

Received 28 October 2019 Accepted 25 December 2019

Edited by A. Lemmerer, University of the Witwatersrand, Johannesburg, South Africa

Keywords: twinning; phase transition; thiorhenate; crystal structure.

CCDC references: 1971809; 1971808; 1974401

Supporting information: this article has supporting information at journals.iucr.org/c

Phase transition and structures of the twinned lowtemperature phases of (Et₄N)[ReS₄]

Eduard Bernhardt^a* and Regine Herbst-Irmer^b

^aAnorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstrasse 20, Wuppertal 42119, Germany, and ^bInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany. *Correspondence e-mail: edbern@uni-wuppertal.de

The title compound, tetraethylammonium tetrathiorhenate, $[(C_2H_5)_4N][ReS_4]$, has, at room temperature, a disordered structure in the space group $P6_3mc$ (Z = 2, α -phase). A phase transition to the monoclinic space group $P2_1$ (Z = 2, γ -phase) at 285 K leads to a pseudo-merohedral twin. The high deviation from the hexagonal metric causes split reflections. However, the different orientations could not be separated, but were integrated using a large integration box. Rapid cooling to 110–170 K produces a metastable β -phase ($P6_3$, Z = 18) in addition to the γ -phase. All crystals of the β -phase are contaminated with the γ -phase. Additionally, the crystals of the β -phase are merohedrally twinned. In contrast to the α -phase, the β - and γ -phases do not show disorder.

1. Introduction

Salts with the ReS_4^- anion were synthesized for the first time in 1970 (Müller et al., 1970). So far, some syntheses of ReS₄⁻ salts with different cations, such as Me_4N^+ (Müller *et al.*, 1970), Ph₄P⁺ (Müller et al., 1970), Ph₄As⁺ (Müller et al., 1970; Halbert et al., 1990; Wei et al., 1991), Bu₄N⁺ (Do et al., 1985), Et₄N⁺ (Müller et al., 1986, 1987; Halbert et al., 1990; Wei et al., 1991; Goodman & Rauchfuss, 2002), Pr_4N^+ (Scattergood *et al.*, 1987) and $(PhCH_2)Et_3N^+$ (Halbert et al., 1990; Wei et al., 1991), have been reported. There is a lack of reliable methods to prepare salts of the ReS_4^- anion with Na^+ , K^+ , Rb^+ and Cs^+ cations. The ReS₄⁻ anion is used in several organic chemistry reactions, such as addition reactions to carbon-carbon multiple bonds (Goodman et al., 1996; Goodman & Rauchfuss, 1998, 1999; Dopke et al., 2000) and the carbon-nitrogen triple bond of some nitriles (Goodman & Rauchfuss, 1997). Moreover, the reaction of the ReS₄⁻ anion with isonitriles has been described (Schwarz & Rauchfuss, 2000).

X-ray diffraction studies were published for Ph_4PReS_4 (Müller *et al.*, 1970; Diemann & Müller, 1976), Ph_4AsReS_4 (Müller *et al.*, 1970), Bu_4NReS_4 (Do *et al.*, 1985) and Et_4NReS_4 (Müller *et al.*, 1986, 1987). While the structures of Ph_4PReS_4 , Ph_4AsReS_4 and Bu_4NReS_4 are ordered, the structure of Et_4NReS_4 [*P6mm*, *a* = 8.149 (2), *c* = 6.538 (1) Å, *Z* = 1, room temperature] is disordered. Superstructural reflections were observed, suggesting a larger unit cell. The aim of this work

Table 1 Experimental details.

For all phases: $(C_8H_{20}N)[ReS_4]$, $M_r = 444.69$. Experiments were carried out with Mo $K\alpha$ radiation using an Oxford Diffraction Gemini E Ultra diffractometer with an EOS CCD camera. The absorption correction was analytical [*CrysAlis PRO* (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]. H-atom parameters were constrained.

	Ia	Ib	Ic
Crystal data			
Crystal system, space group	Hexagonal, P63mc	Hexagonal, P63	Monoclinic, $P2_1$
Temperature (K)	297	110	150
a, b, c (Å)	8.150 (2), 8.150 (3), 13.092 (3)	24.170 (3), 24.170 (3), 12.916 (2)	7.900 (2), 12.842 (3), 8.118 (2)
α, β, γ (°)	90, 90, 120	90, 90, 120	90, 119.04 (2), 90
$V(\dot{A}^3)$	753.1 (4)	6534.5 (19)	720.0 (3)
Z	2	18	2
$\mu (\mathrm{mm}^{-1})$	8.59	8.91	8.99
Crystal size (mm)	$0.32 \times 0.03 \times 0.03$	$0.24 \times 0.21 \times 0.16$	$0.24 \times 0.20 \times 0.17$
Data collection			
T_{\min}, T_{\max}	0.599, 0.829	0.253, 0.351	0.241, 0.336
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	1804, 513, 392	44958, 9707, 8807	4476, 2814, 2808
R _{int}	0.029	0.036	0.053
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.632	0.696	0.688
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.021, 0.048, 1.08	0.028, 0.048, 1.05	0.052, 0.138, 1.09
No. of reflections	513	9707	2814
No. of parameters	44	380	87
No. of restraints	34	1	89
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.26, -0.42	0.87, -1.09	2.01, -4.80
Absolute structure	Refined as an inversion twin	Twinning involves mirror, so Flack parameter cannot be determined	Twinning involves mirror, so Flack parameter cannot be determined
Absolute structure parameter	0.14 (4) (Parsons et al., 2013)	_	_

Computer programs: CrysAlis PRO (Oxford Diffraction, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2001).

was to verify that the unit cell of Et_4NReS_4 would be larger at room temperature. Another goal of this work was to investigate whether a phase transition to an ordered structure could be observed at lower temperatures.

2. Experimental

2.1. Synthesis and crystallization

 Et_4NReS_4 was synthesized according to the literature method of Goodman & Rauchfuss (2002). Slow evaporation of an acetonitrile solution of Et_4NReS_4 in air afforded crystals suitable for X-ray diffraction analysis.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The phase designations **Ia**–**Ic** are analogous to that used for Et_4NFeCl_4 (Lutz *et al.*, 2014).

2.2.1. *a*-phase. The crystal structure of the α -phase (denoted Ia) at 297 K was refined in the space group $P6_3mc$ (Table 1) starting from the structure of Et₄NFeCl₄ at 290 K (Lutz *et al.*, 2014). The ReS₄⁻ anion is completely ordered. The whole tetraethylammonium cation is disordered about special position *b* with 3*m* symmetry. A whole cation with an occupancy of 1/6 was modelled. Similarity distance restraints were applied for the ethyl groups. All the atoms of the cation were refined isotropically because of this severe disorder, whereas the atoms of the ordered anion were refined anisotropically (Fig. 1*a*). H atoms were attached to geometrically

optimized positions and refined with the riding model. Twinning by inversion was considered. The fractional contribution of the minor domain refined to 0.14 (4). The C-H distances were fixed at 0.96 (CH₃) or 0.97 Å (CH₂). The $U_{\rm iso}(\rm H)$ values were constrained to $1.5U_{\rm eq}(\rm C)$ for methyl H atoms and $1.2U_{\rm eq}(\rm C)$ otherwise.

2.2.2. γ -phase. Upon slow cooling (*ca* 5 K min⁻¹) to 285 K, crystals of the α -phase (*i.e.* Ia) undergo a reversible phase transition to the γ -phase (denoted Ic). No further phase transitions could be observed between 110 and 300 K. The γ -phase crystallizes in the space group $P2_1$ as a pseudomerohedral twin (Table 1). Attempts to grow crystals at 273 and 253 K also led to the formation of twins. Data for the γ -phase were collected at 150 K. The high deviation from the hexagonal metric leads to split reflections and reflections of different domains close to each other (see Fig. S1 of the supporting information). However, the different orientations could not be separated. To take the twinning into account, an HKLF5 file (Sevvana et al., 2019) was produced (SHELXL-2018; Sheldrick, 2015) according to the transition from $P6_3mc$ to $P2_1$ (Table 2). The normal procedure using the TWIN command was not possible, because in SHELXL, only one TWIN command is allowed, but here two twin operations, a threefold and a mirror, are needed. We checked for additional twinning by inversion using now twelve components, but the fractional contributions of the additional six components refined to values close to zero (for details, see the supporting information). Both the tetrathioperrhenate anion (ReS_4^-) and

Table 2 Twin com	ponents in Ic .	
	Appropriate	
m ·	symmetry	

Twin components	operations in $P6_3mc$	$h,k,l;i$ $\left[i=-h-l ight]^{*}$	Fractional contribution k_i
1	[1] 1	h,k,l;i	0.178 (7)
2	$\begin{bmatrix} 2 \end{bmatrix} 3^+ (0,0,z)$	l,k,i;h	0.213 (7)
3	$[3] 3^{-} (0,0,z)$	i,k,h;l	0.080(7)
4	[7] $m(x,-x,z)$	-l,k,-h;i	0.084 (7)
5	[8] $m(x,2x,z)$	-h,k,-i;l	0.233 (7)
6	[9] m (2x, x, z)	-i,k,-l;h	0.212 (7)

Note: (*) the fourth Miller index is the sum of -h and -l, because the transformation from $P6_{3}mc$ to $P2_{1}$ causes the 6_{3} -axis along the y axis.

the tetraethylammonium cation are completely ordered (Fig. 1*b*). However, to stabilize the refinement, distance restraints were used and the cation was only isotropically refined. H atoms were attached to geometrical optimized positions and refined with the riding model. The C-H distances were fixed at 0.98 (CH₃) or 0.99 Å (CH₂). The U_{iso} (H) values were constrained to 1.5 U_{eq} (C) for methyl H atoms and 1.2 U_{eq} (C) otherwise.

2.2.3. β -phase. Rapid cooling (>100 K s⁻¹) of the α -phase (*i.e.* Ia) to 110–170 K leads to a mixture of the γ -phase (*i.e.* Ic) and the β -phase (denoted **Ib**) through a phase transition forming an allotwin. A reciprocal space plot (see Fig. S2 in the supporting information) shows satellites for the reflections with h = 3n and k = 3m. With slow heating (ca 5 K min⁻¹) to 200 K, the β -phase irreversibly changes to the γ -phase. We were not able to obtain crystals of the β -phase free from the γ -phase. Such a superposition of reflections of two phases was also found, for example, in Kautny et al. (2017). The a and b axes of the β -phase are enlarged by a factor of three compared to the γ -phase. Therefore, all *hkl* reflections with h = 3n and k = 3m of the β -phase are contaminated with reflections of the γ -phase. The data collection software (*CrysAlis PRO*; Oxford Diffraction, 2016) could not split the summed intensity into its two components. Therefore, the *hkl* reflections with h = 3n and k = 3m had to be removed from the data set. This lowers the completeness to only 88.8%. Including the contaminated reflections raises the R1 value from 0.0354 to 0.0548 and shows F_{obs}^2 values for *hkl* reflections with h = 3n and k = 3m much bigger than the F_{calc}^2 values (see Table S1 in the supporting information). Even with the ISOR restraint, where atoms are restrained with effective standard deviations so that their U^{ij} components approximate to isotropic behaviour, the anisotropic displacement parameters refine to nonpositive definite values and the residual density increases to $3.45/-3.41 \text{ e} \text{ Å}^{-3}$. The C-H distances were fixed at 0.98 (CH₃) or 0.99 Å (CH₂). The $U_{iso}(H)$ values were constrained to $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ otherwise.

The β -phase of Et₄NReS₄ is isostructural with Et₄NFeCl₄ at 230 K (Lutz *et al.*, 2014). It crystallizes as a merohedral twin with the twin law 010 100 001 and a fractional contribution of 0.5005 (15). This twin law describes a mirror plane perpendicular to the face diagonal. To check for additional twinning by inversion, a refinement with 'TWIN 0 1 0 1 0 0 0 0 1 -4' was applied. The additional fractional contributions refined to

Displacement ellipsoid plots (50% probability level) of (*a*) Ia at 297 K, (*b*) Ic at 150 K and (*c*) Ib at 110 K.

-0.004 (7) and -0.007 (7). Therefore, twinning by inversion could be excluded. All tetrathioperrhenate anions (ReS₄⁻) and tetraethylammonium cations are completely ordered (Fig. 1*c*).

3. Results and discussion

At 297 K, Et₄NReS₄ is isostructural with Et₄NFeCl₄ (Lutz *et al.*, 2014; Warnke *et al.*, 2010; Evans *et al.*, 1990; Navarro *et al.*,

research papers

Table 3

Crystallographic data for the high-temperature phase of several Et_4NMY4 compounds (M = B, Cl, Re, Fe, In and Tl; Y = O, F, S, Cl and Br).

Anion	$\mathrm{BF_4}^{-,a}$	$\text{ClO}_4^{-,b}$	$\text{ReS}_4^{-,c}$	$\operatorname{FeCl_4}^{-,d}$	FeBrCl ₃ ^{-,e}	${\rm InCl_4}^{-,f}$	$\mathrm{TlCl}_4^{-,g}$
Temperature (K)	373	393	297 (2)	290-295	293	r.t. ^h	297
Temperature range (K)	>342	>378.5	>285	>234.7	n.d. ⁱ	n.d.	>222
Space group	Fm3m	Fm3m	$P6_3mc$	$P6_3mc$	$P6_3mc$	$P6_3mc$	$P6_3mc$
Z	4	4	2	2	2	2	2
V/Z (Å ³)	317.3 (4)	329.1	376.42 (7)	383.7–385.7	388.4 (1)	397	394.7 (4)

Notes and references: (a) Matsumoto et al. (2014); (b) Ye et al. (2016); (c) this work; (d) Lutz et al. (2014), Warnke et al. (2010), Evans et al. (1990) and Navarro et al. (1988); (e) Evans et al. (1990); (f) Trotter et al. (1969); (g) Lenck et al. (1991); (h) r.t. = room temperature; (i) n.d. = not determined.

Table 4

Crystallographic data for th	ne low-temperature	phase of several Et	$_4NMY4$ compounds	(M = B, P, Cl, Mn)	, Re and Fe; $Y = O, F, S$ and Cl).
2 0 1	1 1		7 1		

Anion	$\text{ClO}_4^{-,a}$	$\mathrm{BF_4}^{-,b}$	$\mathrm{MnO_4}^{-,c}$	$PO_2F_2^{-,d}$	ReO ₃ S ^{-,e}	$\text{ReS}_4^{-,f}$	ReS_4^{-f}	FeCl ₄ ^g	$\operatorname{FeCl_4}^{-,h}$
Temperature (K)	110-173	298 ~342	293 n d ⁱ	110 <323	293 (2) n d	149.9 (3)	109.9 (3) metastable	110-170	230 234 7-226 6
Apace group	Cc	Cc	$P2_1/c$	Cc	$P2_1/c$	P2 ₁	P6 ₃	2220.0 $Pca2_1$	234.7-220.0 P6 ₃
$Z V/Z (Å^3)$	4 291.3–294.5	4 294.5 (3)	4 307.7 (1)	4 311.39 (4)	8 316.7 (1)	2 360.0 (2)	18 363.05 (2)	4 363.77–367.75	18 376.86 (3)

Notes and references: (a) Ibers (1993), Kivikoski et al. (1995) and Ye et al. (2016); (b) Giuseppetti et al. (1994), Matsumoto et al. (2012) and Matsumoto et al. (2014); (c) Whang et al. (1991); (d) Matsumoto et al. (2012); (e) Partyka & Holm (2004); (f) this work; (g) Lutz et al. (2014) and Navarro et al. (1988); (h) Lutz et al. (2014) and Navarro et al. (1988); (i) n.d. = not determined.

1988), Et₄NFeBrCl₃ (Evans *et al.*, 1990), Et₄NInCl₄ (Trotter *et al.*, 1969) and Et₄NTlCl₄ (Lenck *et al.*, 1991). They crystallize in the space group $P6_3mc$. While the anion is ordered, the tetraethylammonium cation is disordered. The volume of the primitive cell grows in the following series Et₄NBF₄ \simeq Et₄NClO₄ < Et₄NMnO₄ \simeq Et₄NPO₂F₂ \simeq Et₄NReOS₃ < Et₄NReS₄ < Et₄NFeCl₄ < Et₄NFeBrCl₃ < Et₄NTlCl₄ \simeq Et₄NInCl₄. Accordingly, in the series Et₄NClO₄ (378.5 K) > Et₄NBF₄ (342 K) > Et₄NPO₂F₂ (323 K) > Et₄NReS₄ (285 K) > Et₄NFeCl₄ (234.7 K) > Et₄NTlCl₄ (222 K), the transition temperature to an ordered structure decreases (Tables 3 and 4).

While Et₄NFeCl₄ at 234.7 K undergoes a phase transition from $P6_3mc$ to $P6_3$ (Lutz *et al.*, 2014; Navarro *et al.*, 1988), a phase transition from $P6_3mc$ to $P2_1$ is observed for Et₄NReS₄ at 285 K. The $P6_3$ phase is metastable for Et₄NReS₄, while the $P2_1$ phase is not observed for Et₄NFeCl₄. An additional lowtemperature phase of Et₄NFeCl₄ crystallizes in the space group $Pca2_1$ [226.6 (1)–2.93 (3) K] (Lutz *et al.*, 2014; Navarro *et al.*, 1988). This phase is not observed for Et₄NReS₄. While the high-temperature phases of the compounds from Table 3

Table 5 Intensity of the reflections with even and odd l (Ia and Ic) or k (Ic) from the .fcf file.

	$F_{\rm av}^2({\rm odd})/F_{\rm av}^2$	$F_{\rm av}^2({\rm even})/F_{\rm av}^2$	$F_{\rm av}^2({\rm odd})/F_{\rm av}^2({\rm even})$	Δ^{a} (Å)
Ia (obs)	0.082	1.737	0.047	0
Ia (calc)	0.080	1.740	0.046	0
Ib $(obs)^b$	0.184	1.815	0.102	0.0573^{c}
Ib (calc)	0.174	1.826	0.095	0.0573^{c}
Ic (obs)	0.803	1.196	0.672	0.2720
Ic (calc)	0.796	1.203	0.662	0.2720

Notes: (a) Average displacement of the Re atoms from the threefold axis. (b) Reflections of **Ib** with h = 3n and k = 3m overlap with appropriate reflections of **Ic**. The reflections with h = 3n and k = 3m are on average 1.2 times too strong and were not used in the refinement. (c) Re1, Re2 and Re3 = 0 Å; Re4 = 0.0815 Å; Re5 = 0.0905 Å.

have the same structure, the low-temperature phases show different structures (Table 4). Tetraethylammonium salts with anions smaller than tetrathiorhenate crystallize at room temperature as the low-temperature phase of Et₄NReS₄. Whereas the tetraethylammonium cation in Et₄NBF₄, Et₄NCIO₄, Et₄NPO₂F₂, Et₄NReS₄, Et₄NFeCl₄, Et₄NFeBrCl₃ and Et₄NTlCl₄ has the *tg*-*tg* conformation (*t* is *trans* and *g* is *gauche*), it has the *tt*-*tt* conformation in Et₄NReO₃S and Et₄NMnO₄ (Naudin *et al.*, 2000). Only the structures of Et₄NReO₃S, Et₄NMnO₄, Et₄NBF₄ (high-temperature phase) and Et₄NClO₄ (high-temperature phase) have an inversion centre. In these two compounds, the Et₄N⁺ cation has a *tg*-*tg* conformation or is disordered.

At 297 K, Et₄NReS₄ crystallizes in the space group $P6_{3}mc$ (Tables 1 and 4). Because of the special position of the Re atom (2*a*, 3*m*.; Arnold, 1983), all reflections with l = 2n + 1 are much weaker than those with l = 2n (Table 5). This could explain why Müller *et al.* (1986, 1987) found a smaller primitive cell [*P6mm*, a = 8.149 (2), c = 6.538 (1) Å, Z = 1]. They observed weak superstructural reflections, suggesting a doubling of the primitive cell [a = 8.149 (2), c = 13.076 (2) Å, Z = 2], which would be in good agreement with the one found here.

In **Ib** and **Ic**, the Re atom is displaced from the threefold axis. In **Ic**, reflections with k = 2n + 1 are as strong as the reflections with k = 2n, while for **Ib** (as also for **Ia**), reflections with l = 2n + 1 are much weaker than those with l = 2n (Table 5).

Structurally, **Ib** is closer to **Ia** than to **Ic**. Therefore, **Ib** is also formed by rapid cooling of **Ia**, although **Ic** is thermodynamically more stable. The energy barrier for the conversion of **Ib** to **Ic** is relatively large, so that rapid conversion occurs only above 200 K.

In the known structures with ReS_4^- , the Re-S bond length is independent of the cation (Table 6). The S-Re-S angle in

Table 6	
Re-S bond lengths (Å) and S-Re-S angles (°) for some compounds with the ReS ₄ ⁻ anio	on.

Cation	Et_4N^+ , Ib ^{<i>a</i>}	$\mathrm{Et}_4\mathrm{N}^+,\mathbf{Ic}^a$	Et_4N^+ , Ia^a	$Et_4N^{+,b}$	$Bu_4N^{+,c}$	$Ph_4P^{+,d}$
Temperature (K)	109.9 (3)	149.9 (3)	297 (2)	r.t. ^e	r.t.	r.t.
Re-S average	2.142 (2)	2.122 (10)	2.125 (4)	2.125 (4)	2.122 (6)	2.155 (30)
Re-S range	2.130-2.154	2.111-2.133	2.120-2.127	2.123-2.126	2.118-2.126	2.155-2.155
S-Re-S average	109.47 (9)	109.47 (71)	109.47 (17)	109.45 (11)	109.48 (84)	Not specified
S-Re-S range	109.06-109.95	108.01-110.61	109.33-109.61	109.4–109.5	107.4–112.8	Not specified

Notes and references: (a) this work; (b) Müller et al. (1987); (c) Do et al. (1985); (d) Diemann & Müller (1976); (e) r.t. = room temperature.

the ReS_4^- anion is very close to the tetrahedral value (109.47°). The Re-S bond length in ReO₃S⁻ is very similar to that in ReS₄⁻. For ReO₃S⁻, the following Re-S bond lengths are known: RbReO₃S with 2.126 (6) Å (Krebs & Kindler, 1969) and Et₄NReO₃S with 2.128 (5) and 2.143 (5) Å (Partyka & Holm, 2004).

In this article, we were able to show that the unit cell of Et_4NReS_4 is larger at room temperature than previously thought (Müller *et al.*, 1986, 1987). In this structure, the Et_4N^+ cation is disordered, while the ReS_4^- anion is ordered. At 285 K, there is a phase transition to an ordered structure, where the space group changes from $P6_3mc$ to $P2_1$. The omission of the threefold axis and the mirror plane creates a twin with six components. In addition to this low-temperature phase, a further metastable phase was formed when **Ia** was cooled rapidly to 110–170 K. This phase crystallizes in the space group $P6_3$ with a nine times bigger unit cell forming an allotwin with **Ib**.

Acknowledgements

We thank Dr Birger Dittrich, MSc Moloud Mokfi and MSc Darya Schmidt for discussions.

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Arnold, H. (1983). International Tables for Crystallography. Dordrecht: D. Reidel; online edition (2016). doi: 10.1107/ 97809553602060000114.
- Brandenburg, K. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Diemann, E. & Müller, A. (1976). Z. Naturforsch. Teil B, 31, 1287– 1288.
- Do, Y., Simhon, E. D. & Holm, R. H. (1985). Inorg. Chem. 24, 4635– 4642.
- Dopke, J. A., Wilson, S. R. & Rauchfuss, T. B. (2000). *Inorg. Chem.* **39**, 5014–5021.
- Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). *Acta Cryst.* C46, 1818–1821.
- Giuseppetti, G., Tadini, C., Ferloni, P., Zabinska, G. & Torre, S. (1994). Z. Kristallogr. 209, 509–511.
- Goodman, J. T., Inomata, S. & Rauchfuss, T. B. (1996). J. Am. Chem. Soc. 118, 11674–11675.
- Goodman, J. T. & Rauchfuss, T. B. (1997). Angew. Chem. 109, 2173–2175.
- Goodman, J. T. & Rauchfuss, T. B. (1998). *Inorg. Chem.* **37**, 5040–5041.

- Goodman, J. T. & Rauchfuss, T. B. (1999). J. Am. Chem. Soc. 121, 5017–5022.
- Goodman, J. T. & Rauchfuss, T. B. (2002). Inorg. Synth. 33, 107–110.
- Halbert, T. R., Stiefel, E. I. & Wei, L. (1990). EP 000000401435.
- Ibers, J. A. (1993). Z. Kristallogr. 208, 316-318.
- Kautny, P., Schwartz, T., Stöger, B. & Fröhlich, J. (2017). *Acta Cryst.* B73, 65–73.
- Kivikoski, J., Howard, J. A. K., Kelly, P. & Parker, D. (1995). Acta Cryst. C51, 535–536.
- Krebs, B. & Kindler, E. (1969). Z. Anorg. Allg. Chem. 368, 293– 307.
- Lenck, M., Dou, S. & Weiss, A. (1991). Z. Naturforsch. Teil A, 46, 777–784.
- Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). *Acta Cryst.* C70, 470–476.
- Matsumoto, K., Harinaga, U., Tanaka, R., Koyama, A., Hagiwara, R. & Tsunashima, K. (2014). *Phys. Chem. Chem. Phys.* 16, 23616– 23626.
- Matsumoto, K., Okawa, T. & Hagiwara, R. (2012). Chem. Lett. 41, 394–396.
- Müller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961–2971.
- Müller, A., Krickemeyer, E. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 554, 61–78.
- Müller, A., Krickemeyer, E., Bögge, H., Penk, M. & Rehder, D. (1986). *Chimia*, **40**, 50–52.
- Naudin, C., Bonhomme, F., Bruneel, J. L., Ducasse, L., Grondin, J., Lassegues, J. C. & Servant, L. (2000). J. Raman Spectrosc. 31, 979– 985.
- Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373–384.
- Oxford Diffraction (2016). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Partyka, D. V. & Holm, R. H. (2004). Inorg. Chem. 43, 8609-8616.
- Scattergood, C. D., David Garner, C. & Clegg, W. (1987). *Inorg. Chim. Acta*, **132**, 161–162.
- Schwarz, D. E. & Rauchfuss, T. B. (2000). Chem. Commun. pp. 1123–1124.
- Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040–1050.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Trotter, J., Einstein, F. W. B. & Tuck, D. G. (1969). Acta Cryst. B25, 603–604.
- Warnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Kłak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285–289.
- Wei, L., Halbert, T. R. & Stiefel, E. I. (1991). US Patent 4997962.
- Whang, D., Chung, S.-K. & Kim, K. (1991). Acta Cryst. C47, 2672– 2674.
- Ye, H.-Y., Ge, J.-Z., Tang, Y.-Y., Li, P.-F., Zhang, Y., You, Y.-M. & Xiong, R.-G. (2016). J. Am. Chem. Soc. 138, 13175–13178.

Acta Cryst. (2020). C76, 231-235 [https://doi.org/10.1107/S205322961901725X]

Phase transition and structures of the twinned low-temperature phases of (Et₄N) [ReS₄]

Eduard Bernhardt and Regine Herbst-Irmer

Computing details

For all structures, data collection: *CrysAlis PRO* (Oxford Diffraction, 2016); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2016); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2016); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXL2018* (Sheldrick, 2015).

Tetraethylammonium tetrathiorhenate (Ia)

Crystal data $(C_8H_{20}N)[ReS_4]$ $D_{\rm x} = 1.961 {\rm Mg m^{-3}}$ $M_r = 444.69$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hexagonal, P6₃mc Cell parameters from 687 reflections $\theta = 2.9 - 24.9^{\circ}$ a = 8.150 (2) Åc = 13.092 (3) Å $\mu = 8.59 \text{ mm}^{-1}$ V = 753.1 (4) Å³ T = 297 KZ = 2Prism, black F(000) = 428 $0.32\times0.03\times0.03~mm$ Data collection

 $T_{\min} = 0.599, T_{\max} = 0.829$ 1804 measured reflections
513 independent reflections
392 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 26.7^{\circ}, \theta_{\text{min}} = 2.9^{\circ}$ $h = -10 \rightarrow 5$ $k = -7 \rightarrow 10$ $l = -8 \rightarrow 16$

Refinement

 ω scans

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.048$ S = 1.08513 reflections 44 parameters 34 restraints

Oxford Diffraction Gemini E Ultra

Absorption correction: analytical

Enhanced (Mo)

Graphite monochromator

diffractometer with an EOS CCD camera

[CrysAlis PRO (Agilent, 2013), based on

expressions derived by Clark & Reid (1995)]

Radiation source: fine-focus sealed tube

Detector resolution: 16.2705 pixels mm⁻¹

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.018P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.42 \text{ e } \text{Å}^{-3}$ Absolute structure: Refined as an inversion twin.

Absolute structure parameter: 0.14 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Suitable single crystals of Et₄NReS₄ were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the *CrysAlisPro* program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F² (Sheldrick, 2015, 2008). The graphics were prepared with the program *Diamond* (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Re	0.0000	0.0000	0.0550(2)	0.0597 (2)	
S1	0.0000	0.0000	0.2173 (4)	0.0829 (17)	
S2	-0.14196 (19)	0.14196 (19)	0.0010 (3)	0.0930 (8)	
N1	0.678 (4)	0.331 (3)	0.3103 (10)	0.041 (3)*	0.1667
C1	0.513 (4)	0.139 (3)	0.328 (2)	0.065 (5)*	0.1667
H1A	0.4031	0.1402	0.3009	0.078*	0.1667
H1B	0.4953	0.1250	0.4018	0.078*	0.1667
C2	0.506 (6)	-0.038 (3)	0.290 (3)	0.054 (5)*	0.1667
H2A	0.3881	-0.1463	0.3092	0.082*	0.1667
H2B	0.6092	-0.0478	0.3182	0.082*	0.1667
H2C	0.5163	-0.0325	0.2164	0.082*	0.1667
C3	0.850 (4)	0.314 (4)	0.293 (3)	0.065 (5)*	0.1667
H3A	0.8878	0.2857	0.3581	0.078*	0.1667
H3B	0.8150	0.2056	0.2488	0.078*	0.1667
C4	1.020 (5)	0.480 (6)	0.248 (3)	0.054 (5)*	0.1667
H4A	1.1202	0.4522	0.2402	0.082*	0.1667
H4B	1.0604	0.5882	0.2914	0.082*	0.1667
H4C	0.9873	0.5078	0.1817	0.082*	0.1667
C5	0.662 (5)	0.428 (5)	0.2172 (17)	0.065 (5)*	0.1667
H5A	0.7897	0.5192	0.1956	0.078*	0.1667
H5B	0.6071	0.3336	0.1637	0.078*	0.1667
C6	0.554 (6)	0.529 (6)	0.220 (3)	0.054 (5)*	0.1667
H6A	0.5582	0.5822	0.1543	0.082*	0.1667
H6B	0.6084	0.6278	0.2702	0.082*	0.1667
H6C	0.4247	0.4411	0.2380	0.082*	0.1667
C7	0.704 (7)	0.451 (3)	0.4029 (16)	0.065 (5)*	0.1667
H7A	0.5927	0.4641	0.4088	0.078*	0.1667
H7B	0.8110	0.5760	0.3900	0.078*	0.1667
C8	0.736 (3)	0.386 (6)	0.5047 (14)	0.054 (5)*	0.1667

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8A	0.7497	0.4756	0.5563	0.082*	0.1667
H8B	0.8484	0.3766	0.5019	0.082*	0.1667
H8C	0.6292	0.2642	0.5209	0.082*	0.1667

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re	0.0630 (3)	0.0630 (3)	0.0530 (3)	0.03152 (13)	0.000	0.000
S1	0.097 (3)	0.097 (3)	0.054 (3)	0.0486 (14)	0.000	0.000
S2	0.1049 (17)	0.1049 (17)	0.0908 (15)	0.069 (2)	-0.0080 (11)	0.0080 (11)

Geometric parameters (Å, °)

Re—S1	2.124 (5)	С3—Н3В	0.9700
Re—S2 ⁱ	2.125 (3)	C4—H4A	0.9600
Re—S2 ⁱⁱ	2.125 (3)	C4—H4B	0.9600
Re—S2	2.125 (3)	C4—H4C	0.9600
N1—C1	1.485 (19)	C5—C6	1.47 (3)
N1—C5	1.496 (19)	C5—H5A	0.9700
N1—C3	1.496 (19)	C5—H5B	0.9700
N1—C7	1.502 (18)	С6—Н6А	0.9600
C1—C2	1.51 (2)	C6—H6B	0.9600
C1—H1A	0.9700	С6—Н6С	0.9600
C1—H1B	0.9700	C7—C8	1.50 (2)
C2—H2A	0.9600	C7—H7A	0.9700
C2—H2B	0.9600	С7—Н7В	0.9700
C2—H2C	0.9600	C8—H8A	0.9600
C3—C4	1.49 (3)	C8—H8B	0.9600
С3—НЗА	0.9700	C8—H8C	0.9600
S1—Re—S2 ⁱ	109.44 (14)	C3—C4—H4A	109.5
S1—Re—S2 ⁱⁱ	109.44 (14)	C3—C4—H4B	109.5
S2 ⁱ —Re—S2 ⁱⁱ	109.51 (14)	H4A—C4—H4B	109.5
S1—Re—S2	109.44 (14)	C3—C4—H4C	109.5
S2 ⁱ —Re—S2	109.50 (14)	H4A—C4—H4C	109.5
S2 ⁱⁱ —Re—S2	109.50 (14)	H4B—C4—H4C	109.5
C1—N1—C5	114 (2)	C6—C5—N1	121 (2)
C1—N1—C3	108.9 (18)	С6—С5—Н5А	107.2
C5—N1—C3	105.2 (19)	N1—C5—H5A	107.2
C1—N1—C7	108.2 (18)	C6—C5—H5B	107.2
C5—N1—C7	109.6 (17)	N1—C5—H5B	107.2
C3—N1—C7	110 (3)	H5A—C5—H5B	106.8
N1—C1—C2	122 (2)	С5—С6—Н6А	109.5
N1—C1—H1A	106.7	С5—С6—Н6В	109.5
C2—C1—H1A	106.7	H6A—C6—H6B	109.5
N1—C1—H1B	106.7	С5—С6—Н6С	109.5
C2—C1—H1B	106.7	Н6А—С6—Н6С	109.5
H1A—C1—H1B	106.6	H6B—C6—H6C	109.5

C1—C2—H2A	109.5	N1—C7—C8	119 (2)
C1—C2—H2B	109.5	N1—C7—H7A	107.6
H2A—C2—H2B	109.5	С8—С7—Н7А	107.6
C1—C2—H2C	109.5	N1—C7—H7B	107.6
H2A—C2—H2C	109.5	С8—С7—Н7В	107.6
H2B—C2—H2C	109.5	H7A—C7—H7B	107.1
C4—C3—N1	117 (2)	С7—С8—Н8А	109.5
С4—С3—Н3А	108.0	С7—С8—Н8В	109.5
N1—C3—H3A	108.0	H8A—C8—H8B	109.5
С4—С3—Н3В	108.0	С7—С8—Н8С	109.5
N1—C3—H3B	108.0	H8A—C8—H8C	109.5
НЗА—СЗ—НЗВ	107.2	H8B—C8—H8C	109.5

Symmetry codes: (i) -y, x-y, z; (ii) -x+y, -x, z.

Tetraethylammonium tetrathiorhenate (Ib)

Crystal data

 $(C_8H_{20}N)[ReS_4]$ $M_r = 444.69$ Hexagonal, P6₃ a = 24.170 (3) Å c = 12.916 (2) Å V = 6534.5 (19) Å³ Z = 18F(000) = 3852

Data collection

Oxford Diffraction Gemini E Ultra diffractometer with an EOS CCD camera Radiation source: fine-focus sealed tube Enhanced (Mo) Graphite monochromator Detector resolution: 16.2705 pixels mm⁻¹ ω scans Absorption correction: analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.048$ S = 1.059707 reflections 380 parameters 1 restraint Hydrogen site location: inferred from neighbouring sites $D_x = 2.034 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16453 reflections $\theta = 2.9-29.3^{\circ}$ $\mu = 8.91 \text{ mm}^{-1}$ T = 110 KPrism, black $0.24 \times 0.21 \times 0.16 \text{ mm}$

 $T_{\min} = 0.253, T_{\max} = 0.351$ 44958 measured reflections
9707 independent reflections
8807 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$ $\theta_{\text{max}} = 29.7^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$ $h = -32 \rightarrow 29$ $k = -30 \rightarrow 27$ $l = -17 \rightarrow 17$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.008P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.87$ e Å⁻³ $\Delta\rho_{min} = -1.08$ e Å⁻³ Absolute structure: Twinning involves inversion, so Flack parameter cannot be determined

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Suitable single crystals of Et₄NReS₄ were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the *CrysAlisPro* program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F² (Sheldrick, 2015, 2008). The graphics were prepared with the program *Diamond* (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	U_{iso}^*/U_{eq}	
Re1	0.000000	0.000000	0.35220 (11)	0.0095 (2)	
S1	0.000000	0.000000	0.5175 (4)	0.0158 (12)	
S2	0.03466 (11)	0.09562 (11)	0.2979 (2)	0.0170 (5)	
Re2	0.666667	0.333333	0.35177 (11)	0.0096 (2)	
S3	0.666667	0.333333	0.5165 (4)	0.0165 (11)	
S4	0.72698 (11)	0.42896 (12)	0.2975 (2)	0.0178 (5)	
Re3	0.333333	0.666667	0.35284 (11)	0.0097 (2)	
S5	0.333333	0.666667	0.5197 (4)	0.0107 (11)	
S6	0.39202 (11)	0.76280 (12)	0.2985 (2)	0.0171 (5)	
Re4	0.33152 (2)	0.32944 (2)	0.39300 (2)	0.00888 (14)	
S7	0.31787 (9)	0.32427 (9)	0.55692 (15)	0.0152 (4)	
S 8	0.38743 (10)	0.28632 (10)	0.35143 (18)	0.0150 (5)	
S9	0.38027 (11)	0.42763 (11)	0.34619 (18)	0.0154 (5)	
S10	0.24045 (10)	0.27951 (12)	0.3185 (2)	0.0159 (5)	
Re5	0.66238 (2)	0.66500 (2)	0.38567 (2)	0.0106 (2)	
S11	0.65647 (9)	0.65264 (10)	0.55018 (16)	0.0178 (5)	
S12	0.70584 (12)	0.61460 (11)	0.31983 (18)	0.0151 (5)	
S13	0.71863 (11)	0.76468 (10)	0.3498 (2)	0.0160 (5)	
S14	0.56841 (11)	0.62819 (12)	0.32167 (18)	0.0165 (5)	
N1	0.2288 (5)	0.1209 (4)	0.1357 (17)	0.016 (2)	
C1	0.2347 (4)	0.0831 (4)	0.2256 (5)	0.0139 (16)	
H1A	0.195518	0.040614	0.228117	0.017*	
H1B	0.271116	0.076230	0.211697	0.017*	
C2	0.2444 (6)	0.1145 (4)	0.3303 (8)	0.020 (2)	
H2A	0.247669	0.087276	0.383348	0.031*	
H2B	0.283761	0.156106	0.329500	0.031*	
H2C	0.208025	0.120425	0.345950	0.031*	
C3	0.2216 (3)	0.0835 (3)	0.0367 (5)	0.0129 (15)	
H3A	0.220731	0.109107	-0.022482	0.015*	
H3B	0.260166	0.079511	0.028873	0.015*	
C4	0.1635 (4)	0.0173 (3)	0.0288 (5)	0.020 (2)	
H4A	0.164110	-0.001845	-0.037826	0.029*	

H4B	0.164196	-0.009433	0.085252	0.029*
H4C	0.124613	0.020274	0.033705	0.029*
C5	0.1699 (3)	0.1264 (4)	0.1529 (6)	0.0149 (17)
H5A	0.133393	0.083134	0.166333	0.018*
H5B	0.176498	0.152166	0.216189	0.018*
C6	0.1520 (4)	0.1554 (4)	0.0670 (5)	0.0205 (18)
H6A	0.113364	0.156707	0.086097	0.031*
H6B	0.186976	0.198975	0.054225	0.031*
H6C	0.143741	0.129734	0.004219	0.031*
C7	0.2858 (3)	0.1860 (3)	0.1261 (6)	0.0127 (16)
H7A	0.287911	0.211108	0.187997	0.015*
H7B	0.279841	0.207276	0.065088	0.015*
C8	0.3494 (5)	0.1881 (4)	0.1149 (7)	0.021 (2)
H8A	0.383880	0.232598	0.109143	0.031*
H8B	0.356776	0.168417	0.175826	0.031*
H8C	0.348687	0.164576	0.052619	0.031*
N2	0.2191 (3)	0.4378 (5)	0.1385 (18)	0.015 (3)
С9	0.2538 (4)	0.4319 (3)	0.2279 (5)	0.0135 (16)
H9A	0.296381	0.470942	0.231879	0.016*
H9B	0.260564	0.395301	0.215868	0.016*
C10	0.2202 (4)	0.4225 (6)	0.3320 (8)	0.021 (2)
H10A	0.246203	0.419085	0.386971	0.032*
H10B	0.214278	0.459133	0.345867	0.032*
H10C	0.178397	0.383357	0.329828	0.032*
C11	0.1531 (3)	0.3811 (3)	0.1254 (6)	0.0160 (17)
H11A	0.133278	0.388131	0.063544	0.019*
H11B	0.127056	0.378589	0.186186	0.019*
C12	0.1506 (4)	0.3168 (5)	0.1135 (8)	0.022 (2)
H12A	0.106143	0.282752	0.105395	0.033*
H12B	0.175213	0.318095	0.052290	0.033*
H12C	0.168977	0.308533	0.175190	0.033*
C13	0.2127 (3)	0.4978 (3)	0.1536 (5)	0.0131 (16)
H13A	0.184222	0.490526	0.213448	0.016*
H13B	0.255231	0.534329	0.170945	0.016*
C14	0.1863 (4)	0.5160 (4)	0.0596 (6)	0.0201 (17)
H14A	0.183867	0.554361	0.075788	0.030*
H14B	0.214761	0.524662	0.000237	0.030*
H14C	0.143610	0.480770	0.042825	0.030*
C15	0.2578 (3)	0.4447 (3)	0.0404 (5)	0.0172 (16)
H15A	0.262081	0.406278	0.033457	0.021*
H15B	0.233415	0.446039	-0.020227	0.021*
C16	0.3235 (4)	0.5029 (4)	0.0376 (6)	0.023(2)
H16A	0.344677	0.503511	-0.027391	0.034*
H16B	0.319934	0.541502	0.042338	0.034*
H16C	0.348662	0.501657	0.096135	0.034*
N3	0.5567 (3)	0.4520 (4)	0.1362 (16)	0.013 (3)
C17	0.5148 (3)	0.4158 (3)	0.2259 (5)	0.0132 (15)
H17A	0.511407	0.373309	0.229175	0.016*

H17B	0.471441	0.408995	0.213221	0.016*
C18	0.5382 (4)	0.4486 (4)	0.3301 (8)	0.023 (2)
H18A	0.508369	0.422111	0.384477	0.034*
H18B	0.580622	0.454563	0.344556	0.034*
H18C	0.540591	0.490307	0.328575	0.034*
C19	0.5261 (3)	0.4136 (3)	0.0387 (5)	0.0136 (15)
H19A	0.482758	0.407899	0.031716	0.016*
H19B	0.551399	0.438524	-0.021869	0.016*
C20	0.5207 (4)	0.3485 (3)	0.0357 (6)	0.0176 (19)
H20A	0.500567	0.327002	-0.029382	0.026*
H20B	0.563461	0.353448	0.040443	0.026*
H20C	0.494689	0.322765	0.094130	0.026*
C21	0.5629 (3)	0.5169 (3)	0.1230 (6)	0.0153 (17)
H21A	0.588891	0.537152	0.060404	0.018*
H21B	0.586552	0.543683	0.183095	0.018*
C22	0.5000 (4)	0.5170 (4)	0.1129 (7)	0.021 (2)
H22A	0.508879	0.560968	0.104620	0.031*
H22B	0.476566	0.491726	0.052262	0.031*
H22C	0.474221	0.498273	0.175262	0.031*
C23	0.6234 (3)	0.4607 (3)	0.1529 (5)	0.0138 (16)
H23A	0.642488	0.487591	0.215039	0.017*
H23B	0.618705	0.418332	0.167444	0.017*
C24	0.6693 (4)	0.4905 (4)	0.0638 (5)	0.0180 (17)
H24A	0.710386	0.494019	0.081621	0.027*
H24B	0.651791	0.463676	0.002054	0.027*
H24C	0.675632	0.533108	0.049767	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
Re1	0.0105 (3)	0.0105 (3)	0.0075 (5)	0.00524 (13)	0.000	0.000
S 1	0.0201 (18)	0.0201 (18)	0.007 (2)	0.0101 (9)	0.000	0.000
S2	0.0194 (12)	0.0124 (11)	0.0195 (11)	0.0082 (10)	0.0002 (10)	0.0028 (9)
Re2	0.0102 (3)	0.0102 (3)	0.0084 (6)	0.00512 (14)	0.000	0.000
S3	0.0224 (18)	0.0224 (18)	0.005 (2)	0.0112 (9)	0.000	0.000
S4	0.0187 (12)	0.0148 (11)	0.0174 (11)	0.0065 (10)	0.0010 (10)	0.0034 (9)
Re3	0.0115 (3)	0.0115 (3)	0.0063 (6)	0.00573 (14)	0.000	0.000
S5	0.0113 (16)	0.0113 (16)	0.010 (3)	0.0056 (8)	0.000	0.000
S6	0.0178 (11)	0.0112 (11)	0.0185 (12)	0.0042 (9)	0.0024 (10)	0.0032 (9)
Re4	0.00993 (19)	0.0092 (2)	0.0069 (3)	0.00435 (15)	-0.00001 (13)	0.00042 (19)
S 7	0.0193 (10)	0.0147 (10)	0.0090 (8)	0.0065 (8)	0.0004 (8)	0.0011 (7)
S 8	0.0135 (10)	0.0169 (10)	0.0167 (11)	0.0093 (8)	0.0016 (9)	-0.0010 (9)
S9	0.0169 (11)	0.0127 (9)	0.0150 (10)	0.0062 (9)	0.0013 (9)	0.0041 (8)
S10	0.0124 (10)	0.0159 (12)	0.0176 (11)	0.0058 (9)	-0.0044 (8)	-0.0024 (9)
Re5	0.0095 (2)	0.0093 (2)	0.0129 (6)	0.00455 (15)	0.00000 (18)	-0.00072 (13)
S11	0.0218 (12)	0.0161 (11)	0.0138 (9)	0.0082 (8)	0.0000 (8)	0.0005 (8)
S12	0.0147 (11)	0.0146 (11)	0.0182 (11)	0.0089 (9)	0.0044 (9)	0.0007 (9)
S13	0.0167 (11)	0.0111 (9)	0.0189 (13)	0.0059 (9)	-0.0014 (9)	0.0011 (8)

S14	0.0118 (10)	0.0179 (12)	0.0197 (11)	0.0074 (9)	-0.0026(8)	-0.0029(9)
N1	0.016 (6)	0.014 (3)	0.015 (5)	0.006 (3)	0.000 (4)	-0.001(6)
C1	0.019 (5)	0.011 (4)	0.013 (4)	0.008 (4)	0.000 (3)	0.001 (3)
C2	0.023 (6)	0.027 (5)	0.018 (5)	0.017 (4)	0.003 (4)	0.006 (3)
C3	0.016 (4)	0.012 (4)	0.014 (4)	0.010 (3)	-0.001(3)	-0.004(3)
C4	0.020 (5)	0.023 (5)	0.020 (4)	0.015 (4)	-0.001(3)	-0.004(3)
C5	0.013 (4)	0.011 (4)	0.023 (5)	0.008 (4)	0.003 (3)	0.000 (3)
C6	0.023 (5)	0.015 (4)	0.027 (4)	0.011 (4)	0.002 (4)	0.002 (4)
C7	0.014 (4)	0.010 (4)	0.010 (4)	0.002 (3)	-0.003 (3)	-0.004 (3)
C8	0.014 (5)	0.014 (5)	0.033 (5)	0.007 (4)	0.003 (4)	0.002 (4)
N2	0.012 (5)	0.005 (5)	0.021 (8)	0.000 (3)	0.000 (4)	0.001 (5)
C9	0.009 (4)	0.009 (4)	0.022 (4)	0.005 (3)	-0.004(3)	-0.006 (3)
C10	0.020 (5)	0.033 (6)	0.012 (5)	0.014 (4)	-0.001 (3)	0.002 (4)
C11	0.013 (4)	0.008 (4)	0.024 (4)	0.003 (3)	-0.006 (3)	-0.008(3)
C12	0.023 (5)	0.019 (6)	0.024 (6)	0.011 (4)	-0.008 (4)	-0.005 (4)
C13	0.015 (4)	0.010 (4)	0.018 (4)	0.009 (3)	0.004 (3)	0.004 (3)
C14	0.024 (5)	0.018 (4)	0.022 (4)	0.014 (4)	-0.007 (4)	-0.002 (4)
C15	0.018 (4)	0.020 (4)	0.015 (4)	0.010 (3)	0.006 (3)	-0.001 (3)
C16	0.016 (4)	0.025 (5)	0.023 (4)	0.007 (4)	0.005 (3)	0.002 (4)
N3	0.016 (4)	0.012 (4)	0.012 (6)	0.008 (4)	-0.003 (3)	-0.004 (5)
C17	0.010 (4)	0.009 (4)	0.018 (4)	0.003 (3)	0.003 (3)	0.003 (3)
C18	0.022 (5)	0.019 (5)	0.019 (6)	0.004 (4)	0.003 (4)	0.004 (3)
C19	0.014 (4)	0.012 (3)	0.015 (4)	0.007 (3)	-0.009(3)	-0.008 (3)
C20	0.017 (4)	0.007 (4)	0.024 (4)	0.002 (3)	-0.004 (3)	-0.006 (3)
C21	0.014 (4)	0.008 (4)	0.023 (5)	0.005 (3)	0.001 (3)	0.004 (3)
C22	0.034 (5)	0.023 (5)	0.014 (5)	0.021 (4)	-0.006 (3)	-0.003 (4)
C23	0.008 (4)	0.016 (4)	0.016 (4)	0.004 (3)	-0.001 (3)	-0.002 (3)
C24	0.013 (4)	0.023 (4)	0.019 (4)	0.010 (4)	0.010 (4)	0.009 (4)

Geometric parameters (Å, °)

Re1—S1	2.135 (5)	C9—C10	1.528 (11)	
Re1—S2	2.144 (2)	С9—Н9А	0.9900	
Re1—S2 ⁱ	2.144 (2)	С9—Н9В	0.9900	
Re1—S2 ⁱⁱ	2.144 (2)	C10—H10A	0.9800	
Re2—S3	2.128 (5)	C10—H10B	0.9800	
Re2—S4 ⁱⁱⁱ	2.142 (2)	C10—H10C	0.9800	
Re2—S4 ^{iv}	2.142 (2)	C11—C12	1.531 (11)	
Re2—S4	2.142 (2)	C11—H11A	0.9900	
Re3—S6 ^v	2.146 (2)	C11—H11B	0.9900	
Re3—S6	2.146 (2)	C12—H12A	0.9800	
Re3—S6 ^{vi}	2.146 (2)	C12—H12B	0.9800	
Re3—S5	2.155 (5)	C12—H12C	0.9800	
Re4—S7	2.137 (2)	C13—C14	1.534 (10)	
Re4—S10	2.138 (2)	C13—H13A	0.9900	
Re4—S9	2.142 (2)	C13—H13B	0.9900	
Re4—S8	2.147 (2)	C14—H14A	0.9800	
Re5—S11	2.141 (2)	C14—H14B	0.9800	

Re5—S12	2.142 (2)	C14—H14C	0.9800
Re5—S13	2.143 (2)	C15—C16	1.506 (10)
Re5—S14	2.148 (2)	C15—H15A	0.9900
N1—C7	1.490 (11)	C15—H15B	0.9900
N1—C5	1.513 (11)	C16—H16A	0.9800
N1 - C3	1 52 (2)	C16—H16B	0 9800
N1—C1	1.52(2) 1.528(18)	C16—H16C	0.9800
C1 $C2$	1.520(10) 1.510(11)	N3 C17	1 400 (18)
C1 = H1A	0.0000	N3 C21	1.499(18) 1.508(12)
	0.9900	N3-C21	1.506(12)
	0.9900	N3	1.520 (18)
C2—H2A	0.9800	N3-C23	1.533 (10)
С2—Н2В	0.9800	C17—C18	1.520 (11)
C2—H2C	0.9800	С17—Н17А	0.9900
C3—C4	1.516 (10)	С17—Н17В	0.9900
С3—НЗА	0.9900	C18—H18A	0.9800
С3—Н3В	0.9900	C18—H18B	0.9800
C4—H4A	0.9800	C18—H18C	0.9800
C4—H4B	0.9800	C19—C20	1.514 (9)
C4—H4C	0.9800	C19—H19A	0.9900
C5—C6	1,488 (10)	С19—Н19В	0.9900
C5—H5A	0.9900	C20—H20A	0.9800
C5—H5B	0.9900	C20—H20B	0.9800
С6—Н6А	0.9900	C20_H20C	0.9800
C6 H6B	0.9800	C_{20} C_{21} C_{22}	1.526(11)
	0.9800	C_{21} C_{22}	0.0000
$C_0 = H_0 C$	0.9800	C21—H21R	0.9900
	1.519 (11)	C21—H21B	0.9900
C/—H/A	0.9900	C22—H22A	0.9800
С/—Н/В	0.9900	C22—H22B	0.9800
C8—H8A	0.9800	C22—H22C	0.9800
C8—H8B	0.9800	C23—C24	1.508 (9)
C8—H8C	0.9800	С23—Н23А	0.9900
N2—C9	1.48 (2)	C23—H23B	0.9900
N2—C11	1.505 (10)	C24—H24A	0.9800
N2—C15	1.53 (2)	C24—H24B	0.9800
N2—C13	1.545 (11)	C24—H24C	0.9800
S1—Re1—S2	109.09 (8)	C9—C10—H10A	109.5
S1—Re1—S2 ⁱ	109 09 (8)	C9-C10-H10B	109 5
S^2 —Re1— S^{2i}	109.85 (8)	H10A - C10 - H10B	109.5
$S1_Re1_S2^{ii}$	109.09 (8)	C9-C10-H10C	109.5
$S_{2} = R_{e1} = S_{2}^{ii}$	100.85 (8)		109.5
$S_2 = Rc_1 = S_2$	109.85 (8)	H10P C10 H10C	109.5
$S_2 - Ke_1 - S_2$	109.03(8)	$\mathbf{N}_{0} = \mathbf{C}_{1} = \mathbf{C}_{1}$	109.5
53—Re2—54	109.10 (8)	$N_2 = C_{11} = C_{12}$	115.0 (6)
$55 - Ke_2 - 54$	109.10 (8)	$N_{2} = C_{11} = H_{11} A$	108.3
54 —Ke2—S4 [.]	109.84 (8)	UI2—UII—HIIA	108.5
S3—Ke2—S4	109.10 (8)	N2-CII-HIIB	108.5
S4 ^m —Re2—S4	109.84 (8)	C12—C11—H11B	108.5
S4 ^{IV} —Re2—S4	109.84 (7)	H11A—C11—H11B	107.5

S6 ^v —Re3—S6	109.87 (7)	C11—C12—H12A	109.5
S6 ^v —Re3—S6 ^{vi}	109.87 (7)	C11—C12—H12B	109.5
S6—Re3—S6 ^{vi}	109.87 (7)	H12A—C12—H12B	109.5
S6 ^v —Re3—S5	109.07 (7)	C11—C12—H12C	109.5
S6—Re3—S5	109.07 (7)	H12A—C12—H12C	109.5
S6 ^{vi} —Re3—S5	109.07 (7)	H12B-C12-H12C	109.5
S7—Re4—S10	109.13 (8)	C14 - C13 - N2	114.9(10)
S7—Re4—S9	109.13 (8)	C14—C13—H13A	108 5
S10—Re4—S9	109.81 (9)	N2—C13—H13A	108.5
S7-Re4-S8	109.61 (8)	C14—C13—H13B	108.5
\$10Re4\$8	109.01(0) 109.49(10)	N2_C13_H13B	108.5
S9	109.49 (10)	$H_{13}A = C_{13} = H_{13}B$	100.5
S11S12	109.04(0) 109.40(7)	C13 - C14 - H14A	107.5
S11_Re5_S13	109.40 (7)	C13 - C14 - H14R	109.5
S12 Re5 S13	109.38(9) 109.74(9)	$H_{14A} = C_{14} + H_{4B}$	109.5
S12 - Rc3 - S13 S11 Re5 S14	109.74(9) 100.06(8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
S11 - Re5 - S14 S12 Po5 S14	109.90(8) 100.23(0)		109.5
S12 - Rc3 - S14 S12 Do5 S14	109.23(9) 100.13(0)	H14R C14 H14C	109.5
S13—Re3— $S14$	109.13(9) 109.5(6)	$n_{14} = 0.14 = -0.14$	109.3 115.0(7)
C7 N1 C3	109.3(0) 100.1(12)	$C_{10} = C_{13} = N_2$	113.0 (7)
$C_{1} = N_{1} = C_{3}$	109.1(12) 110.0(10)	$N_2 C_{15} H_{15A}$	108.5
C_{3} N1 C_{1}	110.0(10) 112.4(11)	$N_2 = C_{15} = H_{15} R$	108.5
C = NI = CI	112.4(11) 108.2(12)	N2 C15 H15D	108.5
C_{2} N1 C_{1}	100.3(12) 107.4(5)	115A C15 U15D	100.5
$C_3 = N_1 = C_1$	107.4(5)	HISA—CIS—HISB	107.5
$C_2 = C_1 = W_1 A$	114./ (8)	C15 - C16 - H16A	109.5
C2—CI—HIA	108.0		109.5
NI—CI—HIA	108.6	H16A - C16 - H16B	109.5
C2—CI—HIB	108.6		109.5
NI-CI-HIB	108.6	H16A - C16 - H16C	109.5
HIA—CI—HIB	107.6	H16B—C16—H16C	109.5
CI-C2-H2A	109.5	C17 - N3 - C21	112.4 (10)
C1—C2—H2B	109.5	C17 - N3 - C19	107.6 (5)
H2A—C2—H2B	109.5	C21—N3—C19	107.8 (12)
C1—C2—H2C	109.5	C17—N3—C23	109.2 (12)
H2A—C2—H2C	109.5	C21—N3—C23	108.9 (5)
H2B—C2—H2C	109.5	C19—N3—C23	110.9 (10)
C4—C3—N1	117.0 (7)	N3—C17—C18	114.4 (7)
С4—С3—НЗА	108.0	N3—C17—H17A	108.7
N1—C3—H3A	108.0	C18—C17—H17A	108.7
С4—С3—Н3В	108.0	N3—C17—H17B	108.7
N1—C3—H3B	108.0	C18—C17—H17B	108.7
НЗА—СЗ—НЗВ	107.3	H17A—C17—H17B	107.6
C3—C4—H4A	109.5	C17—C18—H18A	109.5
C3—C4—H4B	109.5	C17—C18—H18B	109.5
H4A—C4—H4B	109.5	H18A—C18—H18B	109.5
C3—C4—H4C	109.5	C17—C18—H18C	109.5
H4A—C4—H4C	109.5	H18A—C18—H18C	109.5
H4B—C4—H4C	109.5	H18B—C18—H18C	109.5

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—N1	116.1 (10)	C20—C19—N3	114.8 (7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	С6—С5—Н5А	108.3	С20—С19—Н19А	108.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C5—H5A	108.3	N3—C19—H19A	108.6
$\begin{array}{ccccccc} N1-C5-H5B & 108.3 & N3-C19-H19B & 108.6 \\ H5A-C5-H5B & 107.4 & H19A-C19-H19B & 107.6 \\ C5-C6-H6A & 109.5 & C19-C20-H20B & 109.5 \\ C5-C6-H6B & 109.5 & H20A-C20-H20B & 109.5 \\ C5-C6-H6C & 109.5 & H20A-C20-H20C & 109.5 \\ H6A-C6-H6C & 109.5 & H20A-C20-H20C & 109.5 \\ H6B-C6-H6C & 109.5 & H20A-C20-H20C & 109.5 \\ N1-C7-C8 & 115.4 (6) & N3-C21-C22 & 115.5 (6) \\ N1-C7-H7A & 108.4 & N3-C21-H21A & 108.4 \\ C8-C7-H7A & 108.4 & N3-C21-H21A & 108.4 \\ C8-C7-H7B & 108.4 & N3-C21-H21B & 108.4 \\ N1-C7-H7B & 108.4 & N3-C21-H21B & 108.4 \\ C7-C8-H8A & 109.5 & C21-C22-H22A & 109.5 \\ C7-C8-H8B & 109.5 & C21-C22-H22B & 109.5 \\ C7-C8-H8C & 109.5 & H22A-C22-H22B & 109.5 \\ C7-C8-H8B & 109.5 & H22A-C22-H22B & 109.5 \\ C7-C8-H8C & 109.5 & H22A-C23-H23B & 108.4 \\ C1-N2-C13 & 108.2 (4) & C24-C23-H23B & 108.4 \\ C1-N2-C13 & 108.2 (4) & N3-C23-H23B & 108.4 \\ C1-N2-C13 & 108.4 (13) & N3-C23-H23B & 108.4 \\ C1-N2-C13 & 108.6 & C23-C24-H24B & 109.5 \\ N2-C9-H9A & 108.6 & C23-C24-H24B & 109.5 \\ N2-C9-H9B & 108.6 & C23-C24-H24C & 109.5 \\ C10-C9-H9B & 108.6 & C23-C24-H24C & 109.5 \\ H9A-C9-H9B & 108.6 & H24A-C24-H24C & 109.5 \\ H9A-C9-H9B & 108.6 & H24A-C24-H24C & 109.5 \\ H9A-C9-H9B & 107.6 & H24B-C24-H24C & 109.5 \\ H9A-C9-H9B & 107.6 & H24B-C24-H24C & 109.5 \\ H9A-C9-H9$	С6—С5—Н5В	108.3	С20—С19—Н19В	108.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1—C5—H5B	108.3	N3—C19—H19B	108.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5A—C5—H5B	107.4	H19A—C19—H19B	107.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С6—Н6А	109.5	С19—С20—Н20А	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С5—С6—Н6В	109.5	C19—C20—H20B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H6A—C6—H6B	109.5	H20A—C20—H20B	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С5—С6—Н6С	109.5	С19—С20—Н20С	109.5
H6B—C6—H6C109.5H20B—C20—H20C109.5N1—C7—C8115.4 (6)N3—C21—C22115.5 (6)N1—C7—H7A108.4N3—C21—H21A108.4C8—C7—H7A108.4C22—C21—H21A108.4C8—C7—H7B108.4C22—C21—H21B108.4C8—C7—H7B107.5H21A—C21—H21B108.4H7A—C7—H7B107.5H21A—C21—H21B107.5C7—C8—H8A109.5C21—C22—H22B109.5C7—C8—H8B109.5C21—C22—H22B109.5C7—C8—H8B109.5C21—C22—H22C109.5H8A—C8—H8C109.5H22A—C22—H22C109.5H8B—C8—H8C109.5H22A—C22—H22C109.5C9—N2—C11113.2 (12)C24—C23—N3115.5 (9)C9—N2—C15108.4 (13)N3—C23—H23A108.4C11—N2—C15108.4 (13)N3—C23—H23B108.4C11—N2—C13108.7 (12)C24—C23—H23B108.4C15—N2—C10114.6 (8)C23—C24—H24B109.5N2—C9—H9A108.6C23—C24—H24B109.5N2—C9—H9B108.6H24A—C24—H24C109.5C10—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	H6A—C6—H6C	109.5	H20A—C20—H20C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H6B—C6—H6C	109.5	H20B—C20—H20C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C7—C8	115.4 (6)	N3—C21—C22	115.5 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1—C7—H7A	108.4	N3—C21—H21A	108.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С8—С7—Н7А	108.4	C22—C21—H21A	108.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1—C7—H7B	108.4	N3—C21—H21B	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С7—Н7В	108.4	C22—C21—H21B	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H7A—C7—H7B	107.5	H21A—C21—H21B	107.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8—Н8А	109.5	C21—C22—H22A	109.5
H8A—C8—H8B109.5H22A—C22—H22B109.5C7—C8—H8C109.5C21—C22—H22C109.5H8A—C8—H8C109.5H22A—C22—H22C109.5H8B—C8—H8C109.5H22B—C22—H22C109.5C9—N2—C11113.2 (12)C24—C23—N3115.5 (9)C9—N2—C15108.2 (4)C24—C23—H23A108.4C11—N2—C15108.4 (13)N3—C23—H23A108.4C11—N2—C13108.7 (12)C24—C23—H23B108.4C15—N2—C13108.2 (4)N3—C23—H23B108.4C15—N2—C13108.2 (4)N3—C23—H23B107.5N2—C9—C10114.6 (8)C23—C24—H24A109.5N2—C9—H9A108.6C23—C24—H24B109.5C10—C9—H9A108.6C23—C24—H24B109.5N2—C9—H9B108.6H24A—C24—H24C109.5C10—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	С7—С8—Н8В	109.5	C21—C22—H22B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H8A—C8—H8B	109.5	H22A—C22—H22B	109.5
H8A—C8—H8C109.5H22A—C22—H22C109.5H8B—C8—H8C109.5H22B—C22—H22C109.5C9—N2—C11113.2 (12)C24—C23—N3115.5 (9)C9—N2—C15108.2 (4)C24—C23—H23A108.4C11—N2—C15108.4 (13)N3—C23—H23A108.4C9—N2—C13108.7 (12)C24—C23—H23B108.4C11—N2—C13108.2 (4)N3—C23—H23B108.4C15—N2—C13108.2 (4)N3—C23—H23B107.5N2—C9—C10114.6 (8)C23—C24—H24A109.5N2—C9—H9A108.6C23—C24—H24B109.5C10—C9—H9A108.6C23—C24—H24B109.5N2—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	С7—С8—Н8С	109.5	C21—C22—H22C	109.5
H8B—C8—H8C109.5H22B—C22—H22C109.5C9—N2—C11113.2 (12)C24—C23—N3115.5 (9)C9—N2—C15108.2 (4)C24—C23—H23A108.4C11—N2—C15108.4 (13)N3—C23—H23A108.4C9—N2—C13108.7 (12)C24—C23—H23B108.4C11—N2—C13108.2 (4)N3—C23—H23B108.4C15—N2—C13108.2 (4)N3—C23—H23B107.5N2—C9—C10114.6 (8)C23—C24—H24B109.5N2—C9—H9A108.6C23—C24—H24B109.5C10—C9—H9A108.6C23—C24—H24B109.5N2—C9—H9B108.6C23—C24—H24C109.5H9A—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	H8A—C8—H8C	109.5	H22A—C22—H22C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H8B—C8—H8C	109.5	H22B—C22—H22C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N2—C11	113.2 (12)	C24—C23—N3	115.5 (9)
C11—N2—C15108.4 (13)N3—C23—H23A108.4C9—N2—C13108.7 (12)C24—C23—H23B108.4C11—N2—C13108.2 (4)N3—C23—H23B108.4C15—N2—C13110.1 (11)H23A—C23—H23B107.5N2—C9—C10114.6 (8)C23—C24—H24A109.5C10—C9—H9A108.6C23—C24—H24B109.5N2—C9—H9A108.6H24A—C24—H24B109.5C10—C9—H9B108.6C23—C24—H24C109.5H9A—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	C9—N2—C15	108.2 (4)	C24—C23—H23A	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—N2—C15	108.4 (13)	N3—C23—H23A	108.4
C11—N2—C13108.2 (4)N3—C23—H23B108.4C15—N2—C13110.1 (11)H23A—C23—H23B107.5N2—C9—C10114.6 (8)C23—C24—H24A109.5N2—C9—H9A108.6C23—C24—H24B109.5C10—C9—H9A108.6H24A—C24—H24B109.5N2—C9—H9B108.6C23—C24—H24C109.5H9A—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	C9—N2—C13	108.7 (12)	C24—C23—H23B	108.4
C15—N2—C13110.1 (11)H23A—C23—H23B107.5N2—C9—C10114.6 (8)C23—C24—H24A109.5N2—C9—H9A108.6C23—C24—H24B109.5C10—C9—H9A108.6H24A—C24—H24B109.5N2—C9—H9B108.6C23—C24—H24C109.5C10—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	C11—N2—C13	108.2 (4)	N3—C23—H23B	108.4
N2—C9—C10114.6 (8)C23—C24—H24A109.5N2—C9—H9A108.6C23—C24—H24B109.5C10—C9—H9A108.6H24A—C24—H24B109.5N2—C9—H9B108.6C23—C24—H24C109.5C10—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	C15—N2—C13	110.1 (11)	H23A—C23—H23B	107.5
N2—C9—H9A108.6C23—C24—H24B109.5C10—C9—H9A108.6H24A—C24—H24B109.5N2—C9—H9B108.6C23—C24—H24C109.5C10—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	N2-C9-C10	114.6 (8)	C23—C24—H24A	109.5
C10—C9—H9A108.6H24A—C24—H24B109.5N2—C9—H9B108.6C23—C24—H24C109.5C10—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	N2—C9—H9A	108.6	C23—C24—H24B	109.5
N2—C9—H9B108.6C23—C24—H24C109.5C10—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	С10—С9—Н9А	108.6	H24A—C24—H24B	109.5
C10—C9—H9B108.6H24A—C24—H24C109.5H9A—C9—H9B107.6H24B—C24—H24C109.5	N2—C9—H9B	108.6	C23—C24—H24C	109.5
H9A—C9—H9B 107.6 H24B—C24—H24C 109.5	С10—С9—Н9В	108.6	H24A—C24—H24C	109.5
	Н9А—С9—Н9В	107.6	H24B—C24—H24C	109.5

Symmetry codes: (i) -*y*, *x*-*y*, *z*; (ii) -*x*+*y*, -*x*, *z*; (iii) -*x*+*y*+1, -*x*+1, *z*; (iv) -*y*+1, *x*-*y*, *z*; (v) -*y*+1, *x*-*y*+1, *z*; (vi) -*x*+*y*, -*x*+1, *z*.

Tetraethylammonium tetrathiorhenate (Ic)

Crystal data	
$(C_8H_{20}N)[ReS_4]$	V = 720.0 (3) Å ³
$M_r = 444.69$	Z = 2
Monoclinic, $P2_1$	F(000) = 428
a = 7.900 (2) Å	$D_{\rm x} = 2.051 { m Mg m^{-3}}$
b = 12.842 (3) Å	Mo K α radiation, $\lambda = 0.71073$ Å
c = 8.118 (2) Å	Cell parameters from 3279 reflections
$\beta = 119.04 \ (2)^{\circ}$	$\theta = 2.9 - 29.5^{\circ}$

 $\mu = 8.99 \text{ mm}^{-1}$ T = 150 K

Data collection

Dura concention	
Oxford Diffraction Gemini E Ultra diffractometer with an EOS CCD camera	$T_{\min} = 0.241, T_{\max} = 0.336$ 4476 measured reflections
Radiation source: fine-focus sealed tube	2814 independent reflections
Enhanced (Mo)	2808 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.053$
Detector resolution: 16.2705 pixels mm ⁻¹	$\theta_{\rm max} = 29.3^\circ, \ \theta_{\rm min} = 3.3^\circ$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: analytical	$k = -15 \rightarrow 16$
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 29.5424P]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.138$	$(\Delta/\sigma)_{\rm max} = 0.002$
S = 1.09	$\Delta \rho_{\rm max} = 2.01 \text{ e} \text{ Å}^{-3}$
2814 reflections	$\Delta \rho_{\rm min} = -4.80 \text{ e} \text{ Å}^{-3}$
87 parameters	Absolute structure: Flack x determined using
89 restraints	1080 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et
Hydrogen site location: inferred from	<i>al.</i> , 2013)
neighbouring sites	Absolute structure parameter: 0.105 (18)

Prism, black

 $0.24 \times 0.20 \times 0.17 \text{ mm}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 6-component twin.

Suitable single crystals of Et₄NReS₄ were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the *CrysAlisPro* program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F² (Sheldrick, 2015, 2008). The graphics were prepared with the program *Diamond* (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Re	0.0222 (5)	0.25452 (19)	0.03784 (19)	0.0174 (3)	
S1	0.0542 (18)	0.4194 (5)	0.0361 (16)	0.023 (3)	
S2	-0.105 (2)	0.1961 (8)	-0.2401 (14)	0.022 (2)	
S3	-0.150 (2)	0.2166 (9)	0.163 (2)	0.026 (3)	
S4	0.3036 (17)	0.1879 (9)	0.194 (2)	0.030 (3)	
Ν	0.680(3)	0.5128 (17)	0.326 (3)	0.016 (6)*	
C1	0.595 (6)	0.417 (2)	0.366 (5)	0.025 (9)*	
H1A	0.682470	0.357262	0.384336	0.030*	
H1B	0.469486	0.401274	0.253227	0.030*	

C2	0.562 (8)	0.422 (4)	0.537 (7)	0.030 (11)*
H2A	0.507365	0.356325	0.550356	0.045*
H2B	0.685905	0.435040	0.651499	0.045*
H2C	0.472238	0.479193	0.519969	0.045*
C3	0.878 (5)	0.535 (3)	0.492 (5)	0.025 (9)*
H3A	0.860836	0.555189	0.600623	0.029*
H3B	0.932921	0.596495	0.459715	0.029*
C4	1.025 (7)	0.447 (3)	0.552 (7)	0.029 (10)*
H4A	1.147093	0.468969	0.659847	0.044*
H4B	0.974470	0.386098	0.588604	0.044*
H4C	1.046759	0.427522	0.447296	0.044*
C5	0.546 (5)	0.604 (2)	0.292 (6)	0.027 (9)*
H5A	0.527783	0.612571	0.403188	0.033*
H5B	0.418227	0.587752	0.182885	0.033*
C6	0.613 (8)	0.709 (2)	0.253 (5)	0.025 (8)*
H6A	0.517313	0.762502	0.233300	0.037*
H6B	0.738025	0.727722	0.361484	0.037*
H6C	0.628155	0.702831	0.140546	0.037*
C7	0.703 (5)	0.494 (3)	0.153 (5)	0.017 (8)*
H7A	0.780548	0.430017	0.174116	0.021*
H7B	0.777263	0.552620	0.140771	0.021*
C8	0.516 (4)	0.482 (3)	-0.033 (5)	0.021 (9)*
H8A	0.546821	0.470602	-0.134755	0.032*
H8B	0.442106	0.423120	-0.025216	0.032*
H8C	0.438810	0.546083	-0.058658	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re	0.0322 (12)	0.0080 (4)	0.0215 (7)	0.0046 (17)	0.0207 (11)	0.004 (2)
S1	0.027 (8)	0.008 (3)	0.025 (8)	-0.001 (3)	0.005 (4)	0.005 (4)
S2	0.015 (7)	0.021 (4)	0.030 (6)	-0.003 (5)	0.010 (5)	-0.004 (4)
S3	0.025 (8)	0.027 (5)	0.039 (9)	0.006 (4)	0.025 (8)	0.006 (5)
S4	0.019 (6)	0.016 (5)	0.048 (9)	0.012 (5)	0.011 (6)	0.002 (7)

Geometric parameters (Å, °)

Re—S3	2.111 (9)	С3—Н3В	0.9900	
Re—S2	2.113 (10)	C4—H4A	0.9800	
Re—S4	2.132 (10)	C4—H4B	0.9800	
Re—S1	2.133 (7)	C4—H4C	0.9800	
N—C5	1.51 (2)	C5—C6	1.53 (3)	
NC1	1.51 (2)	C5—H5A	0.9900	
N—C3	1.52 (2)	C5—H5B	0.9900	
N—C7	1.52 (2)	С6—Н6А	0.9800	
C1—C2	1.54 (3)	C6—H6B	0.9800	
C1—H1A	0.9900	C6—H6C	0.9800	
C1—H1B	0.9900	C7—C8	1.52 (3)	

C2—H2A	0.9800	С7—Н7А	0.9900
С2—Н2В	0.9800	С7—Н7В	0.9900
C2—H2C	0.9800	C8—H8A	0.9800
C3—C4	1.53 (3)	C8—H8B	0.9800
С3—НЗА	0.9900	C8—H8C	0.9800
S3—Re—S2	110.3 (6)	C3—C4—H4A	109.5
S3—Re—S4	110.6 (6)	C3—C4—H4B	109.5
S2—Re—S4	108.0 (6)	H4A—C4—H4B	109.5
S3—Re—S1	109.8 (5)	C3—C4—H4C	109.5
S2—Re—S1	110.0 (4)	H4A—C4—H4C	109.5
S4—Re—S1	108.0 (5)	H4B—C4—H4C	109.5
C5—N—C1	109.4 (17)	N—C5—C6	116 (3)
C5—N—C3	109.9 (18)	N—C5—H5A	108.3
C1—N—C3	109.7 (18)	С6—С5—Н5А	108.3
C5—N—C7	109.9 (18)	N—C5—H5B	108.3
C1—N—C7	109.5 (17)	С6—С5—Н5В	108.3
C3—N—C7	108.5 (17)	H5A—C5—H5B	107.4
N—C1—C2	116 (2)	С5—С6—Н6А	109.5
N—C1—H1A	108.2	С5—С6—Н6В	109.5
C2—C1—H1A	108.2	H6A—C6—H6B	109.5
N—C1—H1B	108.2	С5—С6—Н6С	109.5
C2—C1—H1B	108.2	H6A—C6—H6C	109.5
H1A—C1—H1B	107.3	H6B—C6—H6C	109.5
C1—C2—H2A	109.5	N—C7—C8	116 (2)
C1—C2—H2B	109.5	N—C7—H7A	108.3
H2A—C2—H2B	109.5	С8—С7—Н7А	108.3
C1—C2—H2C	109.5	N—C7—H7B	108.3
H2A—C2—H2C	109.5	С8—С7—Н7В	108.3
H2B—C2—H2C	109.5	H7A—C7—H7B	107.4
N—C3—C4	116 (3)	С7—С8—Н8А	109.5
N—C3—H3A	108.3	С7—С8—Н8В	109.5
С4—С3—НЗА	108.3	H8A—C8—H8B	109.5
N—C3—H3B	108.3	С7—С8—Н8С	109.5
С4—С3—Н3В	108.3	H8A—C8—H8C	109.5
НЗА—СЗ—НЗВ	107.4	H8B—C8—H8C	109.5