å, °)

| Cal—O3                                 | 2.3050 (11) | O2W—H4W                 | 0.863 (9)   |
|----------------------------------------|-------------|-------------------------|-------------|
| Ca1—O3 <sup>i</sup>                    | 2.3051 (11) | N1—N1 <sup>ii</sup>     | 1.256 (3)   |
| Ca1—O1W                                | 2.3235 (12) | N1—C3                   | 1.432 (2)   |
| Ca1—O1W <sup>i</sup>                   | 2.3236 (12) | C1—C2                   | 1.388 (2)   |
| Ca1—O2W <sup>i</sup>                   | 2.3385 (12) | C1—C6                   | 1.395 (2)   |
| Ca1—O2W                                | 2.3385 (12) | C2—C3                   | 1.394 (2)   |
| S1—O3                                  | 1.4556 (11) | С2—Н2                   | 0.9500      |
| S1—O2                                  | 1.4573 (12) | C3—C4                   | 1.388 (2)   |
| S1—O1                                  | 1.4588 (12) | C4—C5                   | 1.388 (2)   |
| S1—C1                                  | 1.7711 (16) | C4—H4                   | 0.9500      |
| O1W—H1W                                | 0.870 (9)   | C5—C6                   | 1.389 (2)   |
| O1W—H2W                                | 0.864 (10)  | С5—Н5                   | 0.9500      |
| O2W—H3W                                | 0.862 (10)  | С6—Н6                   | 0.9500      |
|                                        |             |                         |             |
| O3—Ca1—O3 <sup>i</sup>                 | 180.0       | H1W—O1W—H2W             | 102.3 (17)  |
| O3—Ca1—O1W                             | 87.66 (4)   | Ca1—O2W—H3W             | 125.5 (15)  |
| O3 <sup>i</sup> —Ca1—O1W               | 92.34 (4)   | Ca1—O2W—H4W             | 127.9 (15)  |
| O3—Ca1—O1W <sup>i</sup>                | 92.34 (4)   | H3W—O2W—H4W             | 103.9 (17)  |
| O3 <sup>i</sup> —Ca1—O1W <sup>i</sup>  | 87.66 (4)   | N1 <sup>ii</sup> —N1—C3 | 113.72 (17) |
| O1W—Ca1—O1W <sup>i</sup>               | 180.00 (6)  | C2—C1—C6                | 121.50 (14) |
| O3—Ca1—O2W <sup>i</sup>                | 93.07 (4)   | C2—C1—S1                | 119.72 (12) |
| O3 <sup>i</sup> —Ca1—O2W <sup>i</sup>  | 86.93 (5)   | C6—C1—S1                | 118.78 (12) |
| O1W—Ca1—O2W <sup>i</sup>               | 90.52 (5)   | C1—C2—C3                | 118.31 (15) |
| O1W <sup>i</sup> —Ca1—O2W <sup>i</sup> | 89.48 (5)   | C1—C2—H2                | 120.8       |
| O3—Ca1—O2W                             | 86.93 (5)   | C3—C2—H2                | 120.8       |
| O3 <sup>i</sup> —Ca1—O2W               | 93.07 (4)   | C4—C3—C2                | 120.82 (14) |
| O1W—Ca1—O2W                            | 89.48 (5)   | C4—C3—N1                | 115.24 (14) |
| O1W <sup>i</sup> —Ca1—O2W              | 90.52 (5)   | C2—C3—N1                | 123.94 (15) |
| O2W <sup>i</sup> —Ca1—O2W              | 180.0       | C3—C4—C5                | 120.17 (15) |
| O3—S1—O2                               | 112.30 (7)  | C3—C4—H4                | 119.9       |
| O3—S1—O1                               | 112.52 (7)  | С5—С4—Н4                | 119.9       |
| O2—S1—O1                               | 112.61 (7)  | C4—C5—C6                | 119.87 (15) |
| O3—S1—C1                               | 105.40 (7)  | С4—С5—Н5                | 120.1       |
| O2—S1—C1                               | 106.74 (7)  | С6—С5—Н5                | 120.1       |
| O1—S1—C1                               | 106.66 (7)  | C5—C6—C1                | 119.31 (14) |
| S1—O3—Ca1                              | 166.87 (8)  | С5—С6—Н6                | 120.3       |
| Ca1—O1W—H1W                            | 136.4 (15)  | C1—C6—H6                | 120.3       |

| 120.0 (16)   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 111.4 (3)    | C1—C2—C3—C4                                                                                                                                                            | -0.6 (2)                                                                                                                                                                                                                                                                                |
| -16.9 (4)    | C1-C2-C3-N1                                                                                                                                                            | 179.69 (14)                                                                                                                                                                                                                                                                             |
| -132.8 (3)   | N1 <sup>ii</sup> —N1—C3—C4                                                                                                                                             | 165.42 (17)                                                                                                                                                                                                                                                                             |
| 27.51 (14)   | N1 <sup>ii</sup> —N1—C3—C2                                                                                                                                             | -14.8 (3)                                                                                                                                                                                                                                                                               |
| 147.11 (12)  | C2—C3—C4—C5                                                                                                                                                            | 1.4 (2)                                                                                                                                                                                                                                                                                 |
| -92.29 (13)  | N1—C3—C4—C5                                                                                                                                                            | -178.84 (14)                                                                                                                                                                                                                                                                            |
| -153.27 (13) | C3—C4—C5—C6                                                                                                                                                            | -1.3 (2)                                                                                                                                                                                                                                                                                |
| -33.67 (14)  | C4—C5—C6—C1                                                                                                                                                            | 0.4 (2)                                                                                                                                                                                                                                                                                 |
| 86.93 (13)   | C2-C1-C6-C5                                                                                                                                                            | 0.4 (2)                                                                                                                                                                                                                                                                                 |
| -0.3 (2)     | S1—C1—C6—C5                                                                                                                                                            | -178.82 (12)                                                                                                                                                                                                                                                                            |
| 178.88 (11)  |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |
|              | 120.0 (16)<br>111.4 (3)<br>-16.9 (4)<br>-132.8 (3)<br>27.51 (14)<br>147.11 (12)<br>-92.29 (13)<br>-153.27 (13)<br>-33.67 (14)<br>86.93 (13)<br>-0.3 (2)<br>178.88 (11) | 120.0 (16) $111.4 (3) C1-C2-C3-C4$ $-16.9 (4) C1-C2-C3-N1$ $-132.8 (3) N1ii-N1-C3-C4$ $27.51 (14) N1ii-N1-C3-C2$ $147.11 (12) C2-C3-C4-C5$ $-92.29 (13) N1-C3-C4-C5$ $-153.27 (13) C3-C4-C5-C6$ $-33.67 (14) C4-C5-C6-C1$ $86.93 (13) C2-C1-C6-C5$ $-0.3 (2) S1-C1-C6-C5$ $178.88 (11)$ |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

#### Hydrogen-bond geometry (Å, °)

| D—H···A                                        | D—H      | H···A    | $D \cdots A$ | D—H···A |
|------------------------------------------------|----------|----------|--------------|---------|
| O1 <i>W</i> —H1 <i>W</i> ····O2 <sup>iii</sup> | 0.87 (1) | 2.01 (1) | 2.8521 (17)  | 162 (2) |
| $O1W$ — $H2W$ ··· $O1^{iv}$                    | 0.86(1)  | 2.00(1)  | 2.8454 (17)  | 165 (2) |
| $O2W - H3W - O2^{iv}$                          | 0.86(1)  | 1.95 (1) | 2.8119 (16)  | 174 (2) |
| O2W—H4 $W$ ···O1 <sup>v</sup>                  | 0.86 (1) | 1.94 (1) | 2.7907 (16)  | 168 (2) |
|                                                |          |          |              |         |

Symmetry codes: (iii) -x+2, -y+1, -z+1; (iv) -x+2, -y+2, -z+1; (v) -x+1, -y+2, -z+1.

*catena*-Poly[[[diaquacalcium(II)]-µ-2-(4-amino-3-sulfonatophenyl)-\ 1-(4-sulfonatophenyl)diazenium] dihydrate] (III)

#### Crystal data

| $[Na(C_{12}H_{10}N_{3}O_{6}S_{2})(H_{2}O)_{2}]\cdot 2H_{2}O$ | F(000) = 936                                                   |
|--------------------------------------------------------------|----------------------------------------------------------------|
| $M_r = 451.40$                                               | $D_{\rm x} = 1.600 {\rm ~Mg} {\rm ~m}^{-3}$                    |
| Monoclinic, $P2_1/c$                                         | Synchrotron radiation, $\lambda = 0.6775$ Å                    |
| a = 13.9454 (18)  Å                                          | Cell parameters from 8092 reflections                          |
| b = 19.517(3) Å                                              | $\theta = 1.4 - 24.3^{\circ}$                                  |
| c = 6.9014 (9) Å                                             | $\mu = 0.32 \text{ mm}^{-1}$                                   |
| $\beta = 93.838(2)^{\circ}$                                  | T = 150  K                                                     |
| V = 1874.2 (4) Å <sup>3</sup>                                | Fibre, red                                                     |
| Z = 4                                                        | $0.50 \times 0.01 \times 0.01 \text{ mm}$                      |
| Data collection                                              |                                                                |
| APEXII                                                       | 3531 independent reflections                                   |
| diffractometer                                               | 2772 reflections with $I > 2\sigma(I)$                         |
| Radiation source: Station 9.8 Daresbury SRS                  | $R_{\rm int} = 0.049$                                          |
| ω scans                                                      | $\theta_{\rm max} = 24.3^\circ,  \theta_{\rm min} = 1.4^\circ$ |
| Absorption correction: multi-scan                            | $h = -16 \rightarrow 16$                                       |
| (SADABS; Bruker, 2012)                                       | $k = -23 \rightarrow 23$                                       |
| $T_{\min} = 0.676, \ T_{\max} = 1.000$                       | $l = -8 \longrightarrow 8$                                     |
| 15360 measured reflections                                   |                                                                |

#### Refinement

Special details

| Refinement on $F^2$             | Hydrogen site location: mixed                            |
|---------------------------------|----------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent              |
| $R[F^2 > 2\sigma(F^2)] = 0.040$ | and constrained refinement                               |
| $wR(F^2) = 0.107$               | $w = 1/[\sigma^2(F_o^2) + (0.0583P)^2 + 0.7405P]$        |
| S = 1.04                        | where $P = (F_o^2 + 2F_c^2)/3$                           |
| 3531 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| 311 parameters                  | $\Delta \rho_{\rm max} = 0.35 \ { m e} \ { m \AA}^{-3}$  |
| 15 restraints                   | $\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$ |
|                                 |                                                          |

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x             | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|---------------|---------------|--------------|-----------------------------|-----------|
| Na1  | 0.12675 (8)   | 0.22691 (6)   | 0.23165 (16) | 0.0383 (3)                  |           |
| S1   | -0.39901 (4)  | -0.11626 (3)  | 0.25342 (9)  | 0.02313 (17)                |           |
| S2   | 0.01324 (4)   | 0.38021 (3)   | 0.06796 (9)  | 0.02399 (17)                |           |
| 01   | -0.33121 (14) | -0.14369 (9)  | 0.4031 (3)   | 0.0352 (5)                  |           |
| O2   | -0.49783 (13) | -0.12523 (9)  | 0.2974 (3)   | 0.0348 (5)                  |           |
| O3   | -0.38045 (12) | -0.14348 (8)  | 0.0621 (3)   | 0.0276 (4)                  |           |
| O4   | -0.00470 (13) | 0.42439 (8)   | -0.1002 (3)  | 0.0295 (4)                  |           |
| 05   | 0.06200 (12)  | 0.41576 (10)  | 0.2293 (3)   | 0.0344 (5)                  |           |
| 06   | 0.05796 (12)  | 0.31539 (9)   | 0.0222 (3)   | 0.0291 (4)                  |           |
| O1W  | 0.02623 (18)  | 0.15088 (11)  | 0.0719 (3)   | 0.0463 (5)                  |           |
| O2W  | 0.23561 (13)  | 0.23836 (9)   | -0.0156 (3)  | 0.0301 (4)                  |           |
| O3W  | 0.53321 (13)  | 0.24230 (9)   | 0.4670 (3)   | 0.0319 (4)                  |           |
| O4W  | -0.2986 (10)  | 0.5679 (6)    | 0.2536 (7)   | 0.036 (2)                   | 0.67 (4)  |
| H7W  | -0.322 (3)    | 0.593 (2)     | 0.344 (5)    | 0.043*                      | 0.6659    |
| H8W  | -0.308 (4)    | 0.594 (2)     | 0.152 (4)    | 0.043*                      | 0.6659    |
| O5W  | -0.258(2)     | 0.5945 (15)   | 0.2586 (13)  | 0.043 (6)                   | 0.33 (4)  |
| H9W  | -0.294 (6)    | 0.614 (5)     | 0.343 (11)   | 0.052*                      | 0.3341    |
| H10W | -0.287 (7)    | 0.611 (5)     | 0.151 (8)    | 0.052*                      | 0.3341    |
| N1   | -0.32011 (15) | 0.18160 (10)  | 0.2481 (3)   | 0.0226 (4)                  |           |
| N2   | -0.23798 (14) | 0.20549 (10)  | 0.2029 (3)   | 0.0228 (5)                  |           |
| N3   | -0.14295 (18) | 0.47735 (11)  | 0.1967 (3)   | 0.0271 (5)                  |           |
| C1   | -0.37563 (17) | -0.02746 (12) | 0.2466 (3)   | 0.0210 (5)                  |           |
| C2   | -0.45031 (17) | 0.01909 (12)  | 0.2548 (4)   | 0.0254 (5)                  |           |
| H2   | -0.5145       | 0.0034        | 0.2609       | 0.030*                      |           |
| C3   | -0.43073 (17) | 0.08833 (12)  | 0.2541 (4)   | 0.0255 (5)                  |           |
| H3   | -0.4813       | 0.1207        | 0.2599       | 0.031*                      |           |
| C4   | -0.33685 (18) | 0.11031 (11)  | 0.2448 (4)   | 0.0222 (5)                  |           |
| C5   | -0.26117 (18) | 0.06385 (12)  | 0.2347 (4)   | 0.0244 (5)                  |           |
| H5   | -0.1971       | 0.0796        | 0.2271       | 0.029*                      |           |
| C6   | -0.28139 (17) | -0.00534 (12) | 0.2358 (4)   | 0.0238 (5)                  |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H6  | -0.2310       | -0.0378      | 0.2293     | 0.029*      |
|-----|---------------|--------------|------------|-------------|
| C7  | -0.22223 (17) | 0.27328 (12) | 0.2046 (3) | 0.0205 (5)  |
| C8  | -0.12979 (17) | 0.29210 (12) | 0.1488 (3) | 0.0206 (5)  |
| H8  | -0.0862       | 0.2573       | 0.1151     | 0.025*      |
| C9  | -0.10223 (16) | 0.35880 (12) | 0.1425 (3) | 0.0212 (5)  |
| C10 | -0.16655 (17) | 0.41207 (12) | 0.1950 (3) | 0.0215 (5)  |
| C11 | -0.26021 (17) | 0.39255 (12) | 0.2479 (4) | 0.0229 (5)  |
| H11 | -0.3045       | 0.4271       | 0.2796     | 0.027*      |
| C12 | -0.28719 (17) | 0.32635 (12) | 0.2540 (3) | 0.0217 (5)  |
| H12 | -0.3496       | 0.3148       | 0.2911     | 0.026*      |
| H3N | -0.092 (2)    | 0.4909 (17)  | 0.164 (5)  | 0.047 (10)* |
| H1N | -0.365 (2)    | 0.2073 (15)  | 0.279 (4)  | 0.027 (7)*  |
| H2N | -0.184 (2)    | 0.5049 (16)  | 0.224 (4)  | 0.037 (9)*  |
| H2W | 0.006 (3)     | 0.1202 (15)  | 0.153 (5)  | 0.103 (17)* |
| H5W | 0.511 (2)     | 0.2091 (11)  | 0.534 (4)  | 0.059 (11)* |
| H3W | 0.2823 (16)   | 0.2095 (12)  | -0.036 (5) | 0.064 (11)* |
| H4W | 0.2700 (19)   | 0.2733 (10)  | 0.028 (5)  | 0.056 (11)* |
| H6W | 0.4863 (17)   | 0.2716 (13)  | 0.466 (5)  | 0.066 (12)* |
| H1W | 0.046 (3)     | 0.1233 (15)  | -0.019 (4) | 0.077 (14)* |
|     |               |              |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| Na1 | 0.0349 (6)  | 0.0465 (7)  | 0.0334 (6)  | -0.0113 (5)  | 0.0016 (5)  | 0.0046 (5)   |
| S1  | 0.0273 (3)  | 0.0131 (3)  | 0.0294 (4)  | -0.0020 (2)  | 0.0045 (3)  | 0.0000(2)    |
| S2  | 0.0222 (3)  | 0.0193 (3)  | 0.0313 (4)  | -0.0031 (2)  | 0.0076 (2)  | -0.0007 (3)  |
| 01  | 0.0504 (12) | 0.0183 (9)  | 0.0358 (11) | 0.0020 (8)   | -0.0061 (9) | 0.0040 (8)   |
| O2  | 0.0329 (10) | 0.0202 (9)  | 0.0530 (12) | -0.0064 (8)  | 0.0160 (9)  | -0.0027 (9)  |
| O3  | 0.0337 (10) | 0.0185 (9)  | 0.0312 (10) | 0.0008 (7)   | 0.0060 (8)  | -0.0034 (7)  |
| O4  | 0.0341 (10) | 0.0196 (9)  | 0.0358 (10) | -0.0010 (7)  | 0.0108 (8)  | 0.0047 (8)   |
| O5  | 0.0276 (10) | 0.0366 (11) | 0.0392 (11) | -0.0094 (8)  | 0.0042 (8)  | -0.0066 (9)  |
| O6  | 0.0257 (9)  | 0.0207 (9)  | 0.0418 (11) | 0.0020 (7)   | 0.0100 (8)  | 0.0018 (8)   |
| O1W | 0.0674 (16) | 0.0345 (12) | 0.0368 (12) | -0.0072 (11) | 0.0022 (11) | 0.0001 (10)  |
| O2W | 0.0280 (10) | 0.0235 (10) | 0.0390 (11) | 0.0017 (8)   | 0.0034 (8)  | -0.0046 (8)  |
| O3W | 0.0327 (11) | 0.0221 (9)  | 0.0421 (11) | 0.0030 (8)   | 0.0123 (9)  | 0.0091 (9)   |
| O4W | 0.044 (5)   | 0.032 (4)   | 0.032 (2)   | 0.015 (3)    | 0.0048 (19) | -0.0011 (18) |
| O5W | 0.048 (9)   | 0.045 (9)   | 0.036 (4)   | 0.020 (8)    | -0.003 (4)  | -0.006 (4)   |
| N1  | 0.0237 (11) | 0.0151 (10) | 0.0294 (12) | -0.0020 (9)  | 0.0046 (9)  | 0.0010 (9)   |
| N2  | 0.0252 (11) | 0.0179 (10) | 0.0252 (11) | -0.0033 (8)  | 0.0014 (9)  | 0.0011 (8)   |
| N3  | 0.0262 (12) | 0.0159 (11) | 0.0401 (14) | -0.0010 (10) | 0.0099 (10) | -0.0005 (10) |
| C1  | 0.0246 (12) | 0.0139 (11) | 0.0244 (12) | -0.0020 (9)  | 0.0017 (10) | 0.0000 (9)   |
| C2  | 0.0234 (12) | 0.0196 (12) | 0.0331 (14) | -0.0043 (10) | 0.0020 (10) | -0.0012 (10) |
| C3  | 0.0240 (13) | 0.0199 (12) | 0.0328 (14) | 0.0020 (10)  | 0.0021 (11) | 0.0000 (11)  |
| C4  | 0.0288 (13) | 0.0139 (11) | 0.0241 (13) | -0.0021 (10) | 0.0023 (10) | 0.0006 (10)  |
| C5  | 0.0211 (12) | 0.0215 (13) | 0.0309 (14) | -0.0035 (10) | 0.0034 (10) | 0.0011 (11)  |
| C6  | 0.0224 (12) | 0.0184 (12) | 0.0308 (13) | 0.0023 (9)   | 0.0029 (10) | 0.0013 (10)  |
| C7  | 0.0219 (12) | 0.0161 (12) | 0.0234 (12) | -0.0024 (9)  | 0.0005 (10) | -0.0005 (9)  |
| C8  | 0.0230 (12) | 0.0163 (12) | 0.0225 (12) | 0.0003 (9)   | 0.0018 (10) | -0.0006 (9)  |

| С9  | 0.0202 (12) | 0.0182 (12) | 0.0253 (13) | -0.0015 (9)  | 0.0028 (10) | 0.0003 (10) |
|-----|-------------|-------------|-------------|--------------|-------------|-------------|
| C10 | 0.0255 (12) | 0.0165 (12) | 0.0226 (12) | -0.0011 (10) | 0.0013 (10) | 0.0022 (10) |
| C11 | 0.0245 (12) | 0.0182 (12) | 0.0264 (13) | 0.0028 (9)   | 0.0044 (10) | 0.0006 (10) |
| C12 | 0.0204 (12) | 0.0206 (12) | 0.0244 (13) | -0.0013 (9)  | 0.0035 (10) | 0.0008 (10) |

Geometric parameters (Å, °)

| Na1—O1W                                 | 2.275 (2)   | O5W—H10W                   | 0.879 (10) |  |
|-----------------------------------------|-------------|----------------------------|------------|--|
| Na1—O2W <sup>i</sup>                    | 2.335 (2)   | N1—N2                      | 1.294 (3)  |  |
| Na1—O2W                                 | 2.369 (2)   | N1—C4                      | 1.411 (3)  |  |
| Na1—O6                                  | 2.409 (2)   | N1—H1N                     | 0.84 (3)   |  |
| Na1—O6 <sup>i</sup>                     | 2.425 (2)   | N2—C7                      | 1.341 (3)  |  |
| Na1—Na1 <sup>ii</sup>                   | 3.5664 (7)  | N3—C10                     | 1.316 (3)  |  |
| Na1—Na1 <sup>i</sup>                    | 3.5665 (7)  | N3—H3N                     | 0.81 (3)   |  |
| Na1—H4W                                 | 2.68 (3)    | N3—H2N                     | 0.82 (3)   |  |
| S1—O2                                   | 1.4415 (18) | C1—C2                      | 1.386 (3)  |  |
| S1—O1                                   | 1.4552 (19) | C1—C6                      | 1.390 (3)  |  |
| S1—O3                                   | 1.4623 (18) | C2—C3                      | 1.379 (3)  |  |
| S1—C1                                   | 1.765 (2)   | C2—H2                      | 0.9500     |  |
| S2—O5                                   | 1.4430 (19) | C3—C4                      | 1.383 (3)  |  |
| S2—O4                                   | 1.4541 (18) | С3—Н3                      | 0.9500     |  |
| S2—O6                                   | 1.4545 (18) | C4—C5                      | 1.397 (3)  |  |
| S2—C9                                   | 1.773 (2)   | C5—C6                      | 1.380 (3)  |  |
| O6—Na1 <sup>ii</sup>                    | 2.425 (2)   | С5—Н5                      | 0.9500     |  |
| O1W—H2W                                 | 0.878 (10)  | С6—Н6                      | 0.9500     |  |
| O1W—H1W                                 | 0.883 (10)  | C7—C8                      | 1.418 (3)  |  |
| O2W—Na1 <sup>ii</sup>                   | 2.335 (2)   | C7—C12                     | 1.432 (3)  |  |
| O2W—H3W                                 | 0.879 (10)  | C8—C9                      | 1.359 (3)  |  |
| O2W—H4W                                 | 0.876 (10)  | C8—H8                      | 0.9500     |  |
| O3W—H5W                                 | 0.863 (10)  | C9—C10                     | 1.435 (3)  |  |
| O3W—H6W                                 | 0.869 (10)  | C10—C11                    | 1.431 (3)  |  |
| O4W—H7W                                 | 0.875 (10)  | C11—C12                    | 1.347 (3)  |  |
| O4W—H8W                                 | 0.876 (10)  | C11—H11                    | 0.9500     |  |
| O5W—H9W                                 | 0.878 (10)  | С12—Н12                    | 0.9500     |  |
| O1W—Na1—O2W <sup>i</sup>                | 154.18 (9)  | Na1 <sup>ii</sup> —O2W—H4W | 110 (2)    |  |
| O1W—Na1—O2W                             | 96.67 (9)   | Na1—O2W—H4W                | 101 (2)    |  |
| O2W <sup>i</sup> —Na1—O2W               | 95.44 (7)   | H3W—O2W—H4W                | 99.1 (19)  |  |
| O1W—Na1—O6                              | 88.23 (8)   | H5W—O3W—H6W                | 102 (2)    |  |
| O2W <sup>i</sup> —Na1—O6                | 116.93 (8)  | H7W—O4W—H8W                | 101 (2)    |  |
| O2W—Na1—O6                              | 75.46 (7)   | H9W—O5W—H10W               | 99 (2)     |  |
| O1W—Na1—O6 <sup>i</sup>                 | 85.06 (8)   | N2—N1—C4                   | 120.0 (2)  |  |
| O2W <sup>i</sup> —Na1—O6 <sup>i</sup>   | 75.79 (7)   | N2—N1—H1N                  | 122.2 (19) |  |
| O2W—Na1—O6 <sup>i</sup>                 | 159.34 (8)  | C4—N1—H1N                  | 117.8 (19) |  |
| 06—Na1—O6 <sup>i</sup>                  | 125.20 (8)  | N1—N2—C7                   | 120.0 (2)  |  |
| O1W—Na1—Na1 <sup>ii</sup>               | 74.68 (6)   | C10—N3—H3N                 | 123 (2)    |  |
| O2W <sup>i</sup> —Na1—Na1 <sup>ii</sup> | 127.39 (6)  | C10—N3—H2N                 | 118 (2)    |  |
| O2W—Na1—Na1 <sup>ii</sup>               | 40.34 (5)   | H3N—N3—H2N                 | 120 (3)    |  |

| O6—Na1—Na1 <sup>ii</sup>                | 42.63 (5)                | C2—C1—C6                         | 120.9 (2)              |
|-----------------------------------------|--------------------------|----------------------------------|------------------------|
| O6 <sup>i</sup> —Na1—Na1 <sup>ii</sup>  | 155.75 (5)               | C2—C1—S1                         | 120.13 (18)            |
| O1W—Na1—Na1 <sup>i</sup>                | 126.43 (7)               | C6-C1-S1                         | 118.91 (18)            |
| O2W <sup>i</sup> —Na1—Na1 <sup>i</sup>  | 41.06 (5)                | C3—C2—C1                         | 119.5 (2)              |
| O2W—Na1—Na1 <sup>i</sup>                | 135.61 (6)               | C3—C2—H2                         | 120.2                  |
| 06—Na1—Na1 <sup>i</sup>                 | 111.93 (7)               | C1—C2—H2                         | 120.2                  |
| $O6^{i}$ Na1 Na1 <sup>i</sup>           | 42.29 (5)                | $C_2 - C_3 - C_4$                | 119.5 (2)              |
| Na1 <sup>ii</sup> —Na1—Na1 <sup>i</sup> | 150.73 (7)               | С2—С3—Н3                         | 120.2                  |
| O1W—Na1—H4W                             | 115.1 (4)                | C4—C3—H3                         | 120.2                  |
| $O^2W^i$ —Na1—H4W                       | 79 8 (5)                 | $C_{3}-C_{4}-C_{5}$              | 121.4(2)               |
| O2W—Na1—H4W                             | 18 8 (4)                 | C3—C4—N1                         | 1175(2)                |
| O6—Na1—H4W                              | 74 0 (7)                 | C5-C4-N1                         | 1211(2)                |
| $O6^{i}$ Na1—H4W                        | 154 1 (6)                | C6-C5-C4                         | 121.1(2)<br>1187(2)    |
| Na1 <sup>ii</sup> —Na1—H4W              | 50 1 (6)                 | Сб-С5-Н5                         | 120.7                  |
| Nal <sup>i</sup> —Nal—H4W               | 118 1 (5)                | C4-C5-H5                         | 120.7                  |
| 02-101                                  | 113.00(12)               | $C_{5}$ $C_{6}$ $C_{1}$          | 120.7<br>119.9(2)      |
| 02 - 51 - 03                            | 112.05(12)               | C5-C6-H6                         | 120.0                  |
| 01 - 51 - 03                            | 112.03 (11)              | C1-C6-H6                         | 120.0                  |
| 02 - 51 - 03                            | 107.81 (11)              | $N_{2}^{-}C_{7}^{-}C_{8}^{-}$    | 120.0<br>113.9(2)      |
| 01 - S1 - C1                            | 105 53 (11)              | $N_{2} = C_{7} = C_{12}$         | 113.9(2)<br>127.6(2)   |
| 03 - 51 - C1                            | 106 78 (11)              | C8-C7-C12                        | 127.0(2)               |
| 05-52-04                                | 112 19 (11)              | C9-C8-C7                         | 1214(2)                |
| 05 - 82 - 06                            | 113 51 (11)              | C9-C8-H8                         | 1193                   |
| 04 - 52 - 06                            | 113.34 (11)              | C7-C8-H8                         | 119.3                  |
| 05-52-00                                | 106 24 (11)              | $C_{8} - C_{9} - C_{10}$         | 119.3<br>120.2(2)      |
| 03 - 52 - 03<br>04 - 52 - 09            | 105.09(11)               | C8 - C9 - S2                     | 120.2(2)<br>119.96(18) |
| 06-52-09                                | 105.60 (11)              | C10-C9-S2                        | 119.90 (10)            |
| S2-06-Na1                               | 130.74(11)               | $N_{3}$ $C_{10}$ $C_{11}$        | 119.0 + (17)           |
| $S_{2}^{$                               | 130.71(11)<br>132.42(11) | N3-C10-C9                        | 119.2(2)<br>122.9(2)   |
| $N_{2} = 00^{-1} N_{2} 1^{ii}$          | 95.07.(6)                | $C_{11} - C_{10} - C_{9}$        | 122.9(2)<br>117.9(2)   |
| Na1 $-01W$ $+H2W$                       | 110 (3)                  | C12-C11-C10                      | 121.6(2)               |
| Na1—O1W—H1W                             | 122 (3)                  | C12—C11—H11                      | 119 2                  |
| $H^2W \rightarrow 01W \rightarrow H^1W$ | 99 (2)                   | C10-C11-H11                      | 119.2                  |
| $Na1^{ii}$ $O2W$ $Na1$                  | 98 59 (8)                | $C_{11} - C_{12} - C_{7}$        | 119.2<br>120.3 (2)     |
| Na1 $i$ —O2W—H3W                        | 121 (2)                  | C11 - C12 - H12                  | 119.9                  |
| Na1 $-02W$ -H3W                         | 121(2)<br>125(2)         | C7-C12-H12                       | 119.9                  |
|                                         | 125 (2)                  | 07 012 1112                      | 119.9                  |
| 05—S2—06—Na1                            | 40.72 (16)               | $C^{2}-C^{1}-C^{6}-C^{5}$        | 0.5(4)                 |
| 04 - 82 - 06 - Na1                      | 17023(12)                | $S_1 - C_1 - C_6 - C_5$          | -178.6(2)              |
| C9-S2-O6-Na1                            | -75.26(15)               | N1 - N2 - C7 - C8                | -179.0(2)              |
| $05-82-06-Na1^{ii}$                     | -12022(14)               | N1 - N2 - C7 - C12               | 0.6(4)                 |
| $04 - 82 - 06 - Na1^{ii}$               | 9 30 (18)                | $N_{2} - C_{7} - C_{8} - C_{9}$  | 1799(2)                |
| $C9-S2-O6-Na1^{ii}$                     | 123 80 (14)              | $C_{12} - C_{7} - C_{8} - C_{9}$ | 0.3(4)                 |
| C4-N1-N2-C7                             | 179 5 (2)                | C7-C8-C9-C10                     | 0.5(1)                 |
| 02 = 81 = C1 = C2                       | -87(2)                   | $C7-C8-C9-S^2$                   | -178 92 (18)           |
| 01 - 81 - C1 - C2                       | -1297(2)                 | 05-82-09-08                      | -1200(2)               |
| 03 - 81 - C1 - C2                       | 111.9 (2)                | 04 - 52 - 09 - 08                | 120.0(2)               |
| 02 - 81 - C1 - C6                       | 170 41 (19)              | 06-52-09-08                      | 0.8(2)                 |
| 02 01 01-00                             | 1,0,11,17)               | 00 02 07 00                      | 0.0 (2)                |

| O1—S1—C1—C6 | 49.4 (2)    | O5—S2—C9—C10   | 60.4 (2)     |
|-------------|-------------|----------------|--------------|
| O3—S1—C1—C6 | -69.0 (2)   | O4—S2—C9—C10   | -58.7 (2)    |
| C6—C1—C2—C3 | -0.6 (4)    | O6—S2—C9—C10   | -178.80 (19) |
| S1—C1—C2—C3 | 178.45 (19) | C8—C9—C10—N3   | 178.1 (2)    |
| C1—C2—C3—C4 | 0.1 (4)     | S2—C9—C10—N3   | -2.2 (3)     |
| C2—C3—C4—C5 | 0.5 (4)     | C8—C9—C10—C11  | -1.7 (3)     |
| C2-C3-C4-N1 | -178.8 (2)  | S2—C9—C10—C11  | 177.93 (18)  |
| N2—N1—C4—C3 | -166.8 (2)  | N3-C10-C11-C12 | -178.1 (2)   |
| N2—N1—C4—C5 | 13.9 (4)    | C9-C10-C11-C12 | 1.7 (4)      |
| C3—C4—C5—C6 | -0.6 (4)    | C10—C11—C12—C7 | -0.8 (4)     |
| N1-C4-C5-C6 | 178.7 (2)   | N2-C7-C12-C11  | -179.8 (2)   |
| C4—C5—C6—C1 | 0.1 (4)     | C8—C7—C12—C11  | -0.3 (4)     |
|             |             |                |              |

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) *x*, -*y*+1/2, *z*-1/2.

#### *Hydrogen-bond geometry (Å, °)*

| D—H···A                                       | <i>D</i> —Н | H···A    | D····A     | D—H···A  |
|-----------------------------------------------|-------------|----------|------------|----------|
| N1—H1 $N$ ···O3 $W$ <sup>iii</sup>            | 0.84 (3)    | 2.10 (3) | 2.878 (3)  | 153 (3)  |
| N3—H2 <i>N</i> ···O4 <i>W</i>                 | 0.82 (3)    | 2.04 (3) | 2.847 (5)  | 170 (3)  |
| N3—H2 <i>N</i> ···O5 <i>W</i>                 | 0.82 (3)    | 2.05 (4) | 2.843 (11) | 163 (3)  |
| N3—H3 <i>N</i> ···O4                          | 0.81 (3)    | 2.60 (3) | 3.084 (3)  | 120 (3)  |
| N3—H3 <i>N</i> ····O4 <sup>iv</sup>           | 0.81 (3)    | 2.20 (3) | 2.923 (3)  | 150 (3)  |
| N3—H3 <i>N</i> ···O5                          | 0.81 (3)    | 2.61 (3) | 3.095 (3)  | 120 (3)  |
| O1W—H1 $W$ ···O5 <sup>ii</sup>                | 0.88 (1)    | 1.93 (2) | 2.773 (3)  | 160 (4)  |
| O1W— $H2W$ ···O4 <sup>i</sup>                 | 0.88 (1)    | 1.93 (2) | 2.756 (3)  | 157 (4)  |
| $O2W$ — $H3W$ ···O $3^{v}$                    | 0.88 (1)    | 1.90(1)  | 2.774 (2)  | 176 (4)  |
| O2W—H4 $W$ ···O1 <sup>vi</sup>                | 0.88 (1)    | 1.88(1)  | 2.746 (3)  | 171 (3)  |
| $O3W$ — $H5W$ ··· $O2^{vii}$                  | 0.86(1)     | 2.03 (1) | 2.866 (3)  | 164 (3)  |
| O3 <i>W</i> —H6 <i>W</i> ···O3 <sup>vi</sup>  | 0.87(1)     | 2.22 (1) | 3.081 (3)  | 171 (3)  |
| O4W— $H7W$ ···O3 <sup>i</sup>                 | 0.88 (1)    | 2.02(1)  | 2.887 (5)  | 175 (4)  |
| O4W—H8W····O1 <sup>ii</sup>                   | 0.88 (1)    | 1.97 (1) | 2.846 (5)  | 173 (5)  |
| O5 <i>W</i> —H9 <i>W</i> ···O3 <sup>i</sup>   | 0.88 (1)    | 2.08 (2) | 2.947 (13) | 170 (10) |
| O5 <i>W</i> —H10 <i>W</i> ···O1 <sup>ii</sup> | 0.88 (1)    | 1.89 (2) | 2.765 (9)  | 171 (10) |

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x, -y+1/2, z-1/2; (iii) x-1, y, z; (iv) -x, -y+1, -z; (v) -x, -y, -z; (vi) -x, y+1/2, -z+1/2; (vii) -x, -y, -z+1.

Hexaaquamagnesium bis{2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium} octahydrate (IV)

#### Crystal data

| $[Mg(H_2O)_6](C_{12}H_{10}N_3O_6S_2)_2 \cdot 8H_2O$ | F(000) = 2072                                        |
|-----------------------------------------------------|------------------------------------------------------|
| $M_r = 989.23$                                      | $D_{\rm x} = 1.572 {\rm ~Mg} {\rm ~m}^{-3}$          |
| Monoclinic, C2/c                                    | Cu <i>K</i> $\alpha$ radiation, $\lambda = 1.5418$ Å |
| a = 36.896 (3)  Å                                   | Cell parameters from 1905 reflections                |
| b = 6.7806 (4)  Å                                   | $\theta = 4.3 - 73.1^{\circ}$                        |
| c = 17.9140 (12)  Å                                 | $\mu = 3.12 \text{ mm}^{-1}$                         |
| $\beta = 111.178 \ (9)^{\circ}$                     | T = 123  K                                           |
| V = 4179.0 (6) Å <sup>3</sup>                       | Long needle, red                                     |
| Z = 4                                               | $0.5 \times 0.05 \times 0.03 \text{ mm}$             |

Data collection

| Oxford Diffraction Gemini S<br>diffractometer<br>Radiation source: sealed tube<br>$\omega$ scans<br>Absorption correction: multi-scan<br>(CrysAlis PRO; Rigaku OD, 2019)<br>$T_{\min} = 0.572, T_{\max} = 1.000$<br>7541 measured reflections | 4093 independent reflections<br>3287 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.039$<br>$\theta_{max} = 73.2^{\circ}, \theta_{min} = 5.0^{\circ}$<br>$h = -38 \rightarrow 45$<br>$k = -6 \rightarrow 8$<br>$l = -21 \rightarrow 15$                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                     |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.050$<br>$wR(F^2) = 0.143$<br>S = 1.06<br>4093 reflections<br>359 parameters<br>110 restraints                                                                 | Hydrogen site location: mixed<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0813P)^2 + 0.7784P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.80$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.38$ e Å <sup>-3</sup> |
| Special details                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | у           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1)  |
|------|--------------|-------------|---------------|-----------------------------|------------|
| Mg1  | -0.2500      | 0.2500      | 0.0000        | 0.0176 (3)                  |            |
| S1   | -0.19426 (2) | 0.24840 (8) | -0.24675 (4)  | 0.01688 (17)                |            |
| 01   | -0.19535 (5) | 0.3776 (3)  | -0.31234 (11) | 0.0241 (4)                  |            |
| O2   | -0.20622 (5) | 0.0469 (3)  | -0.27349 (11) | 0.0228 (4)                  |            |
| O3   | -0.21518 (5) | 0.3271 (3)  | -0.19768 (11) | 0.0229 (4)                  |            |
| O1W  | -0.24688 (6) | 0.1251 (3)  | -0.10154 (11) | 0.0251 (4)                  |            |
| O2W  | -0.27304 (6) | 0.5014 (3)  | -0.06023 (12) | 0.0281 (4)                  |            |
| O3W  | -0.30486 (6) | 0.1320 (3)  | -0.02226 (12) | 0.0246 (4)                  |            |
| O4W  | -0.31418 (6) | 0.7439 (3)  | 0.00138 (13)  | 0.0266 (4)                  |            |
| O5W  | -0.29954 (6) | 0.7674 (3)  | 0.16593 (12)  | 0.0236 (4)                  |            |
| O6W  | -0.39177 (7) | 0.7067 (3)  | -0.07645 (14) | 0.0334 (5)                  |            |
| O7W  | 0.0109 (5)   | 0.219 (3)   | -0.1575 (12)  | 0.0307 (19)                 | 0.638 (12) |
| H13W | 0.0139 (17)  | 0.346 (4)   | -0.146 (4)    | 0.046*                      | 0.6377     |
| H14W | 0.0355 (7)   | 0.186 (8)   | -0.144 (4)    | 0.046*                      | 0.6377     |
| N1   | -0.02640 (7) | 0.2391 (3)  | -0.04636 (14) | 0.0204 (5)                  |            |
| N2   | -0.01425 (7) | 0.2547 (3)  | 0.03076 (14)  | 0.0213 (5)                  |            |
| N3   | 0.13859 (7)  | 0.2773 (4)  | 0.22824 (16)  | 0.0233 (5)                  |            |
| C1   | -0.14448 (8) | 0.2379 (3)  | -0.18386 (15) | 0.0168 (5)                  |            |
| C2   | -0.13333 (8) | 0.2471 (4)  | -0.10121 (16) | 0.0206 (5)                  |            |
| H2   | -0.1524      | 0.2538      | -0.0771       | 0.025*                      |            |
| C3   | -0.09400 (8) | 0.2462 (4)  | -0.05389 (16) | 0.0214 (5)                  |            |
| Н3   | -0.0858      | 0.2528      | 0.0028        | 0.026*                      |            |

| <u>с</u> т | -0.066/2 (8) | 0.2355 (4)  | -0.09123 (16) | 0.0196 (5)  |            |
|------------|--------------|-------------|---------------|-------------|------------|
| C5         | -0.07798 (8) | 0.2241 (4)  | -0.17404 (17) | 0.0214 (5)  |            |
| Н5         | -0.0590      | 0.2161      | -0.1982       | 0.026*      |            |
| C6         | -0.11712 (8) | 0.2245 (4)  | -0.22083 (16) | 0.0213 (5)  |            |
| Н6         | -0.1253      | 0.2158      | -0.2775       | 0.026*      |            |
| C7         | 0.02395 (8)  | 0.2602 (4)  | 0.07415 (17)  | 0.0204 (5)  |            |
| C8         | 0.03296 (8)  | 0.2748 (4)  | 0.15798 (17)  | 0.0236 (6)  |            |
| H8         | 0.0123       | 0.2806      | 0.1778        | 0.028*      |            |
| C9         | 0.07028 (8)  | 0.2807 (4)  | 0.21070 (16)  | 0.0213 (5)  |            |
| C10        | 0.10190 (8)  | 0.2726 (3)  | 0.18162 (17)  | 0.0191 (5)  |            |
| C11        | 0.09238 (8)  | 0.2577 (4)  | 0.09611 (17)  | 0.0208 (5)  |            |
| H11        | 0.1128       | 0.2518      | 0.0758        | 0.025*      |            |
| C12        | 0.05534 (8)  | 0.2519 (4)  | 0.04459 (16)  | 0.0209 (5)  |            |
| H12        | 0.0499       | 0.2424      | -0.0113       | 0.025*      |            |
| S2         | 0.0782 (2)   | 0.2875 (14) | 0.3153 (3)    | 0.0256 (5)  | 0.638 (12) |
| O4         | 0.0564 (3)   | 0.1246 (16) | 0.3309 (10)   | 0.0390 (19) | 0.638 (12) |
| O5         | 0.0628 (3)   | 0.4763 (12) | 0.3280 (5)    | 0.0439 (16) | 0.638 (12) |
| O6         | 0.11985 (18) | 0.2653 (15) | 0.3606 (4)    | 0.0542 (18) | 0.638 (12) |
| S2A        | 0.0753 (4)   | 0.300 (3)   | 0.3128 (5)    | 0.0256 (5)  | 0.362 (12) |
| O4A        | 0.0650 (7)   | 0.105 (3)   | 0.3300 (19)   | 0.0390 (19) | 0.362 (12) |
| O5A        | 0.0488 (4)   | 0.454 (2)   | 0.3169 (10)   | 0.0439 (16) | 0.362 (12) |
| O6A        | 0.1150 (3)   | 0.362 (3)   | 0.3546 (7)    | 0.0542 (18) | 0.362 (12) |
| O8W        | 0.0158 (10)  | 0.189 (5)   | -0.149 (2)    | 0.0307 (19) | 0.362 (12) |
| H16W       | 0.0210       | 0.3101      | -0.1623       | 0.046*      | 0.362 (12) |
| H15W       | 0.0203       | 0.1197      | -0.1863       | 0.046*      | 0.362 (12) |
| H2N        | 0.1562 (12)  | 0.280 (5)   | 0.207 (2)     | 0.029 (9)*  |            |
| H1N        | -0.0114 (12) | 0.226 (5)   | -0.072 (3)    | 0.034 (10)* |            |
| H3N        | 0.1447 (14)  | 0.299 (6)   | 0.277 (3)     | 0.049 (13)* |            |
| H3W        | -0.2859 (8)  | 0.594 (4)   | -0.0471 (17)  | 0.024 (8)*  |            |
| H1W        | -0.2378 (11) | 0.172 (5)   | -0.1364 (17)  | 0.044 (11)* |            |
| H9W        | -0.2895 (10) | 0.882 (3)   | 0.184 (2)     | 0.043 (11)* |            |
| H8W        | -0.3098 (11) | 0.729 (6)   | 0.0521 (7)    | 0.051 (13)* |            |
| H11W       | -0.4034 (11) | 0.606 (3)   | -0.105 (2)    | 0.052 (13)* |            |
| H7W        | -0.3385 (4)  | 0.707 (5)   | -0.0197 (19)  | 0.033 (10)* |            |
| H5W        | -0.3086 (11) | 0.0055 (18) | -0.021 (2)    | 0.046 (11)* |            |
| H4W        | -0.2777 (11) | 0.523 (6)   | -0.1107 (9)   | 0.051 (12)* |            |
| H12W       | -0.4031 (12) | 0.806 (4)   | -0.106 (2)    | 0.063 (15)* |            |
| H6W        | -0.3258 (7)  | 0.173 (5)   | -0.0602 (19)  | 0.049 (12)* |            |
| H2W        | -0.2649 (8)  | 0.043 (4)   | -0.1293 (18)  | 0.037 (10)* |            |
| H10W       | -0.2840 (9)  | 0.691 (4)   | 0.2032 (18)   | 0.046 (12)* |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| Mg1 | 0.0180 (6) | 0.0191 (5) | 0.0148 (6) | -0.0012 (4) | 0.0050 (5) | -0.0003 (4) |
| S1  | 0.0136 (3) | 0.0195 (3) | 0.0170 (3) | 0.0002 (2)  | 0.0048 (2) | 0.0011 (2)  |
| O1  | 0.0195 (9) | 0.0282 (9) | 0.0237 (9) | 0.0023 (8)  | 0.0066 (7) | 0.0069 (8)  |
| O2  | 0.0192 (9) | 0.0236 (9) | 0.0221 (9) | -0.0023 (7) | 0.0036(7)  | -0.0017 (7) |

| 03       | 0 0194 (9)               | 0.0272(9)               | 0.0224(9)                | 0.0016 (8)   | 0 0079 (7)             | 0.0002(7)    |
|----------|--------------------------|-------------------------|--------------------------|--------------|------------------------|--------------|
| 01W      | 0.0291(10)               | 0.0299(10)              | 0.0221(9)<br>0.0183(9)   | -0.0098(8)   | 0.0075(7)              | -0.0059(8)   |
| 02W      | 0.0251(10)<br>0.0354(11) | 0.0270(10)              | 0.0103(9)<br>0.0223(9)   | 0 0094 (9)   | 0.0108(8)              | 0.0063 (8)   |
| 02W      | 0.0337(11)<br>0.0183(9)  | 0.0270(10)              | 0.0223(9)<br>0.0254(9)   | -0.0036(8)   | 0.0100(0)<br>0.0038(7) | -0.0002(7)   |
| O4W      | 0.0105(9)                | 0.0200(9)               | 0.0254(5)                | -0.0012(8)   | 0.0038(7)              | 0.0002(7)    |
| 05W      | 0.0221(10)               | 0.0314(10)<br>0.0237(9) | 0.0205(10)               | 0.0012(0)    | 0.0070 (8)             | -0.0004(3)   |
| O5W      | 0.0175(5)                | 0.0237(9)               | 0.0200(10)<br>0.0323(12) | -0.0032(9)   | 0.0070 (8)             | -0.0002(7)   |
| 00W      | 0.0271(11)               | 0.0371(11)              | 0.0323(12)               | 0.0032(9)    | 0.000+(3)              | 0.0000(5)    |
| N1       | 0.020(3)                 | 0.042(0)                | 0.029(4)                 | 0.008(3)     | 0.003(3)               | -0.000(3)    |
| ND       | 0.0108(11)               | 0.0244(11)              | 0.0193(11)               | 0.0004(8)    | 0.0030(9)              | 0.0003(8)    |
| INZ      | 0.0161(11)               | 0.0248(10)              | 0.0192(11)               | 0.0000(8)    | 0.0048(9)              | -0.0001(8)   |
| N3<br>C1 | 0.0158(11)               | 0.0311(12)              | 0.0223(12)               | -0.0035(9)   | 0.0062(9)              | -0.0025(9)   |
|          | 0.0151 (12)              | 0.0170(10)              | 0.0167 (12)              | 0.0009 (9)   | 0.0040 (9)             | 0.0020 (9)   |
| C2       | 0.01/8 (13)              | 0.0255 (12)             | 0.0193 (13)              | 0.0012 (10)  | 0.00/7(10)             | 0.0000 (9)   |
| C3       | 0.0185 (13)              | 0.0280 (12)             | 0.0161 (12)              | -0.0013 (10) | 0.0042 (10)            | 0.0007 (9)   |
| C4       | 0.0175 (12)              | 0.0188 (11)             | 0.0211 (13)              | -0.0007 (9)  | 0.0054 (10)            | 0.0007 (9)   |
| C5       | 0.0190 (13)              | 0.0239 (12)             | 0.0222 (13)              | -0.0002(10)  | 0.0087 (11)            | 0.0013 (10)  |
| C6       | 0.0182 (13)              | 0.0257 (12)             | 0.0193 (12)              | 0.0000 (10)  | 0.0061 (10)            | 0.0003 (9)   |
| C7       | 0.0178 (13)              | 0.0219 (12)             | 0.0208 (13)              | -0.0016 (10) | 0.0062 (10)            | -0.0008 (9)  |
| C8       | 0.0168 (12)              | 0.0324 (13)             | 0.0227 (13)              | -0.0021 (11) | 0.0086 (10)            | -0.0028 (10) |
| C9       | 0.0199 (13)              | 0.0268 (13)             | 0.0185 (12)              | -0.0026 (10) | 0.0086 (10)            | -0.0021 (9)  |
| C10      | 0.0167 (12)              | 0.0166 (11)             | 0.0244 (13)              | -0.0013 (9)  | 0.0078 (10)            | -0.0009 (9)  |
| C11      | 0.0206 (13)              | 0.0201 (11)             | 0.0241 (13)              | -0.0003 (10) | 0.0111 (11)            | 0.0005 (9)   |
| C12      | 0.0217 (13)              | 0.0229 (12)             | 0.0188 (12)              | -0.0015 (10) | 0.0080 (10)            | 0.0001 (9)   |
| S2       | 0.0164 (10)              | 0.0416 (12)             | 0.0181 (4)               | -0.0034 (8)  | 0.0056 (5)             | -0.0033 (5)  |
| 04       | 0.055 (5)                | 0.041 (2)               | 0.0269 (12)              | -0.002 (3)   | 0.022 (4)              | 0.001 (2)    |
| 05       | 0.067 (5)                | 0.040 (2)               | 0.026 (3)                | 0.002 (3)    | 0.019 (4)              | -0.0086 (17) |
| 06       | 0.0169 (19)              | 0.121 (6)               | 0.0188 (15)              | 0.003 (3)    | -0.0002 (14)           | 0.004 (3)    |
| S2A      | 0.0164 (10)              | 0.0416 (12)             | 0.0181 (4)               | -0.0034 (8)  | 0.0056 (5)             | -0.0033(5)   |
| O4A      | 0.055 (5)                | 0.041 (2)               | 0.0269 (12)              | -0.002(3)    | 0.022 (4)              | 0.001 (2)    |
| O5A      | 0.067 (5)                | 0.040 (2)               | 0.026 (3)                | 0.002 (3)    | 0.019 (4)              | -0.0086 (17) |
| O6A      | 0.0169 (19)              | 0.121 (6)               | 0.0188 (15)              | 0.003 (3)    | -0.0002(14)            | 0.004 (3)    |
| O8W      | 0.020 (5)                | 0.042 (6)               | 0.029 (4)                | 0.008 (3)    | 0.008 (3)              | 0.006 (3)    |
|          | - (-)                    | (-)                     | - ( )                    |              |                        |              |

### Geometric parameters (Å, °)

| Mg1—O2W <sup>i</sup> | 2.0322 (19) | N3—H3N | 0.84 (5)  |
|----------------------|-------------|--------|-----------|
| Mg1—O2W              | 2.0322 (19) | C1—C2  | 1.388 (4) |
| Mg1—O1W              | 2.0472 (18) | C1—C6  | 1.396 (4) |
| Mg1—O1W <sup>i</sup> | 2.0472 (18) | C2—C3  | 1.391 (4) |
| Mg1—O3W <sup>i</sup> | 2.0769 (19) | C2—H2  | 0.9500    |
| Mg1—O3W              | 2.0769 (19) | C3—C4  | 1.397 (4) |
| S1—01                | 1.4544 (19) | С3—Н3  | 0.9500    |
| S1—O2                | 1.4624 (19) | C4—C5  | 1.391 (4) |
| S1—O3                | 1.464 (2)   | C5—C6  | 1.383 (4) |
| S1—C1                | 1.776 (3)   | С5—Н5  | 0.9500    |
| O1W—H1W              | 0.867 (10)  | С6—Н6  | 0.9500    |
| O1W—H2W              | 0.873 (10)  | C7—C8  | 1.419 (4) |
| O2W—H3W              | 0.868 (10)  | C7—C12 | 1.438 (4) |
|                      |             |        |           |

| O2W—H4W                                | 0.869 (10)            | C8—C9         | 1.360 (4)            |
|----------------------------------------|-----------------------|---------------|----------------------|
| O3W—H5W                                | 0.870 (10)            | С8—Н8         | 0.9500               |
| O3W—H6W                                | 0.871 (10)            | C9—C10        | 1.441 (4)            |
| O4W—H8W                                | 0.870 (10)            | C9—S2A        | 1.775 (9)            |
| O4W—H7W                                | 0.874 (10)            | C9—S2         | 1.789 (6)            |
| O5W—H9W                                | 0.872 (10)            | C10—C11       | 1.446 (4)            |
| O5W—H10W                               | 0.874 (10)            | C11—C12       | 1.345 (4)            |
| O6W—H11W                               | 0.868 (10)            | C11—H11       | 0.9500               |
| O6W—H12W                               | 0.871 (10)            | С12—Н12       | 0.9500               |
| 07W—H13W                               | 0.887 (10)            | §2—05         | 1.451 (6)            |
| 07W—H14W                               | 0.879 (10)            | <u>\$2</u> 04 | 1 452 (6)            |
| N1—N2                                  | 1 294 (4)             | \$2—06        | 1 465 (6)            |
| N1—C4                                  | 1.291(1)<br>1 413 (3) | S2A-04A       | 1 444 (9)            |
| N1—H1N                                 | 0.84(4)               | S2A-05A       | 1 445 (9)            |
| N2                                     | 1 342 (4)             | S2A-06A       | 1.115(9)<br>1 445(9) |
| N3-C10                                 | 1 309 (4)             | 08W—H16W      | 0.8927               |
| N3_H2N                                 | 0.87(4)               | 08W           | 0.8927               |
| 1N3—1121N                              | 0.87 (4)              | 08w—1115w     | 0.8807               |
| O2W <sup>i</sup> —Mg1—O2W              | 180.0                 | С3—С2—Н2      | 120.3                |
| O2W <sup>i</sup> —Mg1—O1W              | 88.72 (8)             | C2—C3—C4      | 118.8 (3)            |
| O2W—Mg1—O1W                            | 91.28 (8)             | С2—С3—Н3      | 120.6                |
| $O2W^{i}$ —Mg1—O1W <sup>i</sup>        | 91.28 (8)             | С4—С3—Н3      | 120.6                |
| O2W—Mg1—O1W <sup>i</sup>               | 88.72 (8)             | C5—C4—C3      | 121.6 (3)            |
| O1W-Mg1-O1W <sup>i</sup>               | 180.0                 | C5—C4—N1      | 117.1 (3)            |
| O2W <sup>i</sup> —Mg1—O3W <sup>i</sup> | 91.69 (8)             | C3—C4—N1      | 121.3 (2)            |
| O2W—Mg1—O3W <sup>i</sup>               | 88.31 (8)             | C6—C5—C4      | 119.4 (3)            |
| O1W—Mg1—O3W <sup>i</sup>               | 88.07 (8)             | С6—С5—Н5      | 120.3                |
| O1W <sup>i</sup> —Mg1—O3W <sup>i</sup> | 91.93 (8)             | C4—C5—H5      | 120.3                |
| O2W <sup>i</sup> —Mg1—O3W              | 88.31 (8)             | C5—C6—C1      | 119.2 (3)            |
| O2W—Mg1—O3W                            | 91.69 (8)             | С5—С6—Н6      | 120.4                |
| O1W—Mg1—O3W                            | 91.93 (8)             | С1—С6—Н6      | 120.4                |
| O1W <sup>i</sup> —Mg1—O3W              | 88.07 (8)             | N2—C7—C8      | 114.2 (2)            |
| O3W <sup>i</sup> —Mg1—O3W              | 180.0                 | N2—C7—C12     | 127.1 (3)            |
| 01—S1—O2                               | 112.39 (12)           | C8—C7—C12     | 118.7 (3)            |
| 01—S1—O3                               | 113.50 (12)           | C9—C8—C7      | 121.9 (3)            |
| O2—S1—O3                               | 112.04 (12)           | С9—С8—Н8      | 119.1                |
| 01—S1—C1                               | 104.89 (11)           | С7—С8—Н8      | 119.1                |
| O2—S1—C1                               | 106.91 (11)           | C8—C9—C10     | 119.8 (2)            |
| O3—S1—C1                               | 106.42 (12)           | C8—C9—S2A     | 114.8 (5)            |
| Mg1—O1W—H1W                            | 130 (2)               | C10—C9—S2A    | 125.4 (5)            |
| Mg1—O1W—H2W                            | 120 (2)               | C8—C9—S2      | 117.9 (3)            |
| H1W—O1W—H2W                            | 104 (2)               | C10—C9—S2     | 122.2 (3)            |
| Mg1—O2W—H3W                            | 129 (2)               | N3-C10-C9     | 123.7 (3)            |
| Mg1—O2W—H4W                            | 125 (2)               | N3—C10—C11    | 118.5 (3)            |
| H3W—O2W—H4W                            | 104 (2)               | C9—C10—C11    | 117.8 (2)            |
| Mg1—O3W—H5W                            | 122 (3)               | C12—C11—C10   | 121.8 (3)            |
| Mg1—O3W—H6W                            | 124 (3)               | C12—C11—H11   | 119.1                |
| H5W—O3W—H6W                            | 103 (2)               | C10—C11—H11   | 119.1                |

| H8W—O4W—H7W   | 101 (2)      | C11—C12—C7     | 120.0 (3)   |
|---------------|--------------|----------------|-------------|
| H9W—O5W—H10W  | 100 (2)      | C11—C12—H12    | 120.0       |
| H11W—O6W—H12W | 103 (2)      | C7—C12—H12     | 120.0       |
| H13W—O7W—H14W | 99 (2)       | O5—S2—O4       | 111.5 (7)   |
| N2—N1—C4      | 119.8 (2)    | O5—S2—O6       | 113.3 (6)   |
| N2—N1—H1N     | 123 (3)      | O4—S2—O6       | 111.0 (7)   |
| C4—N1—H1N     | 117 (3)      | O5—S2—C9       | 105.2 (6)   |
| N1—N2—C7      | 120.5 (2)    | O4—S2—C9       | 106.9 (8)   |
| C10—N3—H2N    | 119 (3)      | O6—S2—C9       | 108.6 (5)   |
| C10—N3—H3N    | 120 (3)      | O4A—S2A—O5A    | 114.5 (14)  |
| H2N—N3—H3N    | 120 (4)      | O4A—S2A—O6A    | 116.7 (15)  |
| C2—C1—C6      | 121.5 (2)    | O5A—S2A—O6A    | 110.1 (11)  |
| C2—C1—S1      | 121.0 (2)    | O4A—S2A—C9     | 102.3 (15)  |
| C6—C1—S1      | 117.5 (2)    | O5A—S2A—C9     | 106.6 (10)  |
| C1—C2—C3      | 119.4 (3)    | O6A—S2A—C9     | 105.3 (9)   |
| C1—C2—H2      | 120.3        | H16W—O8W—H15W  | 100.0       |
|               |              |                |             |
| C4—N1—N2—C7   | -179.3 (2)   | C7—C8—C9—S2    | -177.1 (4)  |
| 01—S1—C1—C2   | 137.8 (2)    | C8—C9—C10—N3   | -179.9 (3)  |
| O2—S1—C1—C2   | -102.7 (2)   | S2A-C9-C10-N3  | 0.6 (8)     |
| O3—S1—C1—C2   | 17.3 (2)     | S2—C9—C10—N3   | -2.8 (5)    |
| O1—S1—C1—C6   | -40.8 (2)    | C8—C9—C10—C11  | -0.2 (4)    |
| O2—S1—C1—C6   | 78.7 (2)     | S2A-C9-C10-C11 | -179.6 (7)  |
| O3—S1—C1—C6   | -161.37 (19) | S2—C9—C10—C11  | 177.0 (4)   |
| C6-C1-C2-C3   | 1.1 (4)      | N3—C10—C11—C12 | 180.0 (3)   |
| S1—C1—C2—C3   | -177.5 (2)   | C9—C10—C11—C12 | 0.2 (4)     |
| C1—C2—C3—C4   | -0.2 (4)     | C10-C11-C12-C7 | -0.1 (4)    |
| C2—C3—C4—C5   | -0.5 (4)     | N2-C7-C12-C11  | -179.5 (3)  |
| C2-C3-C4-N1   | 178.4 (2)    | C8—C7—C12—C11  | 0.1 (4)     |
| N2—N1—C4—C5   | 178.2 (2)    | C8—C9—S2—O5    | -66.3 (6)   |
| N2—N1—C4—C3   | -0.8 (4)     | C10—C9—S2—O5   | 116.5 (5)   |
| C3—C4—C5—C6   | 0.4 (4)      | C8—C9—S2—O4    | 52.3 (7)    |
| N1-C4-C5-C6   | -178.6 (2)   | C10—C9—S2—O4   | -124.9 (6)  |
| C4—C5—C6—C1   | 0.5 (4)      | C8—C9—S2—O6    | 172.1 (5)   |
| C2-C1-C6-C5   | -1.2 (4)     | C10—C9—S2—O6   | -5.1 (8)    |
| S1—C1—C6—C5   | 177.4 (2)    | C8—C9—S2A—O4A  | 73.9 (12)   |
| N1—N2—C7—C8   | -179.2 (2)   | C10-C9-S2A-O4A | -106.6 (11) |
| N1—N2—C7—C12  | 0.5 (4)      | C8—C9—S2A—O5A  | -46.7 (12)  |
| N2—C7—C8—C9   | 179.6 (3)    | C10—C9—S2A—O5A | 132.8 (9)   |
| C12—C7—C8—C9  | -0.1 (4)     | C8—C9—S2A—O6A  | -163.7 (9)  |
| C7—C8—C9—C10  | 0.1 (4)      | C10—C9—S2A—O6A | 15.8 (13)   |
| C7—C8—C9—S2A  | 179.7 (7)    |                |             |
|               |              |                |             |

Symmetry code: (i) -x-1/2, -y+1/2, -z.

#### Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|-----------------------------|-------------|----------|--------------|-------------------------|
| N1—H1 <i>N</i> …O7 <i>W</i> | 0.84 (4)    | 1.99 (5) | 2.80 (2)     | 164 (4)                 |

Acta Cryst. (2020). C76, 972-981

| N1—H1 <i>N</i> ···O8 <i>W</i>                           | 0.84 (4) | 2.00 (6) | 2.83 (4)   | 170 (4) |
|---------------------------------------------------------|----------|----------|------------|---------|
| N3—H2 $N$ ···O5 $W$ <sup>ii</sup>                       | 0.87 (4) | 2.02 (4) | 2.881 (3)  | 174 (4) |
| N3—H3 <i>N</i> ···O6                                    | 0.84 (5) | 2.03 (5) | 2.700 (7)  | 137 (4) |
| N3—H3 <i>N</i> ···O6 <i>A</i>                           | 0.84 (5) | 2.10 (5) | 2.763 (14) | 136 (4) |
| O1 <i>W</i> —H1 <i>W</i> ···O3                          | 0.87(1)  | 1.92 (1) | 2.769 (3)  | 167 (3) |
| O1 <i>W</i> —H2 <i>W</i> ···O1 <sup>iii</sup>           | 0.87(1)  | 1.84 (1) | 2.714 (3)  | 177 (4) |
| O2 <i>W</i> —H3 <i>W</i> ···O4 <i>W</i>                 | 0.87(1)  | 1.88(1)  | 2.727 (3)  | 165 (3) |
| O2W—H4 $W$ ···O2 <sup>iv</sup>                          | 0.87(1)  | 1.95 (1) | 2.812 (3)  | 173 (4) |
| $O3W$ — $H5W$ ···O $4W^{\vee}$                          | 0.87(1)  | 1.85 (1) | 2.707 (3)  | 169 (4) |
| $O3W$ — $H6W$ ··· $O6^{vi}$                             | 0.87(1)  | 2.04 (2) | 2.897 (6)  | 169 (4) |
| $O3W$ — $H6W$ ··· $O6A^{vi}$                            | 0.87(1)  | 2.18 (2) | 2.983 (11) | 153 (3) |
| O4 <i>W</i> —H8 <i>W</i> ···O5 <i>W</i>                 | 0.87(1)  | 1.95 (2) | 2.803 (3)  | 166 (4) |
| O4 <i>W</i> —H7 <i>W</i> ···O6 <i>W</i>                 | 0.87(1)  | 1.86(1)  | 2.706 (3)  | 162 (3) |
| O5W—H10W····O2 <sup>i</sup>                             | 0.87(1)  | 2.16 (3) | 2.829 (3)  | 133 (3) |
| O5 <i>W</i> —H9 <i>W</i> ···O3 <sup>vii</sup>           | 0.87(1)  | 1.99(1)  | 2.820(3)   | 160 (3) |
| O5W—H10W····O3 <sup>viii</sup>                          | 0.87(1)  | 2.52 (3) | 3.251 (3)  | 141 (3) |
| O6 <i>W</i> —H11 <i>W</i> …O4 <sup>vi</sup>             | 0.87(1)  | 2.17 (2) | 3.028 (13) | 167 (4) |
| O6 <i>W</i> —H11 <i>W</i> ···O4 <i>A</i> <sup>vi</sup>  | 0.87(1)  | 1.94 (3) | 2.81 (2)   | 174 (4) |
| O6 <i>W</i> —H12 <i>W</i> ····O5 <sup>ix</sup>          | 0.87(1)  | 2.02 (2) | 2.878 (8)  | 170 (5) |
| O6 <i>W</i> —H12 <i>W</i> ···O5 <i>A</i> <sup>ix</sup>  | 0.87(1)  | 2.43 (2) | 3.276 (14) | 163 (4) |
| O6 <i>W</i> —H12 <i>W</i> ···O6 <i>A</i> <sup>ix</sup>  | 0.87(1)  | 2.52 (3) | 3.220 (17) | 139 (4) |
| O7 <i>W</i> —H13 <i>W</i> ····O5 <sup>x</sup>           | 0.89(1)  | 2.35 (6) | 2.89 (2)   | 119 (5) |
| O7W—H14 $W$ ···O6 $W$ <sup>ii</sup>                     | 0.88 (1) | 2.52 (3) | 3.354 (18) | 159 (5) |
| O7W—H14 $W$ ····O4 <sup>xi</sup>                        | 0.88 (1) | 2.35 (5) | 2.92 (2)   | 123 (4) |
| O8 <i>W</i> —H16 <i>W</i> ····O5 <i>A</i> <sup>x</sup>  | 0.89     | 2.01     | 2.87 (4)   | 163     |
| O8 <i>W</i> —H15 <i>W</i> ····O4 <i>A</i> <sup>xi</sup> | 0.88     | 2.18     | 2.81 (4)   | 128     |
|                                                         |          |          |            |         |

Symmetry codes: (i) -x-1/2, -y+1/2, -z; (ii) x+1/2, y-1/2, z; (iii) -x-1/2, y-1/2, -z-1/2; (iv) -x-1/2, y+1/2, -z-1/2; (v) x, y-1, z; (vi) x-1/2, -y+1/2, z-1/2; (vii) -x-1/2, -y+3/2, -z; (viii) x, -y+1, z+1/2; (ix) x-1/2, -y+3/2, z-1/2; (x) x, -y+1, z-1/2; (xi) x, -y, z-1/2.

 $\label{eq:poly} Poly[[\{\mu_2-4-[2-(4-amino-2-methyl-5-methoxyphenyl)diazen-1-yl]benzene-1,3-disulfonato\}di-\mu-aquadiaquabarium(II)] dihydrate] (V)$ 

| Crystal data                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Ba(C_{14}H_{13}N_{3}O_{7}S_{2})(H_{2}O)_{4}]\cdot 2H_{2}O$<br>$M_{r} = 644.83$<br>Orthorhombic, <i>Pbca</i><br>a = 7.1293 (4) Å<br>b = 18.8368 (11) Å<br>c = 34.752 (2) Å<br>V = 4667.0 (5) Å <sup>3</sup><br>Z = 8<br>F(000) = 2576 | $D_x = 1.835 \text{ Mg m}^{-3}$<br>Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 4623 reflections<br>$\theta = 1.0-26.0^{\circ}$<br>$\mu = 1.95 \text{ mm}^{-1}$<br>T = 123  K<br>Elongated rhomb, orange<br>$0.25 \times 0.10 \times 0.04 \text{ mm}$ |
| Data collection                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        |
| Nonius KappaCCD<br>diffractometer<br>Radiation source: rotating anode<br>$\omega$ and phi scans<br>Absorption correction: multi-scan<br>(SADABS; Bruker, 2012)                                                                         | $T_{\min} = 0.448, T_{\max} = 0.743$<br>7914 measured reflections<br>4489 independent reflections<br>3554 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.037$<br>$\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.2^{\circ}$                                                          |

| $  h = -8 \rightarrow 8 \\ k = -23 \rightarrow 23 $ | $l = -42 \rightarrow 42$                                 |
|-----------------------------------------------------|----------------------------------------------------------|
| Refinement                                          |                                                          |
| Refinement on $F^2$                                 | Hydrogen site location: mixed                            |
| Least-squares matrix: full                          | H atoms treated by a mixture of independent              |
| $R[F^2 > 2\sigma(F^2)] = 0.042$                     | and constrained refinement                               |
| $wR(F^2) = 0.096$                                   | $w = 1/[\sigma^2(F_0^2) + (0.0229P)^2 + 26.8527P]$       |
| S = 1.15                                            | where $P = (F_0^2 + 2F_c^2)/3$                           |
| 4489 reflections                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| 344 parameters                                      | $\Delta \rho_{\rm max} = 1.65 \text{ e} \text{ Å}^{-3}$  |
| 20 restraints                                       | $\Delta \rho_{\rm min} = -1.23 \text{ e} \text{ Å}^{-3}$ |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|---------------|-----------------------------|
| Bal  | 0.46936 (4)  | 0.13398 (2)  | 0.19569 (2)   | 0.01523 (10)                |
| S1   | 0.3700 (2)   | 0.33522 (7)  | 0.17263 (4)   | 0.0177 (3)                  |
| S2   | 0.52454 (19) | 0.61085 (6)  | 0.14177 (4)   | 0.0142 (3)                  |
| 01   | 0.4242 (6)   | 0.26422 (18) | 0.16056 (11)  | 0.0235 (9)                  |
| O2   | 0.1747 (6)   | 0.35234 (19) | 0.16343 (11)  | 0.0229 (9)                  |
| O3   | 0.4127 (6)   | 0.34897 (18) | 0.21305 (10)  | 0.0225 (9)                  |
| O4   | 0.3983 (5)   | 0.60937 (18) | 0.17551 (10)  | 0.0178 (8)                  |
| 05   | 0.7040 (5)   | 0.64361 (18) | 0.15189 (10)  | 0.0174 (8)                  |
| O6   | 0.4375 (5)   | 0.64224 (18) | 0.10819 (10)  | 0.0183 (8)                  |
| 07   | 0.9268 (6)   | 0.76192 (18) | -0.01184 (10) | 0.0229 (9)                  |
| O1W  | 0.5033 (6)   | -0.0101 (2)  | 0.18560 (12)  | 0.0291 (10)                 |
| H1W  | 0.457 (8)    | -0.042 (2)   | 0.1701 (13)   | 0.035*                      |
| H2W  | 0.569 (8)    | -0.037 (2)   | 0.2011 (13)   | 0.035*                      |
| O2W  | 0.4366 (6)   | 0.1078 (3)   | 0.11948 (12)  | 0.0328 (10)                 |
| H3W  | 0.338 (5)    | 0.115 (3)    | 0.1049 (13)   | 0.039*                      |
| H4W  | 0.510 (6)    | 0.086 (3)    | 0.1030 (13)   | 0.039*                      |
| O3W  | 0.6687 (6)   | 0.21189 (19) | 0.25537 (11)  | 0.0227 (9)                  |
| H5W  | 0.710 (7)    | 0.2458 (19)  | 0.2404 (13)   | 0.027*                      |
| H6W  | 0.588 (6)    | 0.236 (2)    | 0.2692 (13)   | 0.027*                      |
| O4W  | 0.3374 (6)   | 0.0719 (2)   | 0.26436 (11)  | 0.0225 (9)                  |
| H7W  | 0.415 (7)    | 0.072 (3)    | 0.2841 (11)   | 0.027*                      |
| H8W  | 0.320 (8)    | 0.0258 (8)   | 0.2628 (14)   | 0.027*                      |
| O5W  | -0.1119 (6)  | 0.2702 (2)   | 0.19632 (11)  | 0.0238 (9)                  |
| H9W  | -0.046 (7)   | 0.305 (2)    | 0.1861 (13)   | 0.029*                      |
| H10W | -0.145 (8)   | 0.248 (2)    | 0.1752 (8)    | 0.029*                      |
| O6W  | 0.2298 (6)   | 0.42869 (19) | 0.26713 (11)  | 0.0238 (9)                  |
| H11W | 0.274 (7)    | 0.405 (2)    | 0.2472 (11)   | 0.029*                      |
| H12W | 0.136 (6)    | 0.401 (2)    | 0.2733 (15)   | 0.029*                      |

| N1   | 0.7484 (6) | 0.5510 (2)  | 0.07400 (12)  | 0.0155 (9)  |
|------|------------|-------------|---------------|-------------|
| N2   | 0.7400 (6) | 0.5290 (2)  | 0.03926 (12)  | 0.0168 (10) |
| N3   | 0.9314 (8) | 0.7070 (3)  | -0.08174 (14) | 0.0250 (11) |
| C1   | 0.5036 (7) | 0.3964 (3)  | 0.14543 (14)  | 0.0158 (11) |
| C2   | 0.6185 (8) | 0.3746 (3)  | 0.11551 (15)  | 0.0182 (12) |
| H2   | 0.6392     | 0.3255      | 0.1108        | 0.022*      |
| C3   | 0.7031 (8) | 0.4258 (3)  | 0.09250 (15)  | 0.0183 (12) |
| H3   | 0.7817     | 0.4113      | 0.0719        | 0.022*      |
| C4   | 0.6745 (8) | 0.4981 (3)  | 0.09918 (15)  | 0.0158 (11) |
| C5   | 0.5678 (8) | 0.5194 (3)  | 0.13124 (15)  | 0.0161 (11) |
| C6   | 0.4806 (8) | 0.4688 (3)  | 0.15396 (14)  | 0.0155 (11) |
| H6   | 0.4055     | 0.4830      | 0.1752        | 0.019*      |
| C7   | 0.7944 (7) | 0.5760 (3)  | 0.01038 (14)  | 0.0146 (11) |
| C8   | 0.7904 (7) | 0.5476 (3)  | -0.02719 (15) | 0.0152 (11) |
| C9   | 0.8361 (8) | 0.5924 (3)  | -0.05756 (15) | 0.0175 (11) |
| H9   | 0.8346     | 0.5738      | -0.0830       | 0.021*      |
| C10  | 0.8843 (8) | 0.6637 (3)  | -0.05219 (15) | 0.0195 (12) |
| C11  | 0.8853 (8) | 0.6905 (3)  | -0.01369 (16) | 0.0182 (11) |
| C12  | 0.8409 (7) | 0.6479 (3)  | 0.01663 (15)  | 0.0167 (11) |
| H12  | 0.8412     | 0.6666      | 0.0420        | 0.020*      |
| C13  | 0.7344 (8) | 0.4715 (3)  | -0.03471 (16) | 0.0202 (12) |
| H13A | 0.7096     | 0.4651      | -0.0622       | 0.030*      |
| H13B | 0.6210     | 0.4602      | -0.0200       | 0.030*      |
| H13C | 0.8364     | 0.4398      | -0.0268       | 0.030*      |
| C14  | 0.9168 (9) | 0.7942 (3)  | 0.02544 (16)  | 0.0244 (13) |
| H14A | 0.7913     | 0.7869      | 0.0363        | 0.037*      |
| H14B | 0.9418     | 0.8452      | 0.0232        | 0.037*      |
| H14C | 1.0105     | 0.7725      | 0.0424        | 0.037*      |
| H1N  | 0.911 (9)  | 0.693 (3)   | -0.1055 (7)   | 0.033 (18)* |
| H2N  | 0.955 (10) | 0.7519 (12) | -0.077 (2)    | 0.05 (2)*   |
|      |            |             |               |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|-----|--------------|--------------|--------------|---------------|---------------|--------------|
| Ba1 | 0.01377 (17) | 0.01302 (15) | 0.01890 (16) | -0.00088 (13) | -0.00011 (13) | 0.00011 (12) |
| S1  | 0.0207 (7)   | 0.0111 (6)   | 0.0214 (7)   | -0.0017 (5)   | 0.0025 (6)    | 0.0020 (5)   |
| S2  | 0.0126 (6)   | 0.0110 (6)   | 0.0189 (6)   | -0.0004 (5)   | 0.0005 (5)    | 0.0001 (5)   |
| 01  | 0.032 (2)    | 0.0110 (18)  | 0.028 (2)    | 0.0017 (17)   | 0.0066 (18)   | 0.0012 (15)  |
| 02  | 0.020 (2)    | 0.0161 (19)  | 0.033 (2)    | -0.0035 (16)  | 0.0008 (17)   | 0.0027 (16)  |
| 03  | 0.029 (2)    | 0.0173 (19)  | 0.021 (2)    | -0.0021 (17)  | 0.0030 (18)   | 0.0021 (15)  |
| O4  | 0.0154 (19)  | 0.0146 (17)  | 0.023 (2)    | 0.0081 (15)   | 0.0013 (16)   | -0.0002 (15) |
| 05  | 0.015 (2)    | 0.0111 (17)  | 0.026 (2)    | -0.0021 (15)  | -0.0007 (16)  | -0.0024 (15) |
| 06  | 0.017 (2)    | 0.0131 (18)  | 0.0248 (19)  | -0.0044 (16)  | 0.0016 (16)   | 0.0037 (14)  |
| 07  | 0.030 (2)    | 0.0142 (18)  | 0.025 (2)    | -0.0047 (17)  | 0.0030 (18)   | 0.0011 (15)  |
| O1W | 0.033 (3)    | 0.018 (2)    | 0.036 (2)    | 0.0001 (19)   | -0.010 (2)    | -0.0025 (16) |
| O2W | 0.016 (2)    | 0.056 (3)    | 0.026 (2)    | 0.007 (2)     | -0.0030 (18)  | -0.015 (2)   |
| O3W | 0.023 (2)    | 0.0203 (19)  | 0.025 (2)    | -0.0029 (18)  | 0.0034 (18)   | 0.0010 (16)  |
| O4W | 0.025 (2)    | 0.0181 (19)  | 0.024 (2)    | 0.0009 (18)   | 0.0006 (18)   | 0.0034 (16)  |

| O5W | 0.025 (2) | 0.020 (2)   | 0.026 (2) | -0.0054 (17) | 0.003 (2)    | -0.0012 (17) |
|-----|-----------|-------------|-----------|--------------|--------------|--------------|
| O6W | 0.024 (2) | 0.0178 (19) | 0.029 (2) | -0.0046 (18) | 0.0048 (18)  | -0.0031 (16) |
| N1  | 0.014 (2) | 0.015 (2)   | 0.018 (2) | -0.0014 (18) | 0.0011 (19)  | 0.0009 (17)  |
| N2  | 0.015 (2) | 0.016 (2)   | 0.019 (2) | -0.0005 (19) | -0.0007 (19) | 0.0003 (18)  |
| N3  | 0.032 (3) | 0.019 (2)   | 0.024 (3) | -0.002 (2)   | 0.002 (2)    | 0.001 (2)    |
| C1  | 0.015 (3) | 0.013 (2)   | 0.020 (3) | -0.001 (2)   | -0.003 (2)   | 0.003 (2)    |
| C2  | 0.022 (3) | 0.013 (3)   | 0.020 (3) | 0.002 (2)    | 0.001 (2)    | -0.001 (2)   |
| C3  | 0.020 (3) | 0.016 (3)   | 0.018 (3) | 0.003 (2)    | 0.003 (2)    | -0.002 (2)   |
| C4  | 0.015 (3) | 0.015 (3)   | 0.018 (3) | -0.001 (2)   | 0.000 (2)    | -0.001 (2)   |
| C5  | 0.018 (3) | 0.011 (2)   | 0.019 (3) | -0.003 (2)   | -0.004 (2)   | 0.0013 (19)  |
| C6  | 0.014 (3) | 0.017 (3)   | 0.015 (2) | -0.002 (2)   | 0.000 (2)    | -0.0015 (19) |
| C7  | 0.009 (3) | 0.018 (3)   | 0.017 (3) | 0.004 (2)    | 0.001 (2)    | 0.002 (2)    |
| C8  | 0.007 (3) | 0.016 (3)   | 0.023 (3) | 0.002 (2)    | 0.001 (2)    | 0.000(2)     |
| C9  | 0.016 (3) | 0.018 (3)   | 0.018 (3) | 0.004 (2)    | 0.001 (2)    | -0.001 (2)   |
| C10 | 0.013 (3) | 0.025 (3)   | 0.021 (3) | 0.001 (2)    | 0.000 (2)    | 0.002 (2)    |
| C11 | 0.016 (3) | 0.013 (2)   | 0.026 (3) | 0.002 (2)    | -0.002 (2)   | 0.001 (2)    |
| C12 | 0.012 (3) | 0.019 (3)   | 0.019 (3) | 0.003 (2)    | -0.002 (2)   | -0.004 (2)   |
| C13 | 0.019 (3) | 0.016 (3)   | 0.025 (3) | 0.001 (2)    | 0.000 (2)    | -0.002 (2)   |
| C14 | 0.030 (4) | 0.014 (3)   | 0.029 (3) | 0.001 (2)    | 0.003 (3)    | -0.003 (2)   |
|     |           |             |           |              |              |              |

#### Geometric parameters (Å, °)

| Ba1—O2W                | 2.704 (4)  | O6W—H11W | 0.878 (10) |
|------------------------|------------|----------|------------|
| Ba1—O1W                | 2.747 (4)  | O6W—H12W | 0.876 (10) |
| Ba1—O4 <sup>i</sup>    | 2.753 (4)  | N1—N2    | 1.277 (6)  |
| Ba1—O1                 | 2.759 (4)  | N1—C4    | 1.426 (6)  |
| Ba1—O5 <sup>ii</sup>   | 2.788 (4)  | N2—C7    | 1.393 (6)  |
| Ba1—O4W                | 2.819 (4)  | N3—C10   | 1.354 (7)  |
| Ba1—O3W                | 2.911 (4)  | N3—H1N   | 0.879 (10) |
| Ba1—O3W <sup>iii</sup> | 3.105 (4)  | N3—H2N   | 0.877 (10) |
| Ba1-O4W <sup>iv</sup>  | 3.191 (4)  | C1—C2    | 1.386 (7)  |
| S101                   | 1.454 (4)  | C1—C6    | 1.406 (7)  |
| S1—O3                  | 1.460 (4)  | C2—C3    | 1.391 (7)  |
| S1—O2                  | 1.465 (4)  | С2—Н2    | 0.9500     |
| S1—C1                  | 1.768 (5)  | C3—C4    | 1.397 (7)  |
| S2—O6                  | 1.448 (4)  | С3—Н3    | 0.9500     |
| S2—O5                  | 1.463 (4)  | C4—C5    | 1.408 (7)  |
| S2—O4                  | 1.478 (4)  | C5—C6    | 1.385 (7)  |
| S2—C5                  | 1.788 (5)  | С6—Н6    | 0.9500     |
| O4—Ba1 <sup>v</sup>    | 2.753 (4)  | C7—C8    | 1.411 (7)  |
| O5—Ba1 <sup>vi</sup>   | 2.788 (4)  | C7—C12   | 1.412 (7)  |
| O7—C11                 | 1.379 (6)  | C8—C9    | 1.390 (7)  |
| O7—C14                 | 1.433 (6)  | C8—C13   | 1.511 (7)  |
| O1W—H1W                | 0.873 (10) | C9—C10   | 1.400 (7)  |
| O1W—H2W                | 0.873 (10) | С9—Н9    | 0.9500     |
| O2W—H3W                | 0.877 (10) | C10—C11  | 1.430 (7)  |
| O2W—H4W                | 0.875 (10) | C11—C12  | 1.361 (7)  |
| O3W—Ba1 <sup>iv</sup>  | 3.105 (4)  | C12—H12  | 0.9500     |
|                        |            |          |            |

| O3W—H5W                                    | 0.875 (10)  | C13—H13A                    | 0.9800      |
|--------------------------------------------|-------------|-----------------------------|-------------|
| O3W—H6W                                    | 0.876 (10)  | C13—H13B                    | 0.9800      |
| O4W—Ba1 <sup>iii</sup>                     | 3.191 (4)   | C13—H13C                    | 0.9800      |
| O4W—H7W                                    | 0.879 (10)  | C14—H14A                    | 0.9800      |
| O4W—H8W                                    | 0.878 (10)  | C14—H14B                    | 0.9800      |
| O5W—H9W                                    | 0.877 (10)  | C14—H14C                    | 0.9800      |
| 05W—H10W                                   | 0.876 (10)  |                             | 0.000       |
|                                            |             |                             |             |
| O2W—Ba1—O1W                                | 72.69 (14)  | H5W—O3W—H6W                 | 100 (2)     |
| O2W—Ba1—O4 <sup>i</sup>                    | 68.74 (12)  | Ba1—O4W—Ba1 <sup>iii</sup>  | 119.37 (12) |
| O1W—Ba1—O4 <sup>i</sup>                    | 83.39 (12)  | Ba1—O4W—H7W                 | 116 (4)     |
| O2W—Ba1—O1                                 | 73.66 (13)  | Ba1 <sup>iii</sup> —O4W—H7W | 100 (4)     |
| O1W—Ba1—O1                                 | 146.32 (12) | Ba1—O4W—H8W                 | 114 (4)     |
| O4 <sup>i</sup> —Ba1—O1                    | 85.75 (11)  | Ba1 <sup>iii</sup> —O4W—H8W | 106 (4)     |
| O2W—Ba1—O5 <sup>ii</sup>                   | 63.22 (12)  | H7W—O4W—H8W                 | 99 (2)      |
| O1W—Ba1—O5 <sup>ii</sup>                   | 85.47 (12)  | H9W—O5W—H10W                | 99 (2)      |
| O4 <sup>i</sup> —Ba1—O5 <sup>ii</sup>      | 131.85 (10) | H11W—O6W—H12W               | 100 (2)     |
| O1—Ba1—O5 <sup>ii</sup>                    | 78.35 (11)  | N2—N1—C4                    | 109.7 (4)   |
| O2W—Ba1—O4W                                | 136.43 (13) | N1—N2—C7                    | 117.5 (4)   |
| O1W—Ba1—O4W                                | 74.19 (12)  | C10—N3—H1N                  | 119 (4)     |
| O4 <sup>i</sup> —Ba1—O4W                   | 80.10 (11)  | C10—N3—H2N                  | 119 (5)     |
| O1—Ba1—O4W                                 | 134.80 (11) | H1N—N3—H2N                  | 120 (6)     |
| O5 <sup>ii</sup> —Ba1—O4W                  | 140.16 (11) | C2—C1—C6                    | 121.0 (5)   |
| O2W—Ba1—O3W                                | 146.29 (13) | C2—C1—S1                    | 121.8 (4)   |
| O1W—Ba1—O3W                                | 123.10 (12) | C6—C1—S1                    | 117.2 (4)   |
| O4 <sup>i</sup> —Ba1—O3W                   | 136.99 (11) | C1—C2—C3                    | 118.8 (5)   |
| O1—Ba1—O3W                                 | 85.63 (11)  | C1—C2—H2                    | 120.6       |
| O5 <sup>ii</sup> —Ba1—O3W                  | 87.04 (11)  | С3—С2—Н2                    | 120.6       |
| O4W—Ba1—O3W                                | 76.65 (11)  | C2—C3—C4                    | 121.2 (5)   |
| O2W—Ba1—O3W <sup>iiii</sup>                | 124.26 (12) | С2—С3—Н3                    | 119.4       |
| O1W—Ba1—O3W <sup>iiii</sup>                | 126.70 (12) | С4—С3—Н3                    | 119.4       |
| O4 <sup>i</sup> —Ba1—O3W <sup>iii</sup>    | 64.01 (10)  | C3—C4—C5                    | 119.2 (5)   |
| O1—Ba1—O3W <sup>iii</sup>                  | 75.02 (10)  | C3—C4—N1                    | 121.7 (5)   |
| O5 <sup>ii</sup> —Ba1—O3W <sup>iiii</sup>  | 147.67 (10) | C5—C4—N1                    | 119.1 (4)   |
| O4W—Ba1—O3W <sup>iiii</sup>                | 60.15 (10)  | C6—C5—C4                    | 119.9 (5)   |
| O3W—Ba1—O3W <sup>iiii</sup>                | 73.06 (5)   | C6—C5—S2                    | 118.0 (4)   |
| O2W—Ba1—O4W <sup>iv</sup>                  | 115.49 (11) | C4—C5—S2                    | 122.0 (4)   |
| O1W—Ba1—O4W <sup>iv</sup>                  | 67.73 (11)  | C5—C6—C1                    | 119.7 (5)   |
| O4 <sup>i</sup> —Ba1—O4W <sup>iv</sup>     | 146.32 (10) | С5—С6—Н6                    | 120.2       |
| O1—Ba1—O4W <sup>iv</sup>                   | 127.91 (11) | C1—C6—H6                    | 120.2       |
| O5 <sup>ii</sup> —Ba1—O4W <sup>iv</sup>    | 64.82 (10)  | N2—C7—C8                    | 114.9 (4)   |
| O4W—Ba1—O4W <sup>iv</sup>                  | 75.76 (7)   | N2—C7—C12                   | 124.3 (5)   |
| O3W—Ba1—O4W <sup>iv</sup>                  | 58.23 (10)  | C8—C7—C12                   | 120.7 (5)   |
| O3W <sup>iiii</sup> —Ba1—O4W <sup>iv</sup> | 120.18 (10) | C9—C8—C7                    | 117.9 (5)   |
| O1—S1—O3                                   | 112.7 (2)   | C9—C8—C13                   | 120.4 (5)   |
| O1—S1—O2                                   | 113.1 (2)   | C7—C8—C13                   | 121.6 (5)   |
| O3—S1—O2                                   | 111.7 (2)   | C8—C9—C10                   | 122.6 (5)   |
| O1—S1—C1                                   | 107.6 (2)   | С8—С9—Н9                    | 118.7       |

| O3—S1—C1                                             | 106.7 (2)             | С10—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.7                 |
|------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| O2—S1—C1                                             | 104.6 (2)             | N3—C10—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122.6 (5)             |
| O6—S2—O5                                             | 113.3 (2)             | N3-C10-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.7 (5)             |
| O6—S2—O4                                             | 112.7 (2)             | C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.7 (5)             |
| O5—S2—O4                                             | 110.5 (2)             | C12—C11—O7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 126.0 (5)             |
| O6—S2—C5                                             | 107.6 (2)             | C12—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.0 (5)             |
| O5—S2—C5                                             | 107.7 (2)             | O7—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112.9 (4)             |
| O4—S2—C5                                             | 104.4 (2)             | C11—C12—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1 (5)             |
| S1—O1—Ba1                                            | 136.2 (2)             | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.0                 |
| S2—O4—Ba1 <sup>v</sup>                               | 141.1 (2)             | C7—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.0                 |
| S2-05-Ba1 <sup>vi</sup>                              | 146.5 (2)             | C8—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                 |
| C11—O7—C14                                           | 116.4 (4)             | C8—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                 |
| Ba1—O1W—H1W                                          | 137 (3)               | H13A—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 |
| Ba1—O1W—H2W                                          | 123 (3)               | C8—C13—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                 |
| H1W - O1W - H2W                                      | 101 (2)               | H13A - C13 - H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                 |
| Ba1—O2W—H3W                                          | 127 (4)               | H13B-C13-H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 |
| Ba1 - O2W - H4W                                      | 132 (4)               | 07—C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                 |
| $H_{3W} = 0.2W = H_{4W}$                             | 100(2)                | O7-C14-H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                 |
| $Ba1 - O3W - Ba1^{iv}$                               | 100(2)<br>119 27 (12) | H14A - C14 - H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                 |
| Ba1 = 03W = H5W                                      | 96 (4)                | 07-C14-H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                 |
| $Ba1^{iv} - O3W - H5W$                               | 116 (4)               | $H_{14} - C_{14} - H_{14} C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                 |
| Ba1 = 03W = H6W                                      | 109 (4)               | $H_{14B}$ $C_{14}$ $H_{14C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                 |
| $Ba1^{iv} - O3W - H6W$                               | 105(4)<br>114(4)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.5                 |
|                                                      | 114 (4)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 03 - 81 - 01 - Ba1                                   | 26.9 (4)              | 04 - 82 - C5 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12(5)                 |
| 02-81-01-Ba1                                         | -100.9(3)             | 06-82-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56 1 (5)              |
| C1 = S1 = O1 = Ba1                                   | 1441(3)               | 05-82-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -664(5)               |
| $06-82-04-Ba1^{v}$                                   | 8 8 (4)               | 04 - 82 - C5 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1761(4)               |
| $05-52-04-Ba1^{v}$                                   | 1367(3)               | C4-C5-C6-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18(8)                 |
| $C_{5} = S_{2} = O_{4} = Ba_{1}^{v}$                 | -1077(3)              | 82-C5-C6-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0(0)<br>1769(4)     |
| $06-52-05-Ba1^{vi}$                                  | -167.3(3)             | $C_{2} = C_{1} = C_{6} = C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26(8)                 |
| $04 - 82 - 05 - Ba1^{vi}$                            | 65 1 (4)              | $S_1 - C_1 - C_6 - C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1739(4)              |
| $C_{5} = S_{2} = O_{5} = Bal^{vi}$                   | -483(4)               | N1 - N2 - C7 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 177.2(5)              |
| C4 - N1 - N2 - C7                                    | 175 6 (4)             | N1 - N2 - C7 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -62(8)                |
| 01 - S1 - C1 - C2                                    | 68(5)                 | $N_{2} - C_{7} - C_{8} - C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 177.6(5)              |
| 03 - 51 - C1 - C2                                    | 127.9(4)              | $C_{12} - C_{7} - C_{8} - C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 177.0(3)              |
| 03 - 51 - C1 - C2                                    | -1137(5)              | $N_{2}^{-}C_{7}^{-}C_{8}^{-}C_{13}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -11(7)                |
| $01 \ S1 \ C1 \ C6$                                  | -1767(4)              | $C_{12} = C_7 = C_6 = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -177.8(5)             |
| $03 \ S1 \ C1 \ C6$                                  | -55.6(5)              | $C_{12} - C_{7} - C_{8} - C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.4(8)               |
| 03 = 51 = 01 = 00                                    | 55.0(5)               | $C_{1}^{12} = C_{2}^{8} = C_{1}^{9} = C_{1}^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 178 4 (5)             |
| 02 - 31 - 01 - 00                                    | 02.0(4)               | $C_{13} = C_{0} = C_{10} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170.4(3)              |
| $C_0 - C_1 - C_2 - C_3$                              | -3.0(8)               | $C_{0} = C_{10} = C_{10} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.1(8)               |
| $S_1 = C_1 = C_2 = C_3$                              | 1/2.0(4)              | $C_{0} - C_{2} - C_{10} - C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.8(9)               |
| $C_1 - C_2 - C_3 - C_4$                              | 0.3(0)                | $C_{14} = 07 = C_{11} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.0(8)<br>175 $A(5)$ |
| $C_2 = C_3 = C_4 = C_3$                              | 4.0(0)                | $V_{14} = 0/-0.011 = 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170.2 (5)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -1/3.0(3)             | $N_{3}$ $- U_{10}$ $- U_{11}$ $- U_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1/9.2(3)             |
| IN2 - IN1 - C4 - C3                                  | 30.7(7)               | $V_{2} = 0.0 = 0.11 = 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0(8)                |
| N2 - N1 - C4 - C5                                    | -142.4(5)             | $N_{2} - C_{10} - C_{11} - O/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.4 (8)               |
|                                                      | -> () (×)             | $-i \omega - i \omega$ | -177445               |

| N1—C4—C5—C6 | 174.0 (5)  | O7—C11—C12—C7  | 177.6 (5)  |
|-------------|------------|----------------|------------|
| C3—C4—C5—S2 | -179.9 (4) | C10—C11—C12—C7 | 0.5 (8)    |
| N1-C4-C5-S2 | -0.8 (7)   | N2-C7-C12-C11  | -177.4 (5) |
| O6—S2—C5—C6 | -118.8 (4) | C8—C7—C12—C11  | -1.0 (8)   |
| O5—S2—C5—C6 | 118.6 (4)  |                |            |

Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) -x+3/2, y-1/2, z; (iii) x-1/2, y, -z+1/2; (iv) x+1/2, y, -z+1/2; (v) -x+1/2, y+1/2, z; (vi) -x+3/2, y+1/2, z.

#### Hydrogen-bond geometry (Å, °)

| <i>D</i> —Н | H···A                                                                                                                                                                                                                       | $D \cdots A$                                                                                                                                                                                                                                                                                                                                                                                           | D—H···A                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.88 (1)    | 2.27 (2)                                                                                                                                                                                                                    | 3.144 (6)                                                                                                                                                                                                                                                                                                                                                                                              | 172 (6)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88(1)     | 2.28 (5)                                                                                                                                                                                                                    | 2.984 (6)                                                                                                                                                                                                                                                                                                                                                                                              | 138 (6)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.87(1)     | 2.21 (3)                                                                                                                                                                                                                    | 2.987 (5)                                                                                                                                                                                                                                                                                                                                                                                              | 148 (5)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.87(1)     | 1.92 (2)                                                                                                                                                                                                                    | 2.766 (6)                                                                                                                                                                                                                                                                                                                                                                                              | 161 (6)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88(1)     | 2.03 (3)                                                                                                                                                                                                                    | 2.772 (6)                                                                                                                                                                                                                                                                                                                                                                                              | 141 (5)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88 (1)    | 2.10 (2)                                                                                                                                                                                                                    | 2.948 (6)                                                                                                                                                                                                                                                                                                                                                                                              | 162 (5)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88(1)     | 2.04 (3)                                                                                                                                                                                                                    | 2.805 (5)                                                                                                                                                                                                                                                                                                                                                                                              | 145 (4)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88 (1)    | 1.97 (1)                                                                                                                                                                                                                    | 2.833 (6)                                                                                                                                                                                                                                                                                                                                                                                              | 168 (5)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88(1)     | 2.06 (2)                                                                                                                                                                                                                    | 2.901 (5)                                                                                                                                                                                                                                                                                                                                                                                              | 160 (4)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88 (1)    | 1.87 (2)                                                                                                                                                                                                                    | 2.741 (5)                                                                                                                                                                                                                                                                                                                                                                                              | 171 (5)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88(1)     | 1.97 (3)                                                                                                                                                                                                                    | 2.805 (5)                                                                                                                                                                                                                                                                                                                                                                                              | 158 (6)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88(1)     | 2.17 (3)                                                                                                                                                                                                                    | 2.917 (5)                                                                                                                                                                                                                                                                                                                                                                                              | 143 (5)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88 (1)    | 1.88 (2)                                                                                                                                                                                                                    | 2.737 (5)                                                                                                                                                                                                                                                                                                                                                                                              | 166 (6)                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.88 (1)    | 1.93 (1)                                                                                                                                                                                                                    | 2.800 (6)                                                                                                                                                                                                                                                                                                                                                                                              | 174 (5)                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | D—H<br>0.88 (1)<br>0.88 (1)<br>0.87 (1)<br>0.87 (1)<br>0.88 (1) | $\begin{array}{c cccc} DH & H \cdots A \\ \hline 0.88 (1) & 2.27 (2) \\ 0.88 (1) & 2.28 (5) \\ 0.87 (1) & 2.21 (3) \\ 0.87 (1) & 1.92 (2) \\ 0.88 (1) & 2.03 (3) \\ 0.88 (1) & 2.10 (2) \\ 0.88 (1) & 2.04 (3) \\ 0.88 (1) & 1.97 (1) \\ 0.88 (1) & 2.06 (2) \\ 0.88 (1) & 1.87 (2) \\ 0.88 (1) & 1.97 (3) \\ 0.88 (1) & 2.17 (3) \\ 0.88 (1) & 1.88 (2) \\ 0.88 (1) & 1.93 (1) \\ \hline \end{array}$ | $DH$ $H\cdots A$ $D\cdots A$ $0.88(1)$ $2.27(2)$ $3.144(6)$ $0.88(1)$ $2.28(5)$ $2.984(6)$ $0.87(1)$ $2.21(3)$ $2.987(5)$ $0.87(1)$ $1.92(2)$ $2.766(6)$ $0.88(1)$ $2.03(3)$ $2.772(6)$ $0.88(1)$ $2.10(2)$ $2.948(6)$ $0.88(1)$ $2.04(3)$ $2.805(5)$ $0.88(1)$ $2.06(2)$ $2.901(5)$ $0.88(1)$ $1.97(3)$ $2.805(5)$ $0.88(1)$ $1.97(3)$ $2.805(5)$ $0.88(1)$ $1.97(3)$ $2.917(5)$ $0.88(1)$ $1.93(1)$ $2.800(6)$ |

Symmetry codes: (i) -*x*+1/2, *y*-1/2, *z*; (ii) -*x*+3/2, *y*-1/2, *z*; (iii) *x*-1/2, *y*, -*z*+1/2; (iv) *x*+1/2, *y*, -*z*+1/2; (vii) -*x*+1, -*y*+1, -*z*; (viii) *x*+1/2, -*y*+3/2, -*z*; (ix) -*x*+1, *y*-1/2, -*z*+1/2; (x) *x*+1, *y*, *z*.