

Received 26 September 2016 Accepted 5 December 2016

Edited by A. G. Oliver, University of Notre Dame, USA

Keywords: *p*-arsanilic acid salts; alkaline earth metals; coordination polymers; hydrogen bonding; crystal structure; one-dimensional coordination polymer; barium; strontium; calcium; magnesium.

CCDC references: 1520680; 1520679; 1520678; 1520677

Supporting information: this article has supporting information at journals.iucr.org/c

© 2017 International Union of Crystallography

The coordination complex structures and hydrogen bonding in the three-dimensional alkaline earth metal salts (Mg, Ca, Sr and Ba) of (4-aminophenyl)arsonic acid

Graham Smith^a* and Urs D. Wermuth^b

^aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and ^bSchool of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia. *Correspondence e-mail: g.smith@qut.edu.au

(4-Aminophenyl)arsonic acid (p-arsanilic acid) is used as an antihelminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4-aminophenyl)arsonic acid (p-arsanilic acid) have been determined, viz. hexaaquamagnesium bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate, [Mg- $(H_2O)_6](C_6H_7AsNO_3)\cdot 4H_2O_1(I), catena-poly[[[diaquacalcium]-bis[\mu_2-hydrogen]])$ (4-aminophenyl)arsonato- $\kappa^2 O:O'$]-[diaquacalcium]-bis[μ_2 -hydrogen (4-aminophenyl)arsonato- $\kappa^2 O:O$]] dihydrate], {[Ca(C₆H₇AsNO₃)₂(H₂O)₂]·2H₂O]_n, (II), *catena*-poly[[triaquastrontium]-bis[μ_2 -hydrogen (4-aminophenyl)arsonato- $\kappa^2 O: O'$]], $[Sr(C_6H_7AsNO_3)_2(H_2O)_3]_n$, (III), and *catena*-poly[[triaquabarium]-bis[μ_2 -hydrogen (4-aminophenyl)arsonato- $\kappa^2 O:O'$]], [Ba(C₆H₇AsNO₃)₂(H₂O)₃]_n, (IV). In the structure of magnesium salt (I), the centrosymmetric octahedral $[Mg(H_2O)_6]^{2+}$ cation, the two hydrogen *p*-arsanilate anions and the four water molecules of solvation form a three-dimensional network structure through inter-species O-H and N-H hydrogen-bonding interactions with water and arsonate O-atom and amine N-atom acceptors. In one-dimensional coordination polymer (II), the distorted octahedral CaO_6 coordination polyhedron comprises two trans-related water molecules and four arsonate O-atom donors from bridging hydrogen arsanilate ligands. One bridging extension is four-membered via a single O atom and the other is eight-membered via O:O'-bridging, both across inversion centres, giving a chain coordination polymer extending along the [100] direction. Extensive hydrogen-bonding involving $O-H\cdots O$, O- $H \cdots N$ and $N - H \cdots O$ interactions gives an overall three-dimensional structure. The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular MO₇ coordination polyhedra about the M^{2+} centres, which lie on twofold rotation axes along with one of the coordinated water molecules. The coordination centres are linked through inversion-related arsonate O:O'-bridges, giving eight-membered ring motifs and forming coordination polymeric chains extending along the [100] direction. Inter-chain $N-H\cdots O$ and $O-H\cdots O$ hydrogen-bonding interactions extend the structures into three dimensions and the crystal packing includes $\pi - \pi$ ring interactions [minimum ring centroid separations = 3.4666 (17) Å for (III) and 3.4855 (8) Å for (IV)].

1. Introduction

The compound (4-aminophenyl)arsonic acid (or *p*-arsanilic acid) has a continuing usage as an antihelminth in veterinary applications (Steverding, 2010) and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl (Ehrlich & Bertheim, 1907; O'Neil, 2001; Bosch & Rosich, 2008). We reported the crystal structure of atoxyl,

research papers

Figure 1

The molecular configuration and atom-naming scheme for the hexaaquamagnesium cation, the *p*-arsanilate anion and the two water molecules of solvation in the the asymmetric unit of (I), with displacement ellipsoids drawn at the 40% probability level. Inter-species hydrogen bonds are shown as dashed lines. [Inversion-related atoms are indicated by the symmetry code (i) -x + 1, -y + 1, -z + 1.]

together with that of the monoammonium salt (Smith & Wermuth, 2014) but the number of structures of monometal (as distinct from mixed metal) complexes with *p*-arsanilic acid are few in the crystallographic literature, examples being with silver(I), zinc, cadmium and lead (Lesikar-Parrish *et al.*, 2013) and uranium (as UO₂) (Adelani *et al.*, 2012). An example of a mixed-metal compound is the sodium salt of a hybrid organic–inorganic polyoxovanadate cluster formed with *p*-arsanilate anions (Breen & Schmitt, 2008).

Our 2:1 stoichiometric reactions of *p*-arsanilic acid with magnesium, calcium, strontium and barium carbonates in aqueous ethanol gave the title compounds $[Mg(H_2O)_6](C_6H_7-$

AsNO₃)₂. 4H₂O, (I), {[Ca(C₆H₇AsNO₃)₂(H₂O)₂]·2H₂O}_{*n*}, (II), [Sr(C₆H₇AsNO₃)₂(H₂O)₃]_{*n*}, (III), and [Ba(C₆H₇AsNO₃)₂-(H₂O)₃]_{*n*}, (IV), respectively. The structures and hydrogenbonded packing modes for (I)–(IV) are reported herein.

2. Experimental

2.1. Synthesis and crystallization

The title compounds (I)–(IV) were synthesized by heating together under reflux for 5 min, 1.0 mmol (216 mg) of (4-aminophenyl)arsonic acid and 0.5 mmol of the appropriate carbonate, *i.e.* 42 mg of MgCO₃ for (I), 50 mg of CaCO₃ for (II), 74 mg of SrCO₃ for (III) or 98 mg of BaCO₃ for (IV), in 20 ml of 50% (ν/ν) ethanol/water. Partial room-temperature evaporation of the solutions gave colourless needles of all compounds from which specimens suitable for the X-ray analyses were cleaved. Crystals were mounted on conventional glass fibres using epoxy resin.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms involved in hydrogen bonds were located by difference Fourier methods and their isotropic displacement parameters were allowed to ride. N–H bond lengths were restrained to 0.88 (2) Å for (I) and (II), and to 0.90 (2) Å for (III) and (IV). O–H bond lengths were restrained to 0.90 (2) Å in all cases. H atoms bonded to C atoms were included in the refinement in calculated positions (C–H = 0.95 Å) and treated as riding, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

3. Results and discussion

In the structure of magnesium compound (I), the cations exist as the commonly found centrosymmetric octahedral [Mg- $(H_2O)_6$]²⁺ species with the hydrogen *p*-arsanilate acting as counter-anions. The coordinated aqua ligands are related in pairs by (-x + 1, -y + 1, -z + 1), denoted symmetry code (i) (Fig. 1). The Mg–O bond lengths [2.066 (2)–2.0734 (18) Å]

Figure 2

The hydrogen-bonding extension in the structure of (I), showing the symmetry operations (see Table 2). H atoms not involved in hydrogen bonding have been omitted.

Table 1Experimental details.

	(I)	(II)	(III)	(IV)
Crystal data				
Chemical formula	[Mg(H ₂ O) ₆](C ₆ H ₇ As- NO ₃)·4H ₂ O	[Ca(C ₆ H ₇ AsNO ₃) ₂ - (H ₂ O) ₂]·2H ₂ O	$[Sr(C_6H_7AsNO_3)_2(H_2O)_3]$	$[\mathrm{Ba}(\mathrm{C_6H_7AsNO_3})_2(\mathrm{H_2O})_3]$
M _r	636.56	544.24	573.76	623.92
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$	Monoclinic, I2/a	Monoclinic, I2/a
Temperature (K)	200	200	200	200
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.1693 (6), 6.7367 (2), 12.9532 (4)	9.001 (5), 9.672 (5), 11.756 (5)	9.8935 (3), 7.5844 (3), 23.6669 (9)	9.9997 (8), 7.7305 (6), 23.979 (2)
$lpha,eta,\gamma(^\circ)$	90, 108.033 (4), 90	77.096 (5), 74.096 (5), 82.236 (5)	90, 97.866 (3), 90	90, 98.214 (7), 90
$V(\text{\AA}^3)$	1258.68 (7)	956.4 (8)	1759.17 (11)	1834.7 (3)
Z	2	2	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	2.75	3.82	6.85	5.79
Crystal size (mm)	$0.35\times0.18\times0.10$	$0.35\times0.11\times0.10$	$0.25 \times 0.12 \times 0.12$	$0.36 \times 0.22 \times 0.16$
Data collection				
Diffractometer	Oxford Diffraction Gemini-S CCD detector	Oxford Diffraction Gemini-S CCD detector	Oxford Diffraction Gemini-S CCD detector	Oxford Diffraction Gemini-S CCD detector
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.700, 0.980	0.931, 0.980	0.791, 0.980	0.470, 0.970
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	8901, 2466, 2149	6921, 3744, 3276	3326, 1737, 1606	3485, 1801, 1696
R _{int}	0.032	0.032	0.020	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617	0.617	0.617	0.617
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.072, 1.12	0.031, 0.068, 1.06	0.022, 0.051, 1.09	0.023, 0.055, 1.10
No. of reflections	2466	3744	1737	1801
No. of parameters	190	286	137	137
No. of restraints	13	14	7	7
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.40, -0.64	0.55, -0.47	0.47, -0.54	0.85, -0.95

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), and PLATON (Spek, 2009).

are typical of those found in $[Mg(H_2O)_6]^{2+}$ complex cations with analogous phosphonate anions, *e.g.* with hydrogen diphenylmethylphosphonate (Lee *et al.*, 1988), hydrogen (2-aminoethyl)phosphonate (Schier *et al.*, 1990) and the carboxylate anion 4-nitrobenzoate (Arlin *et al.*, 2011).

Table 2		
Hydrogen-bond	geometry (Å,	$^{\circ}$) for (I).

177 (3) 164 (3)
164 (3)
. (.)
172 (2)
175 (2)
172 (3)
174 (2)
177 (3)
175 (3)
165 (2)
171 (3)
174 (3)
170 (2)
169 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 2, -z + 1; (iii) x - 1, y, z; (iv) -x, -y + 1, -z + 1; (v) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (vi) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (vii) x, y + 1, z.

In the crystal of (I), extensive hydrogen-bonding involving all H-atom donors of the anions and those of both the coordinated and solvent water molecules (O4W and O5W) with arsanilate O- and N-atom acceptors and water O-atom acceptors (Table 2) generate a three-dimensional structure (Figs. 2 and 3). The coordinated water molecules interact with both arsanilate O11^v, O12 and O13ⁱ, and water O4W, O5W and $O5W^{v}$ atoms. These interactions include an $R_{3}^{3}(10)$ cyclic motif involving both the Mg and As atoms. The solvent water molecules involve O11, O11^v, O12^{vi} and O1W^{vii} acceptors. The arsanilate amine group acts as both a double donor to O12^{iv} and O4Wⁱⁱⁱ atoms and as an acceptor to the O13 acid H-atom donor of an inversion-related anion, linking these along [010]. Weak π - π associations are also present between inversionrelated anions [ring centroid separation $Cg \cdots Cg^{ii}$ = 3.7187 (14) Å] [symmetry codes: (ii) -x, -y + 2, -z + 1; (iii) x - 1, y, z; (iv) -x, -y + 1, -z + 1; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (vi) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (vii) x, y + 1, z].

In the structure of the coordination polymeric calcium compound (II), the repeat unit is a distorted octahedral CaO_6 complex comprising four O-atom donors (with two bridging) from the two independent hydrogen *p*-arsanilate anions (*A*

Figure 3

A perspective view of the three-dimensional hydrogen-bonded framework structure of (I) in the unit cell, showing the hydrogen-bonding associations as dashed lines. H atoms not involved in hydrogen bonding have been omitted. For symmetry codes, see Table 2.

Table 3Selected bond lengths (Å) for (II).

Ca1-O1W	2.392 (3)	Ca1-O11B	2.361 (2)
Ca1 - O2W	2.345 (3)	$Ca1 - O11B^{i}$	2.420 (2)
Ca1-O11A	2.306 (2)	Ca1-O12A ⁱⁱ	2.291 (2)
Symmetry codes: (i)	-x, -y + 1, -z + 1; (i	ii) $-x + 1, -y + 1, -z + 1.$	

and *B*), together with two independent monodentate water molecules (O1*W* and O2*W*). Present also in the structure are two water molecules of solvation (O3*W* and O4*W*) (Fig. 4). The Ca–O bond lengths are in the range 2.306 (2)– 2.420 (2) Å (Table 3), typical values for Ca–O bond lengths in the six-coordinate diaquacalcium–carboxylate–L-valine complex (Lamberts & Englert, 2015) (2.278–2.372 Å). The bridging carboxylate O atoms in (II) generate a coordination

Figure 4

The molecular configuration and atom-naming scheme for the asymmetric unit and the water molecules of solvation (O3W and O4W) in (II). Displacement ellipsoids are drawn at the 40% probability level. For symmetry codes, see Table 3.

polymer extending along [100] through centrosymmetric cyclic ring systems, *i.e.* four-membered through O11 B^{i} and eightmembered through O11 A^{ii} and O12 A^{ii} [symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1] (Fig. 5). The Ca···Caⁱ separation in the four-membered ring is 3.801 (2) Å. The crystal structure involves a number of inter-chain N– H···O and O–H···O hydrogen-bonding interactions to arsonate and water O-atom acceptors, as well as to the amine N-atom acceptors (Table 4 and Fig. 5). These generate an

Figure 5

A portion of the one-dimensional coordination polymeric chains in the structure of (II) extending along *a*. For symmetry codes, see Table 3.

Hydrogen bonding in the three-dimensional structure of (II), viewed down b, showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted. For symmetry codes, see Table 4.

Table 4					
Hydrogen-bond geo	ometry (Å	., °)) for (II).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$0134 - H134 \dots 012B^{ii}$	0.88(2)	1.67(2)	2534(3)	169 (4)
$O13B - H13B \cdots O11A^{i}$	0.88(2)	1.07(2) 1.70(3)	2.578 (3)	109(4) 170(3)
$N4A - H41A \cdots O12B^{iii}$	0.88(2)	2.13 (2)	3.014 (4)	176 (4)
$N4B - H42B \cdots O4W^{iv}$	0.86 (3)	2.05 (3)	2.901 (5)	172 (4)
$O1W$ -H11 W ···N4 B^{v}	0.90 (4)	2.17 (4)	3.048 (5)	166 (4)
$O1W - H12W \cdot \cdot \cdot O3W$	0.89 (2)	1.83 (2)	2.712 (4)	171 (3)
$O2W-H21W\cdots N4A^{vi}$	0.86 (4)	2.04 (4)	2.893 (4)	173 (4)
$O2W - H22W \cdots O4W^{vii}$	0.88 (3)	1.92 (3)	2.785 (4)	168 (4)
$O3W-H31WO13B^{viii}$	0.88 (4)	1.96 (4)	2.827 (4)	169 (4)
O3W−H32W···O12B	0.89 (3)	1.92 (3)	2.758 (4)	157 (4)
$O4W-H41W\cdots O3W^{ix}$	0.87 (4)	2.08 (4)	2.915 (4)	160 (3)
O4W-H42WO13A	0.89 (4)	1.86 (3)	2.748 (4)	176 (2)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z + 1; (iv) x, y + 1, z - 1; (v) x, y, z + 1; (vi) x, y, z - 1; (vii) -x + 1, -y, -z + 1; (viii) -x, -y + 2, -z + 1; (ix) x, y - 1, z.

overall three-dimensional framework structure (Fig. 6) in which no $\pi - \pi$ ring interactions are present.

The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular MO_7 coordination polyhedra about the M^{2+} centres, which lie on twofold rotation axes. The basic SrO₇ or BaO₇ complex repeat units (Figs. 7 and 8) comprise three monodentate water molecules, with one (O2W) lying on a twofold rotation axis and the others (O1W and O1Wⁱ) related by the rotation axis [symmetry code: (i) $-x + \frac{3}{2}$, y, -z + 1]. The coordination sphere is completed by four O:O'-bridging arsonate O-atom donors, *i.e.* O11, O11ⁱ, O12ⁱⁱ and O12ⁱⁱⁱ [symmetry codes: (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}$, -y, z]. The M-O bond-length

Figure 7

The molecular configuration and atom-naming scheme for the complex unit in (III). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) $-x + \frac{3}{2}$, y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}$, -y, z.]

Table 5		
Selected	bond lengths (Å) for (III).	

Sr1 - O1W	2.628(2)	$r_{i} = 011^{i}$	2.5527 (18)
Sr1 - O2W	2.628 (3)	Sr1-012	2.549 (2)
Sr1-O11	2.5527 (18)	$Sr1-O12^{m}$	2.549 (2)
$Sr1 - O1W^{i}$	2.628 (2)		

Symmetry codes: (i) $-x + \frac{3}{2}$, y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}$, -y, z.

ranges are 2.549 (2)–2.628 (2) (for Sr) and 2.694 (2)–2.779 (2) Å (for Ba) (Tables 5 and 6).

Both O:O'-bridging groups provide eight-membered cyclic extensions of the structure, one of which is centrosymmetric, giving a one-dimensional chain polymer structure extending

The molecular configuration and atom-naming scheme for the complex unit in (IV). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) $-x + \frac{3}{2}$, y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}$, -y, z.]

along [100] (Fig. 9). In the crystal, there are inter-polymer N— H···O and O—H···O hydrogen-bonding associations to arsonate and water O-atom acceptors (Tables 7 and 8), generating a three-dimensional framework structure (Fig. 10). Present also in the crystal packing of (III) and (IV) are relatively strong π - π aromatic ring interactions with ring centroid separations (Cg··· Cg^{vii}) of 3.4666 (17) Å in (III) and 3.4855 (8) Å in (IV) between inversion-related hydrogen arsanilate ligands [symmetry code: (vii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$].

The monoanionic arsonate groups in all four structures are similar in having delocalized As-O11 and As-O12 bonds, which are essentially equal: 1.6617 (15) and 1.6581 (14) Å in (I); 1.673 (2) and 1.645 (2) Å in (IIA), and 1.667 (2) and 1.668 (2) Å in (IIB); 1.6650 (16) and 1.6705 (19) Å in (III); 1.667 (2) and 1.668 (2) Å in (IV). These compare with

Figure 9

The one-dimensional coordination polymeric chains in the structure of (III), extending along a. The isotypic structure of (IV) is similar. For symmetry codes, see Tables 7 and 8.

The hydrogen bonding in the three-dimensional complex structures of (III) and (IV). Non-associative H atoms have been omitted.

 Table 6

 Selected bond lengths (Å) for (IV).

Ba1-O1W	2.774 (2)	Ba1-O11 ⁱ	2.706 (2)
Ba1 - O2W	2.779 (4)	Ba1-O12 ⁱⁱ	2.694 (2)
Ba1-O11	2.706 (2)	Ba1-O12 ⁱⁱⁱ	2.694 (2)
$Ba1 - O1W^i$	2.774 (2)		

Symmetry codes: (i) $-x + \frac{3}{2}$, y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}$, -y, z.

Table 7

Hydrogen-bond geometry (Å, °) for (III).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W-H11 W ···O11 ^{iv}	0.88 (2)	1.92 (2)	2.791 (3)	173 (3)
$O1W-H12W\cdots O13^{ii}$	0.88(3)	2.02(2)	2.845 (3)	156 (3)
$O13-H13\cdots O12^{iii}$	0.88(2)	1.73 (2)	2.606 (3)	176 (3)
$O2W-H21W \cdot \cdot \cdot O11^{iv}$	0.83 (3)	2.52 (3)	3.267 (2)	149 (3)
$N4-H41\cdots O1W^{v}$	0.89(2)	2.24 (3)	3.115 (4)	165 (2)
$N4{-}H42{\cdots}O13^{vi}$	0.89 (3)	2.33 (3)	3.210 (4)	170 (3)

Symmetry codes: (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}, -y, z$; (iv) -x + 1, -y + 1, -z + 1; (v) $x - \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (vi) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Table 8Hydrogen-bond geometry (Å, $^{\circ}$) for (IV).

$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.88 (2)	1.87 (2)	2.738 (3)	168 (4)
0.86 (3)	2.13 (3)	2.902 (3)	149 (3)
0.87(2)	1.77 (2)	2.626 (3)	167 (3)
0.87 (4)	2.46 (4)	3.229 (2)	149 (3)
0.87 (3)	2.23 (3)	3.092 (4)	171 (3)
0.88 (3)	2.37 (3)	3.241 (4)	170 (3)
	<i>D</i> -H 0.88 (2) 0.86 (3) 0.87 (2) 0.87 (4) 0.87 (3) 0.88 (3)	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.88 (2) & 1.87 (2) \\ 0.86 (3) & 2.13 (3) \\ 0.87 (2) & 1.77 (2) \\ 0.87 (4) & 2.46 (4) \\ 0.87 (3) & 2.23 (3) \\ 0.88 (3) & 2.37 (3) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}, -y, z$; (iv) -x + 1, -y + 1, -z + 1; (v) $x - \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (vi) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

1.672 (3) and 1.677 (3), and 1.670 (3) and 1.659 (3) Å in the ammonium and sodium salts, respectively (Smith & Wermuth, 2014), and 1.656 (6) and 1.669 (6) Å in the zwitterionic parent acid (Shimada, 1961; Nuttall & Hunter, 1996). The As-O13(H) bonds are 1.7412 (16) Å in (I), 1.721 (2) Å in (IIA) and 1.727 (2) Å in (IIB), 1.746 (2) Å in (III) and 1.749 (2) Å in (IV), compared with 1.737 (8) Å in the parent acid.

The work reported here provides a comparison of the coordination chemistry and hydrogen bonding in the three-

dimensional structures of the alkaline earth series of complexes with hydrogen (4-aminophenyl)arsonic acid. With the exception of Mg complex (I), all the compounds form basically similar supramolecular structures in which the primary core comprising the polymeric metal complex and water molecules form layers which are linked through the peripheral arsanilate ring systems by hydrogen bonding involving the *para*-related aniline amino group. This packing feature is also found in the sodium hydrogen *p*-arsanilate structure (Smith & Wermuth, 2014), although the primary layer differs from the alkaline-earth members (II)–(IV) in that it involves an NaO₅ complex core with one of the three coordinated water molecules bridging.

Acknowledgements

The authors acknowledge support from the Science and Engineering Faculty, Queensland University of Technology.

References

Adelani, P. O., Jouffret, L. J., Szymanowski, J. E. S. & Burns, P. C. (2012). *Inorg. Chem.* **51**, 12032–12040.

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). *Cryst. Growth Des.* **11**, 1318–1327.
- Bosch, F. & Rosich, L. (2008). *Pharmacology*, **82**, 171–179.
- Breen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904–6908.
- Ehrlich, P. & Bertheim, A. (1907). Berichte, pp. 3292-3297.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Lamberts, K. & Englert, U. (2015). Crystals, 5, 261-272.
- Lee, H., Lynch, V. M., Cao, G. & Mallouk, T. E. (1988). Acta Cryst. C44, 365–367.
- Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432.
- Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.
- O'Neil, M. J. (2001). Editor. *The Merck Index*, 13th ed., p. 1535. Whitehouse Station, New Jersey: Merck & Co.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Schier, A., Gamper, S. & Muller, G. (1990). *Inorg. Chim. Acta*, **177**, 179–183.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639-643.
- Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Steverding, D. (2010). *Parasites Vectors*, **3**, 15. doi:10.1186/1756-3305-3-15.

Acta Cryst. (2017). C73, 61-67 [https://doi.org/10.1107/S2053229616019434]

The coordination complex structures and hydrogen bonding in the threedimensional alkaline earth metal salts (Mg, Ca, Sr and Ba) of (4-aminophenyl)arsonic acid

Graham Smith and Urs D. Wermuth

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015 for (I); *CrysAlis PRO* (Rigaku OD, 2015) for (II), (III), (IV). For all compounds, cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 2012); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

(I) Hexaaquamagnesium bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate

Crystal data	
$[Mg(H_2O)_6](C_6H_7AsNO_3)\cdot 4H_2O$ $M_r = 636.56$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.1693 (6) Å b = 6.7367 (2) Å c = 12.9532 (4) Å $\beta = 108.033$ (4)° V = 1258.68 (7) Å ³ Z = 2	F(000) = 652 $D_x = 1.680 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3242 reflections $\theta = 3.6-29.1^{\circ}$ $\mu = 2.75 \text{ mm}^{-1}$ T = 200 K Prism, colourless $0.35 \times 0.18 \times 0.10 \text{ mm}$
Data collection	
Oxford Diffraction Gemini-S CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) $T_{min} = 0.700, T_{max} = 0.980$	8901 measured reflections 2466 independent reflections 2149 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -18 \rightarrow 18$ $k = -8 \rightarrow 8$ $l = -15 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.072$ S = 1.12	 2466 reflections 190 parameters 13 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0344P)^2 + 0.0883P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta ho_{ m max} = 0.40 \ { m e} \ { m \AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$
and constrained refinement	

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
As1	0.23165 (2)	0.74327 (3)	0.60063 (2)	0.0166 (1)	
011	0.29867 (12)	0.8873 (2)	0.69756 (12)	0.0246 (5)	
O12	0.26694 (12)	0.5094 (2)	0.60663 (12)	0.0236 (5)	
O13	0.23879 (12)	0.8264 (2)	0.47619 (12)	0.0244 (5)	
N4	-0.17769 (16)	0.7891 (3)	0.56343 (19)	0.0242 (7)	
C1	0.10489 (18)	0.7641 (3)	0.59183 (19)	0.0186 (7)	
C2	0.07751 (19)	0.7930 (4)	0.6839 (2)	0.0258 (8)	
C3	-0.0154 (2)	0.7997 (4)	0.6747 (2)	0.0278 (8)	
C4	-0.08290 (19)	0.7765 (3)	0.5742 (2)	0.0206 (7)	
C5	-0.0548 (2)	0.7492 (3)	0.4821 (2)	0.0230 (8)	
C6	0.0379 (2)	0.7422 (3)	0.4915 (2)	0.0218 (8)	
Mg1	0.50000	0.50000	0.50000	0.0192 (3)	
O1W	0.44254 (13)	0.4488 (3)	0.62346 (13)	0.0264 (5)	
O2W	0.61417 (14)	0.3374 (3)	0.58760 (13)	0.0305 (6)	
O3W	0.56172 (16)	0.7579 (2)	0.57476 (16)	0.0308 (7)	
O4W	0.73459 (16)	0.7514 (2)	0.73245 (16)	0.0294 (7)	
O5W	0.45949 (14)	1.0160 (3)	0.66270 (14)	0.0283 (6)	
H2	0.12280	0.80820	0.75290	0.0310*	
Н3	-0.03370	0.82040	0.73770	0.0330*	
Н5	-0.10000	0.73540	0.41280	0.0280*	
H6	0.05640	0.72220	0.42850	0.0260*	
H13	0.2204 (19)	0.945 (3)	0.462 (2)	0.0370*	
H41	-0.193 (2)	0.772 (3)	0.6215 (19)	0.0290*	
H42	-0.2074 (19)	0.711 (3)	0.5111 (18)	0.0290*	
H11W	0.3843 (13)	0.463 (4)	0.615 (2)	0.0400*	
H12W	0.4704 (19)	0.481 (4)	0.6882 (15)	0.0400*	
H21W	0.641 (2)	0.345 (4)	0.6574 (14)	0.0460*	
H22W	0.6573 (19)	0.286 (4)	0.569 (3)	0.0460*	
H31W	0.6181 (16)	0.761 (4)	0.623 (2)	0.0460*	
H32W	0.5287 (19)	0.852 (3)	0.592 (2)	0.0460*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H41W	0.729 (2)	0.639 (3)	0.760 (2)	0.0440*
H42W	0.738 (2)	0.839 (3)	0.7823 (19)	0.0440*
H51W	0.4052 (14)	0.979 (4)	0.666 (2)	0.0420*
H52W	0.457 (2)	1.135 (3)	0.645 (2)	0.0420*

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
As1	0.0139 (2)	0.0182 (2)	0.0174 (2)	0.0013 (1)	0.0043 (1)	0.0003 (1)
011	0.0234 (11)	0.0262 (8)	0.0215 (8)	-0.0038 (7)	0.0030 (7)	-0.0036 (7)
O12	0.0209 (10)	0.0188 (8)	0.0305 (9)	0.0025 (7)	0.0069 (7)	0.0011 (7)
013	0.0278 (11)	0.0250 (8)	0.0232 (9)	0.0068 (8)	0.0122 (8)	0.0044 (7)
N4	0.0171 (13)	0.0292 (10)	0.0275 (12)	-0.0008 (9)	0.0087 (10)	-0.0004 (9)
C1	0.0142 (14)	0.0191 (11)	0.0222 (12)	0.0018 (9)	0.0052 (10)	0.0021 (8)
C2	0.0208 (16)	0.0369 (13)	0.0180 (12)	0.0028 (11)	0.0037 (11)	-0.0006 (10)
C3	0.0264 (17)	0.0387 (13)	0.0203 (12)	0.0041 (12)	0.0103 (12)	0.0017 (11)
C4	0.0192 (15)	0.0168 (10)	0.0261 (13)	0.0017 (10)	0.0074 (11)	0.0024 (9)
C5	0.0189 (16)	0.0275 (13)	0.0204 (12)	0.0003 (10)	0.0031 (11)	-0.0028 (9)
C6	0.0224 (16)	0.0253 (12)	0.0183 (12)	0.0006 (10)	0.0070 (11)	-0.0045 (9)
Mg1	0.0172 (7)	0.0225 (5)	0.0180 (5)	0.0019 (5)	0.0056 (5)	0.0000 (4)
O1W	0.0199 (11)	0.0403 (9)	0.0197 (8)	0.0020 (9)	0.0073 (8)	-0.0018 (8)
O2W	0.0252 (12)	0.0448 (11)	0.0199 (9)	0.0172 (9)	0.0048 (8)	-0.0008 (8)
O3W	0.0246 (13)	0.0304 (10)	0.0352 (11)	0.0010 (8)	0.0060 (9)	-0.0106 (8)
O4W	0.0359 (14)	0.0277 (10)	0.0273 (10)	-0.0049 (8)	0.0136 (10)	-0.0021 (7)
O5W	0.0240 (12)	0.0257 (9)	0.0347 (10)	0.0002 (8)	0.0082 (8)	0.0030 (8)

Geometric parameters (Å, °)

Mg1—O1W	2.0734 (18)	O4W—H41W	0.85 (2)
Mg1—O2W	2.066 (2)	O4W—H42W	0.86 (2)
Mg1—O3W	2.0668 (16)	O5W—H51W	0.87 (2)
Mg1—O1W ⁱ	2.0734 (18)	O5W—H52W	0.83 (2)
Mg1—O2W ⁱ	2.066 (2)	N4—C4	1.404 (4)
Mg1—O3W ⁱ	2.0668 (16)	N4—H41	0.86 (3)
As1—011	1.6617 (15)	N4—H42	0.87 (2)
As1—012	1.6581 (14)	C1—C6	1.388 (4)
As1-013	1.7412 (15)	C1—C2	1.393 (4)
As1—C1	1.896 (3)	C2—C3	1.378 (4)
O13—H13	0.85 (2)	C3—C4	1.394 (4)
O1W—H12W	0.84 (2)	C4—C5	1.398 (4)
O1W—H11W	0.86 (2)	C5—C6	1.374 (4)
O2W—H21W	0.871 (18)	С2—Н2	0.9500
O2W—H22W	0.84 (3)	С3—Н3	0.9500
O3W—H32W	0.88 (2)	С5—Н5	0.9500
O3W—H31W	0.89 (3)	С6—Н6	0.9500
O11—As1—O12	113.97 (8)	H21W—O2W—H22W	100 (3)
O11—As1—O13	108.23 (7)	Mg1—O3W—H32W	121.0 (18)

O11—As1—C1	111.97 (9)	H31W—O3W—H32W	108 (2)
O12—As1—O13	103.73 (7)	Mg1—O3W—H31W	123.1 (17)
O12—As1—C1	112.33 (9)	H41W—O4W—H42W	107 (2)
O13—As1—C1	105.85 (9)	H51W—O5W—H52W	109 (3)
O1W ⁱ —Mg1—O3W	89.08 (8)	C4—N4—H41	117 (2)
O2W ⁱ —Mg1—O3W	89.59 (8)	H41—N4—H42	113 (2)
O3W-Mg1-O3W ⁱ	180.00	C4—N4—H42	108 (2)
O1W ⁱ —Mg1—O2W ⁱ	88.24 (8)	C2—C1—C6	119.4 (3)
O1W ⁱ —Mg1—O3W ⁱ	90.92 (8)	As1—C1—C6	118.9 (2)
O2W ⁱ —Mg1—O3W ⁱ	90.41 (8)	As1—C1—C2	121.65 (19)
O1W ⁱ —Mg1—O2W	91.76 (8)	C1—C2—C3	119.9 (2)
O1W—Mg1—O2W	88.24 (8)	C2—C3—C4	120.9 (2)
O1W—Mg1—O3W	90.92 (8)	N4—C4—C3	121.3 (2)
O1W-Mg1-O1W ⁱ	180.00	C3—C4—C5	118.8 (3)
O1W-Mg1-O2W ⁱ	91.76 (8)	N4—C4—C5	119.8 (2)
O1W-Mg1-O3W ⁱ	89.08 (8)	C4—C5—C6	120.2 (2)
O2W—Mg1—O3W	90.41 (8)	C1—C6—C5	120.8 (2)
O2W-Mg1-O2W ⁱ	180.00	С3—С2—Н2	120.00
O2W-Mg1-O3W ⁱ	89.59 (8)	C1—C2—H2	120.00
As1—013—H13	113.2 (18)	С2—С3—Н3	120.00
Mg1—O1W—H11W	122.9 (17)	С4—С3—Н3	120.00
H11W—O1W—H12W	106 (3)	С6—С5—Н5	120.00
Mg1—O1W—H12W	121.6 (19)	C4—C5—H5	120.00
Mg1—O2W—H21W	125.6 (19)	C1—C6—H6	120.00
Mg1—O2W—H22W	131 (2)	С5—С6—Н6	120.00
O_{11} As C_{1} C_{2}	-24.6 (2)	Ac1 C1 C6 C5	177 69 (16)
$\begin{array}{c} 011 \\ 011 \\ 011 \\ 011 \\ 011 \\ 01 \\ 01 $	-34.0(2)	ASI = CI = C0 = CS	177.00(10)
O12 As1 $C1$ $C2$	147.97(10)	$C_2 = C_1 = C_0 = C_3$	0.2(3)
O12 As1 $C1$ $C6$	93.2(2) -82.20(18)	$C_1 = C_2 = C_3 = C_4$	0.3(4) -1780(2)
O12 As1 $C1$ $C2$	-62.29(10)	$C_2 = C_3 = C_4 = 104$	-1/8.0(2)
$\begin{array}{c} 013 \\ -As1 \\ -C1 \\ -C2 \\ -C4 $	-132.29(10)	$C_2 - C_3 - C_4 - C_3$	-1.0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.24(18)	104 - 04 - 05 - 00	1/0.20 (19)
ASI = CI = C2 = C3	-1/1.3(2)	$C_{4} = C_{5} = C_{6} = C_{1}$	1.1(3)
0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.0 (4)	U4-U3-U6-U1	-0.7(3)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
013—H13…N4 ⁱⁱ	0.85 (2)	1.90 (2)	2.745 (3)	177 (3)
N4—H41…O4 <i>W</i> ⁱⁱⁱ	0.86 (3)	2.07 (3)	2.904 (3)	164 (3)
N4—H42…O12 ^{iv}	0.87 (2)	2.12 (2)	2.980 (3)	172 (2)
O1 <i>W</i> —H11 <i>W</i> …O12	0.86 (2)	1.78 (2)	2.636 (3)	175 (2)
O1 <i>W</i> —H12 <i>W</i> ···O5 <i>W</i> ^v	0.84 (2)	1.91 (2)	2.745 (2)	172 (3)
O2 <i>W</i> —H21 <i>W</i> ···O11 ^v	0.87 (2)	1.84 (2)	2.707 (2)	174 (2)
O2 <i>W</i> —H22 <i>W</i> ···O13 ⁱ	0.84 (3)	1.99 (3)	2.831 (3)	178 (3)
O3 <i>W</i> —H31 <i>W</i> ···O4 <i>W</i>	0.89 (3)	1.89 (3)	2.781 (3)	175 (3)

0.88 (2)	1.94 (3)	2.796 (3)	165 (2)	
0.85 (2)	1.87 (2)	2.716 (2)	172 (3)	
0.86 (2)	1.86 (2)	2.720 (2)	173 (3)	
0.87 (2)	1.89 (2)	2.755 (3)	170 (2)	
0.83 (2)	2.14 (2)	2.957 (3)	170 (3)	
	0.88 (2) 0.85 (2) 0.86 (2) 0.87 (2) 0.83 (2)	$\begin{array}{cccc} 0.88 \ (2) & 1.94 \ (3) \\ 0.85 \ (2) & 1.87 \ (2) \\ 0.86 \ (2) & 1.86 \ (2) \\ 0.87 \ (2) & 1.89 \ (2) \\ 0.83 \ (2) & 2.14 \ (2) \end{array}$	0.88 (2)1.94 (3)2.796 (3)0.85 (2)1.87 (2)2.716 (2)0.86 (2)1.86 (2)2.720 (2)0.87 (2)1.89 (2)2.755 (3)0.83 (2)2.14 (2)2.957 (3)	0.88 (2)1.94 (3)2.796 (3)165 (2)0.85 (2)1.87 (2)2.716 (2)172 (3)0.86 (2)1.86 (2)2.720 (2)173 (3)0.87 (2)1.89 (2)2.755 (3)170 (2)0.83 (2)2.14 (2)2.957 (3)170 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+2, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*+1, *y*-1/2, -*z*+3/2; (vi) -*x*+1, *y*+1/2, -*z*+3/2; (vii) *x*, *y*+1, *z*.

(II) catena-Poly[[[diaquacalcium]-bis[μ_2 -hydrogen (4-aminophenyl)arsonato- $\kappa^2 O:O'$]-[diaquacalcium]-bis[μ_2 hydrogen (4-aminophenyl)arsonato- $\kappa^2 O:O$]] dihydrate]

Crystal data

 $[Ca(C_6H_7AsNO_3)_2(H_2O)_2] \cdot 2H_2O$ $M_r = 544.24$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.001 (5) Å b = 9.672 (5) Å c = 11.756 (5) Å a = 77.096 (5)° $\beta = 74.096$ (5)° $\gamma = 82.236$ (5)° V = 956.4 (8) Å³

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) $T_{\min} = 0.931, T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.068$ S = 1.063744 reflections 286 parameters 14 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 548 $D_x = 1.890 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 2319 reflections $\theta = 3.7-29.1^{\circ}$ $\mu = 3.82 \text{ mm}^{-1}$ T = 200 KNeedle, colourless $0.35 \times 0.11 \times 0.10 \text{ mm}$

6921 measured reflections 3744 independent reflections 3276 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.0^\circ, \theta_{min} = 3.3^\circ$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -11 \rightarrow 14$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0206P)^2 + 0.3783P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.55$ e Å⁻³ $\Delta\rho_{min} = -0.47$ e Å⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	v	Z	U_{iso}^*/U_{eq}
Δς1Δ	0.46094 (3)	0 29369 (3)	0 70142 (3)	
As1R	0.40094(3)	0.27507(3)	0.70142(3) 0.30427(3)	0.0151(1)
Cal	0.03579(3) 0.21559(7)	0.77012(3) 0.47820(7)	0.30427(5) 0.49139(5)	0.0150(1)
O1W	0.21337(7) 0.2142(3)	0.47020(7) 0.6294(3)	0.49139(3)	0.0385(10)
02W	0.2142(3) 0.2504(3)	0.0297(3)	0.0275(3) 0.3844(2)	0.0337 (9)
011A	0.3299(2)	0.2997(3) 0.3106(2)	0.5011(2) 0.62105(19)	0.0212(7)
011B	0.0283(2)	0.6219(2)	0.02109(19) 0.40158(19)	0.0188 (6)
012A	0.5836(2)	0.4184(2)	0.65510(19)	0.0237 (7)
012B	0.1482(2)	0.8895(2)	0.3433(2)	0.0215 (7)
013A	0.5597(2)	0.1296 (2)	0.6925 (2)	0.0245 (7)
013B	-0.1207(2)	0.8695 (2)	0.3001 (2)	0.0210 (7)
N4A	0.1055 (3)	0.1983 (3)	1.2273 (3)	0.0280 (10)
N4B	0.3873 (3)	0.6567 (4)	-0.1903 (3)	0.0316 (11)
C1A	0.3520 (3)	0.2727 (3)	0.8657 (3)	0.0174 (9)
C1B	0.1555 (3)	0.7413 (3)	0.1487 (3)	0.0175 (9)
C2A	0.2011 (3)	0.3329 (4)	0.8981 (3)	0.0214 (10)
C2B	0.2238 (3)	0.6061 (3)	0.1366 (3)	0.0193 (10)
C3A	0.1191 (3)	0.3081 (4)	1.0179 (3)	0.0219 (10)
C3B	0.3031 (3)	0.5791 (4)	0.0248 (3)	0.0224 (10)
C4A	0.1858 (4)	0.2232 (4)	1.1056 (3)	0.0211 (10)
C4B	0.3143 (4)	0.6866 (4)	-0.0779 (3)	0.0234 (10)
C5A	0.3378 (4)	0.1650 (4)	1.0731 (3)	0.0237 (10)
C5B	0.2442 (4)	0.8224 (4)	-0.0651 (3)	0.0233 (10)
C6A	0.4189 (4)	0.1893 (4)	0.9545 (3)	0.0219 (10)
C6B	0.1668 (3)	0.8504 (4)	0.0465 (3)	0.0220 (10)
O3W	0.1947 (3)	0.9169 (3)	0.5593 (2)	0.0356 (9)
O4W	0.4898 (3)	-0.1005 (3)	0.6212 (3)	0.0354 (9)
H2A	0.15470	0.39070	0.83840	0.0260*
H2B	0.21590	0.53190	0.20580	0.0230*
H3A	0.01610	0.34950	1.04030	0.0260*
H3B	0.35060	0.48650	0.01740	0.0270*
H5A	0.38500	0.10860	1.13290	0.0280*
H5B	0.25020	0.89610	-0.13440	0.0280*
H6A	0.52240	0.14880	0.93250	0.0260*
H6B	0.12120	0.94340	0.05430	0.0260*
H11W	0.273 (4)	0.622 (5)	0.679 (3)	0.0580*
H12W	0.202 (5)	0.723 (2)	0.600 (4)	0.0580*
H13A	0.660 (2)	0.135 (4)	0.680 (3)	0.0370*
H13B	-0.194 (3)	0.810 (3)	0.319 (3)	0.0310*
H21W	0.200 (4)	0.270 (4)	0.340 (3)	0.0510*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H22W	0.325 (3)	0.227 (3)	0.393 (4)	0.0510*	
H41A	0.121 (4)	0.109 (2)	1.263 (3)	0.0340*	
H41B	0.459 (3)	0.587 (3)	-0.192 (3)	0.0380*	
H42A	0.008 (2)	0.230 (4)	1.234 (3)	0.0340*	
H42B	0.421 (4)	0.731 (3)	-0.241 (3)	0.0380*	
H31W	0.159 (4)	0.984 (4)	0.602 (3)	0.0530*	
H32W	0.172 (4)	0.934 (5)	0.488 (2)	0.0530*	
H41W	0.415 (4)	-0.087 (5)	0.585 (3)	0.0530*	
H42W	0.511 (5)	-0.023 (3)	0.641 (4)	0.0530*	

Atomic displacement parameters $(Å^2)$

	<i>L</i> /11	<i>L</i> /22	<i>U</i> ³³	1/12	1/13	<i>I</i> /23
A = 1 A	0.0125 (2)	0.01(2.(2))	0.0145 (2)	0.0022 (1)	0.0022 (1)	0.0001 (1)
ASIA	0.0135 (2)	0.0163 (2)	0.0145 (2)	-0.0032(1)	-0.0032(1)	-0.0001 (1)
As1B	0.0142 (2)	0.0138 (2)	0.0154 (2)	-0.0020(1)	-0.0030(1)	-0.0003(1)
Cal	0.0148 (3)	0.0169 (3)	0.0157 (3)	-0.0035 (3)	-0.0033 (3)	0.0008 (3)
O1W	0.0565 (18)	0.0258 (15)	0.0412 (17)	0.0004 (14)	-0.0250 (14)	-0.0096 (14)
O2W	0.0362 (15)	0.0327 (16)	0.0398 (16)	0.0034 (12)	-0.0159 (13)	-0.0184 (13)
011A	0.0198 (11)	0.0229 (13)	0.0203 (12)	-0.0042 (10)	-0.0078 (9)	0.0016 (10)
O11B	0.0148 (10)	0.0176 (12)	0.0198 (11)	-0.0042 (9)	-0.0027 (9)	0.0043 (10)
O12A	0.0228 (11)	0.0252 (13)	0.0217 (12)	-0.0131 (10)	-0.0002 (10)	-0.0017 (11)
O12B	0.0172 (11)	0.0219 (13)	0.0276 (13)	-0.0032 (9)	-0.0079 (10)	-0.0055 (11)
O13A	0.0179 (11)	0.0204 (13)	0.0345 (14)	0.0014 (10)	-0.0064 (11)	-0.0061 (11)
O13B	0.0162 (11)	0.0176 (12)	0.0281 (13)	-0.0025 (9)	-0.0069 (10)	-0.0001 (10)
N4A	0.0315 (16)	0.0289 (18)	0.0184 (16)	-0.0068 (15)	0.0017 (13)	-0.0011 (14)
N4B	0.0362 (18)	0.032 (2)	0.0212 (17)	-0.0058 (15)	0.0028 (14)	-0.0046 (15)
C1A	0.0182 (15)	0.0179 (17)	0.0147 (16)	-0.0065 (13)	-0.0021 (13)	0.0002 (13)
C1B	0.0159 (15)	0.0203 (17)	0.0160 (16)	-0.0030 (13)	-0.0040 (13)	-0.0018 (14)
C2A	0.0198 (16)	0.0227 (18)	0.0219 (18)	-0.0018 (14)	-0.0082 (14)	-0.0010 (15)
C2B	0.0227 (16)	0.0168 (17)	0.0177 (17)	-0.0054 (14)	-0.0045 (14)	-0.0002 (14)
C3A	0.0128 (15)	0.0235 (19)	0.0276 (19)	-0.0033 (13)	-0.0004 (14)	-0.0061 (16)
C3B	0.0217 (16)	0.0190 (18)	0.0285 (19)	-0.0033 (14)	-0.0084 (15)	-0.0054 (15)
C4A	0.0257 (17)	0.0201 (18)	0.0164 (17)	-0.0094 (14)	0.0005 (14)	-0.0040 (14)
C4B	0.0197 (16)	0.031 (2)	0.0212 (18)	-0.0115 (15)	-0.0040 (14)	-0.0045 (16)
C5A	0.0262 (17)	0.0226 (19)	0.0219 (18)	-0.0019 (15)	-0.0100 (15)	0.0014 (15)
C5B	0.0292 (18)	0.0210 (18)	0.0160 (17)	-0.0047 (15)	-0.0057 (14)	0.0056 (15)
C6A	0.0183 (16)	0.0227 (18)	0.0243 (18)	-0.0020 (14)	-0.0064 (14)	-0.0021 (15)
C6B	0.0226 (16)	0.0167 (17)	0.0250 (18)	-0.0019 (14)	-0.0064 (14)	0.0002 (15)
O3W	0.0452 (16)	0.0310 (16)	0.0298 (16)	0.0053 (13)	-0.0086 (13)	-0.0104 (13)
O4W	0.0402 (15)	0.0256 (15)	0.0433 (17)	-0.0040 (13)	-0.0149 (13)	-0.0067 (13)

Geometric parameters (Å, °)

Ca1—O1W	2.392 (3)	N4B—C4B	1.380 (5)	
Ca1—O2W	2.345 (3)	N4A—H42A	0.88 (2)	
Cal—O11A	2.306 (2)	N4A—H41A	0.88 (2)	
Ca1—O11B	2.361 (2)	N4B—H41B	0.87 (3)	
Ca1—O11B ⁱ	2.420 (2)	N4B—H42B	0.86 (3)	

Ca1—O12A ⁱⁱ	2.291 (2)	C1A—C6A	1.393 (5)
As1A—O11A	1.673 (2)	C1A—C2A	1.390 (4)
As1A—O12A	1.645 (2)	C1B—C6B	1.401 (5)
As1A—O13A	1.721 (2)	C1B—C2B	1.388 (4)
As1A—C1A	1.890 (3)	C2A—C3A	1.383 (5)
As1B—O11B	1.667 (2)	C2B—C3B	1.376 (5)
As1B—O12B	1.668 (2)	C3A—C4A	1.388 (5)
As1B—O13B	1.727 (2)	C3B—C4B	1.396 (5)
As1B—C1B	1.886 (3)	C4A—C5A	1.392 (5)
O1W—H12W	0.89 (2)	C4B—C5B	1.399 (6)
O1W—H11W	0.90 (4)	C5A—C6A	1.369 (5)
O2W—H22W	0.88 (3)	C5B—C6B	1.374 (5)
O2W—H21W	0.86 (4)	C2A—H2A	0.9500
O13A—H13A	0.88 (2)	C2B—H2B	0.9500
O13B—H13B	0.88 (3)	СЗА—НЗА	0.9500
O3W—H31W	0.88 (4)	СЗВ—НЗВ	0.9500
O3W—H32W	0.89 (3)	С5А—Н5А	0.9500
O4W—H42W	0.89 (4)	C5B—H5B	0.9500
O4W—H41W	0.87 (4)	С6А—Н6А	0.9500
N4A—C4A	1.398 (5)	C6B—H6B	0.9500
O11A—As1A—O12A	114.52 (10)	C4A—N4A—H41A	112 (2)
O11A—As1A—O13A	106.16 (10)	H41A—N4A—H42A	115 (3)
O11A—As1A—C1A	107.43 (11)	C4A—N4A—H42A	109 (2)
O12A—As1A—O13A	109.97 (10)	C4B—N4B—H42B	112 (2)
O12A—As1A—C1A	114.58 (12)	H41B—N4B—H42B	111 (3)
O13A—As1A—C1A	103.28 (12)	C4B—N4B—H41B	116 (2)
O11B—As1B—O12B	114.80 (10)	C2A—C1A—C6A	119.5 (3)
O11B—As1B—O13B	109.59 (10)	As1A—C1A—C2A	120.2 (2)
O11B—As1B—C1B	109.58 (12)	As1A—C1A—C6A	120.2 (2)
O12B—As1B—O13B	102.37 (10)	As1B—C1B—C6B	121.2 (2)
O12B—As1B—C1B	111.56 (12)	C2B—C1B—C6B	119.8 (3)
O13B—As1B—C1B	108.58 (12)	As1B—C1B—C2B	119.0 (2)
O1W—Ca1—O2W	166.97 (10)	C1A—C2A—C3A	119.5 (3)
O1W—Ca1—O11A	83.52 (9)	C1B—C2B—C3B	120.3 (3)
O1W—Ca1—O11B	95.61 (9)	C2A—C3A—C4A	120.6 (3)
O1W—Ca1—O11B ⁱ	97.05 (9)	C2B—C3B—C4B	120.6 (3)
O1W—Ca1—O12A ⁱⁱ	93.82 (9)	N4A—C4A—C3A	121.5 (3)
O2W—Ca1—O11A	83.57 (8)	C3A—C4A—C5A	119.7 (3)
O2W—Ca1—O11B	97.20 (8)	N4A—C4A—C5A	118.8 (3)
O2W—Ca1—O11B ⁱ	84.13 (8)	N4B—C4B—C3B	120.1 (4)
O2W—Ca1—O12A ⁱⁱ	87.99 (8)	C3B—C4B—C5B	118.9 (3)
O11A—Ca1—O11B	162.13 (8)	N4B—C4B—C5B	121.0 (3)
O11A—Ca1—O11B ⁱ	87.66 (7)	C4A—C5A—C6A	119.7 (3)
O11A—Ca1—O12A ⁱⁱ	105.49 (7)	C4B—C5B—C6B	120.8 (3)
O11B—Ca1—O11B ⁱ	74.70 (7)	C1A—C6A—C5A	121.0 (3)
O11B—Ca1—O12A ⁱⁱ	92.38 (7)	C1B—C6B—C5B	119.7 (3)
O11B ⁱ —Ca1—O12A ⁱⁱ	163.83 (8)	C1A—C2A—H2A	120.00

A 1A 011A 0.1	141 02 (11)		120.00
AsIA—OIIA—Cal	141.02 (11)	C3A—C2A—H2A	120.00
As1B—O11B—Ca1	126.08 (10)	C1B—C2B—H2B	120.00
As1B—O11B—Ca1 ⁱ	127.68 (10)	C3B—C2B—H2B	120.00
Ca1—O11B—Ca1 ⁱ	105.30 (8)	С4А—С3А—Н3А	120.00
As1A—O12A—Ca1 ⁱⁱ	148.32 (12)	С2А—С3А—Н3А	120.00
H11W—O1W—H12W	104 (4)	C2B—C3B—H3B	120.00
Ca1—O1W—H11W	130 (3)	C4B—C3B—H3B	120.00
Ca1—O1W—H12W	117 (3)	С4А—С5А—Н5А	120.00
Ca1 - O2W - H21W	134 (3)	C6A—C5A—H5A	120.00
C_{21} C_{21} C_{21} C_{22} C	118(2)	C6B-C5B-H5B	120.00
	110(2)		120.00
$H_2 I W = 02 W = H_2 Z W$	100(3)		120.00
ASIA—013A—HI3A	111 (3)		120.00
As1B—O13B—H13B	110 (2)	С5А—С6А—Н6А	119.00
H31W—O3W—H32W	115 (4)	C5B—C6B—H6B	120.00
H41W—O4W—H42W	115 (4)	C1B—C6B—H6B	120.00
O12A—As1A—O11A—Ca1	-20.6(2)	O12A ⁱⁱ —Ca1—O11B—As1B	-20.34 (14)
O13A—As1A—O11A—Ca1	-142.16(17)	O12A ⁱⁱ —Ca1—O11B—Ca1 ⁱ	170.13 (8)
C1A—As1A—O11A—Ca1	107.86 (19)	$O1W$ —Ca1—O11 B^i —As1 B^i	-96.79 (15)
$O_{11}A_{}A_{s1}A_{}O_{12}A_{}C_{a1}$	-673(2)	01W—Ca1—O11B ⁱ —Ca1 ⁱ	93 92 (10)
0134 $As14$ 0124 $Ca1ii$	522(2)	$O2W$ — $Ca1$ — $O11B^{i}$ — $As1B^{i}$	70.16(14)
$C_{1}A = A_{c1}A = O_{1}^{2}A = C_{c1}^{1}$	52.2(2)	$O_2W = Cal = O_{11}D = A_{31}D$	-00.14(0)
CIA—ASIA—OIZA—Cai	107.9(2)	$O_2 W - Cal - OIIB - Cal$	-99.14(9)
OIIA—ASIA—CIA—C2A	-28.5(3)	OITA—Cal—OITB·—ASIB·	-13.62 (14)
OIIA—AsIA—CIA—C6A	147.5 (3)	OIIA—Cal—OIIB ⁱ —Cal ⁱ	177.09 (9)
O12A—As1A—C1A—C2A	100.0 (3)	O11B—Ca1—O11B ¹ —As1B ¹	169.30 (15)
O12A—As1A—C1A—C6A	-84.1 (3)	O11B—Ca1—O11B ⁱ —Ca1 ⁱ	0.00 (8)
O13A—As1A—C1A—C2A	-140.4 (3)	O1W—Ca1—O12A ⁱⁱ —As1A ⁱⁱ	-4.1 (2)
O13A—As1A—C1A—C6A	35.5 (3)	O2W—Ca1—O12A ⁱⁱ —As1A ⁱⁱ	-171.2 (2)
O12B—As1B—O11B—Ca1	-46.35 (16)	O11A—Ca1—O12A ⁱⁱ —As1A ⁱⁱ	-88.4 (2)
O12B—As1B—O11B—Ca1 ⁱ	120.84 (13)	O11B—Ca1—O12A ⁱⁱ —As1A ⁱⁱ	91.7 (2)
O13B—As1B—O11B—Ca1	-160.87(12)	As1A—C1A—C2A—C3A	175.4 (3)
O13B—As1B—O11B—Ca1 ⁱ	6.33 (16)	C6A—C1A—C2A—C3A	-0.6(5)
C1B As $1B$ $O11B$ Cal	80.09(15)	A_{s1A} C_{1A} C_{6A} C_{5A}	-1755(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11272(15)	C_{2A} C_{1A} C_{6A} C_{5A}	0.4(5)
C1D - ASID - O11D - Cal	-14.6(2)	Δ_{c1} D C_{1} D C_{2} D C_{2} D	-1771(2)
OIID—ASIB—CIB—C2B	-14.0(3)	ASIB - CID - C2B - C3B	-1/7.1(2)
UIIB—ASIB—CIB—C6B	168.0 (2)	C_{0B} $-C_{1B}$ $-C_{2B}$ $-C_{3B}$	0.3 (4)
O12B—As1B—C1B—C2B	113.7 (2)	As1B—C1B—C6B—C5B	178.0 (3)
O12B—As1B—C1B—C6B	-63.7 (3)	C2B—C1B—C6B—C5B	0.6 (5)
O13B—As1B—C1B—C2B	-134.2 (2)	C1A—C2A—C3A—C4A	-0.4 (5)
O13B—As1B—C1B—C6B	48.3 (3)	C1B—C2B—C3B—C4B	-0.8 (5)
O1W—Ca1—O11A—As1A	-40.53 (19)	C2A—C3A—C4A—N4A	179.2 (3)
O2W—Ca1—O11A—As1A	137.75 (19)	C2A—C3A—C4A—C5A	1.4 (6)
O11B ⁱ —Ca1—O11A—As1A	-137.90 (18)	C2B—C3B—C4B—N4B	-176.7 (3)
O12A ⁱⁱ —Ca1—O11A—As1A	51.65 (19)	C2B—C3B—C4B—C5B	0.3 (5)
O1W—Ca1—O11B—As1B	73.73 (15)	N4A—C4A—C5A—C6A	-179.4(3)
O1W—Ca1—O11B—Ca1 ⁱ	-95 79 (10)	C3A - C4A - C5A - C6A	-15(6)
02W Cal 011B As1B	-10861(14)	N4B-C4B-C5B-C6B	177 6 (3)
$\begin{array}{c} 02 $	21 97 (0)	$C_{2D} = C_{4D} = C_{5D} = C_{4D}$	1, 1, 0 (3)
U2 w	01.0/(9)	U3D-U4D-U3B-U0B	0.0(3)

O11B ⁱ —Ca1—O11B—As1B	169.52 (15)	C4A—C5A—C6A—C1A	0.6 (6)
O11B ⁱ —Ca1—O11B—Ca1 ⁱ	0.00 (7)	C4B—C5B—C6B—C1B	-1.1 (5)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
013A—H13A…O12B ⁱⁱ	0.88 (2)	1.67 (2)	2.534 (3)	169 (4)
O13 <i>B</i> —H13 <i>B</i> ···O11 <i>A</i> ⁱ	0.88 (3)	1.70 (3)	2.578 (3)	170 (3)
N4 <i>A</i> —H41 <i>A</i> ···O12 <i>B</i> ⁱⁱⁱ	0.88 (2)	2.13 (2)	3.014 (4)	176 (4)
N4 B —H42 B ····O4 W^{iv}	0.86 (3)	2.05 (3)	2.901 (5)	172 (4)
$O1W$ —H11 W ····N4 B^{\vee}	0.90 (4)	2.17 (4)	3.048 (5)	166 (4)
O1 <i>W</i> —H12 <i>W</i> ···O3 <i>W</i>	0.89(2)	1.83 (2)	2.712 (4)	171 (3)
O2W—H21W···N4A ^{vi}	0.86 (4)	2.04 (4)	2.893 (4)	173 (4)
$O2W - H22W - O4W^{vii}$	0.88 (3)	1.92 (3)	2.785 (4)	168 (4)
O3 <i>W</i> —H31 <i>W</i> ···O13 <i>B</i> ^{viii}	0.88 (4)	1.96 (4)	2.827 (4)	169 (4)
O3 <i>W</i> —H32 <i>W</i> ···O12 <i>B</i>	0.89 (3)	1.92 (3)	2.758 (4)	157 (4)
O4W—H41 W ···O3 W ^{ix}	0.87 (4)	2.08 (4)	2.915 (4)	160 (3)
O4 <i>W</i> —H42 <i>W</i> ···O13 <i>A</i>	0.89 (4)	1.86 (3)	2.748 (4)	176 (2)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z+1; (iv) x, y+1, z-1; (v) x, y, z+1; (vi) x, y, z-1; (vii) -x+1, -y, -z+1; (viii) -x, -y+2, -z+1; (ix) x, y-1, z.

(III) catena-Poly[[triaquastrontium]-bis[μ_2 -hydrogen (4-aminophenyl)arsonato- $\kappa^2 O:O'$]

Crystal data

 $[Sr(C_6H_7ASNO_3)_2(H_2O)_3]$ $M_r = 573.76$ Monoclinic, *I2/a* Hall symbol: -I 2ya a = 9.8935 (3) Å b = 7.5844 (3) Å c = 23.6669 (9) Å $\beta = 97.866$ (3)° V = 1759.17 (11) Å³ Z = 4

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) $T_{min} = 0.791, T_{max} = 0.980$ F(000) = 1128 $D_x = 2.166 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2201 reflections $\theta = 3.6-29.0^{\circ}$ $\mu = 6.85 \text{ mm}^{-1}$ T = 200 KBlock, colourless $0.25 \times 0.12 \times 0.12 \text{ mm}$

3326 measured reflections 1737 independent reflections 1606 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 3.4^\circ$ $h = -12 \rightarrow 12$ $k = -9 \rightarrow 8$ $l = -29 \rightarrow 26$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from
$wR(F^2) = 0.051$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
1737 reflections	and constrained refinement
137 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0188P)^2 + 2.3681P]$
7 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.47$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sr1	0.75000	0.28095 (5)	0.50000	0.0144 (1)
As1	0.44233 (2)	0.06077 (3)	0.41189(1)	0.0131 (1)
O1W	0.5937 (2)	0.4181 (3)	0.56983 (10)	0.0265 (7)
O2W	0.75000	0.6274 (4)	0.50000	0.0384 (11)
O11	0.51439 (18)	0.2419 (2)	0.44227 (8)	0.0197 (6)
O12	0.31029 (18)	-0.0183 (3)	0.44109 (8)	0.0198 (6)
O13	0.56339 (18)	-0.1079 (3)	0.42091 (8)	0.0194 (6)
N4	0.3286 (3)	0.0837 (4)	0.15430 (11)	0.0284 (9)
C1	0.3951 (2)	0.0844 (4)	0.33210 (11)	0.0149 (7)
C2	0.2969 (3)	-0.0261 (4)	0.30314 (12)	0.0178 (8)
C3	0.2717 (3)	-0.0238 (4)	0.24435 (12)	0.0198 (8)
C4	0.3452 (3)	0.0894 (4)	0.21317 (12)	0.0189 (8)
C5	0.4396 (3)	0.2040 (4)	0.24267 (12)	0.0209 (9)
C6	0.4645 (3)	0.2017 (4)	0.30139 (12)	0.0188 (8)
H2	0.24690	-0.10380	0.32400	0.0210*
H3	0.20410	-0.09940	0.22490	0.0240*
Н5	0.48760	0.28480	0.22210	0.0250*
H6	0.52930	0.28060	0.32090	0.0230*
H11W	0.553 (3)	0.521 (3)	0.5654 (16)	0.0400*
H12W	0.529 (3)	0.344 (3)	0.5764 (14)	0.0400*
H13	0.648 (2)	-0.071 (4)	0.4277 (13)	0.0290*
H21W	0.691 (3)	0.698 (4)	0.5081 (18)	0.0580*
H41	0.254 (2)	0.032 (4)	0.1360 (13)	0.0340*
H42	0.359 (3)	0.177 (3)	0.1374 (14)	0.0340*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.0146 (2)	0.0124 (2)	0.0158 (2)	0.0000	0.0004 (1)	0.0000
As1	0.0119(1)	0.0115 (2)	0.0156 (2)	0.0002 (1)	0.0015 (1)	-0.0001 (1)
O1W	0.0245 (11)	0.0177 (11)	0.0387 (13)	-0.0007 (9)	0.0097 (9)	-0.0027 (10)
O2W	0.051 (2)	0.0175 (17)	0.048 (2)	0.0000	0.0117 (17)	0.0000
011	0.0218 (10)	0.0129 (9)	0.0224 (10)	-0.0005 (8)	-0.0041 (8)	-0.0018 (9)
O12	0.0153 (9)	0.0228 (10)	0.0220 (11)	0.0016 (8)	0.0052 (7)	0.0053 (9)
O13	0.0130 (9)	0.0144 (9)	0.0304 (11)	0.0012 (8)	0.0011 (8)	-0.0007 (9)
N4	0.0347 (15)	0.0312 (16)	0.0192 (14)	0.0027 (13)	0.0031 (11)	0.0018 (12)
C1	0.0142 (12)	0.0151 (13)	0.0154 (13)	0.0026 (11)	0.0023 (10)	-0.0007 (12)
C2	0.0186 (14)	0.0139 (13)	0.0211 (15)	-0.0026 (11)	0.0036 (11)	-0.0007 (12)
C3	0.0210 (14)	0.0157 (13)	0.0214 (15)	-0.0019 (12)	-0.0012 (11)	-0.0029 (12)
C4	0.0188 (13)	0.0195 (14)	0.0181 (14)	0.0091 (12)	0.0015 (10)	-0.0009 (12)
C5	0.0183 (14)	0.0214 (15)	0.0241 (16)	0.0016 (12)	0.0067 (11)	0.0077 (13)
C6	0.0164 (13)	0.0157 (14)	0.0238 (15)	-0.0018 (11)	0.0010 (11)	0.0005 (12)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Sr1—O1W	2.628 (2)	O13—H13	0.88 (2)	
Sr1—O2W	2.628 (3)	N4—C4	1.381 (4)	
Sr1-011	2.5527 (18)	N4—H41	0.89 (2)	
Sr1-O1W ⁱ	2.628 (2)	N4—H42	0.89 (3)	
Sr1—O11 ⁱ	2.5527 (18)	C1—C2	1.391 (4)	
Sr1—O12 ⁱⁱ	2.549 (2)	C1—C6	1.388 (4)	
Sr1—O12 ⁱⁱⁱ	2.549 (2)	C2—C3	1.380 (4)	
As1—011	1.6650 (16)	C3—C4	1.399 (4)	
As1012	1.6705 (19)	C4—C5	1.392 (4)	
As1013	1.746 (2)	C5—C6	1.378 (4)	
As1—C1	1.891 (3)	C2—H2	0.9500	
O1W—H11W	0.88 (2)	С3—Н3	0.9500	
O1W—H12W	0.88 (3)	С5—Н5	0.9500	
O2W—H21W	0.83 (3)	С6—Н6	0.9500	
O2W—H21W ⁱ	0.83 (3)			
O1W—Sr1—O2W	66.68 (5)	Sr1—O1W—H11W	125 (2)	
01W—Sr1—011	79.03 (6)	Sr1—O1W—H12W	111.3 (18)	
O1W—Sr1—O1W ⁱ	133.36 (7)	H11W—O1W—H12W	105 (3)	
O1W—Sr1—O11 ⁱ	106.39 (6)	$H21W$ — $O2W$ — $H21W^{i}$	100 (3)	
O1W—Sr1—O12 ⁱⁱ	76.31 (7)	Sr1—O2W—H21W ⁱ	130 (2)	
O1W—Sr1—O12 ⁱⁱⁱ	148.81 (7)	Sr1—O2W—H21W	130 (2)	
O2W—Sr1—O11	96.66 (4)	As1—O13—H13	114.2 (19)	
O1W ⁱ —Sr1—O2W	66.68 (5)	C4—N4—H41	118.6 (19)	
O2W—Sr1—O11 ⁱ	96.66 (4)	H41—N4—H42	116 (3)	
O2W—Sr1—O12 ⁱⁱ	141.41 (5)	C4—N4—H42	116 (2)	
O2W—Sr1—O12 ⁱⁱⁱ	141.41 (5)	As1—C1—C6	120.8 (2)	
O1W ⁱ —Sr1—O11	106.39 (6)	As1—C1—C2	119.7 (2)	

O11-Sr1-O11 ⁱ	166.68 (5)	C2—C1—C6	119.4 (2)
O11—Sr1—O12 ⁱⁱ	86.40 (6)	C1—C2—C3	120.5 (3)
O11—Sr1—O12 ⁱⁱⁱ	83.19 (6)	C2—C3—C4	120.3 (3)
O1W ⁱ —Sr1—O11 ⁱ	79.03 (6)	N4—C4—C5	120.3 (3)
O1W ⁱ —Sr1—O12 ⁱⁱ	148.81 (7)	N4—C4—C3	121.0 (3)
O1W ⁱ —Sr1—O12 ⁱⁱⁱ	76.31 (7)	C3—C4—C5	118.7 (3)
O11 ⁱ —Sr1—O12 ⁱⁱ	83.19 (6)	C4—C5—C6	120.9 (3)
O11 ⁱ —Sr1—O12 ⁱⁱⁱ	86.40 (6)	C1—C6—C5	120.2 (3)
O12 ⁱⁱ —Sr1—O12 ⁱⁱⁱ	77.18 (7)	C1—C2—H2	120.00
O11—As1—O12	115.50 (10)	С3—С2—Н2	120.00
O11—As1—O13	107.81 (9)	С2—С3—Н3	120.00
O11—As1—C1	112.69 (11)	С4—С3—Н3	120.00
O12—As1—O13	104.40 (10)	С4—С5—Н5	120.00
O12—As1—C1	110.29 (9)	С6—С5—Н5	119.00
O13—As1—C1	105.26 (10)	С1—С6—Н6	120.00
Sr1-011-As1	129.24 (9)	С5—С6—Н6	120.00
Sr1 ⁱⁱ —O12—As1	139.61 (11)		
O1W—Sr1—O11—As1	-127.66 (13)	O12—As1—C1—C6	156.6 (2)
O2W—Sr1—O11—As1	167.73 (11)	O13—As1—C1—C2	83.8 (2)
O1W ⁱ —Sr1—O11—As1	100.13 (13)	O13—As1—C1—C6	-91.3 (2)
O12 ⁱⁱ —Sr1—O11—As1	-50.91 (12)	As1—C1—C2—C3	-173.0 (2)
O12 ⁱⁱⁱ —Sr1—O11—As1	26.60 (12)	C6—C1—C2—C3	2.2 (4)
O12—As1—O11—Sr1	111.52 (12)	As1—C1—C6—C5	172.8 (2)
O13—As1—O11—Sr1	-4.75 (14)	C2-C1-C6-C5	-2.3 (4)
C1—As1—O11—Sr1	-120.47 (12)	C1—C2—C3—C4	0.3 (5)
O11—As1—O12—Sr1 ⁱⁱ	-109.92 (16)	C2—C3—C4—N4	175.0 (3)
O13—As1—O12—Sr1 ⁱⁱ	8.26 (18)	C2—C3—C4—C5	-2.6 (4)
C1—As1—O12—Sr1 ⁱⁱ	120.88 (16)	N4—C4—C5—C6	-175.1 (3)
O11—As1—C1—C2	-159.0 (2)	C3—C4—C5—C6	2.6 (5)
O11—As1—C1—C6	25.9 (3)	C4—C5—C6—C1	-0.1 (5)
O12—As1—C1—C2	-28.3 (3)		

Symmetry codes: (i) -*x*+3/2, *y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*+1/2, -*y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
01 <i>W</i> —H11 <i>W</i> ···O11 ^{iv}	0.88 (2)	1.92 (2)	2.791 (3)	173 (3)	
O1 <i>W</i> —H12 <i>W</i> ···O13 ⁱⁱ	0.88 (3)	2.02 (2)	2.845 (3)	156 (3)	
O13—H13…O12 ⁱⁱⁱ	0.88 (2)	1.73 (2)	2.606 (3)	176 (3)	
O2W—H21 W ···O11 ^{iv}	0.83 (3)	2.52 (3)	3.267 (2)	149 (3)	
N4—H41…O1 <i>W</i> ^v	0.89 (2)	2.24 (3)	3.115 (4)	165 (2)	
N4—H42…O13 ^{vi}	0.89 (3)	2.33 (3)	3.210 (4)	170 (3)	

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) x+1/2, -y, z; (iv) -x+1, -y+1, -z+1; (v) x-1/2, y-1/2, z-1/2; (vi) -x+1, y+1/2, -z+1/2.

(IV) catena-Poly[[triaquabarium]-bis[μ_2 -hydrogen (4-aminophenyl)arsonato- $\kappa^2 O:O'$]]

F(000) = 1200

 $\theta = 4.6-29.1^{\circ}$ $\mu = 5.79 \text{ mm}^{-1}$

Block, colourless

 $0.36 \times 0.22 \times 0.16 \text{ mm}$

3485 measured reflections

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$

1801 independent reflections

1696 reflections with $I > 2\sigma(I)$

T = 200 K

 $R_{\rm int} = 0.029$

 $h = -12 \rightarrow 10$

 $l = -29 \rightarrow 28$

 $k = -9 \rightarrow 7$

 $D_{\rm x} = 2.257 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1721 reflections

Crystal data

[Ba(C₆H₇AsNO₃)₂(H₂O)₃] $M_r = 623.92$ Monoclinic, *I*2/*a* Hall symbol: -I 2ya a = 9.9997 (8) Å b = 7.7305 (6) Å c = 23.979 (2) Å $\beta = 98.214$ (7)° V = 1834.7 (3) Å³ Z = 4

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) $T_{\min} = 0.470, T_{\max} = 0.970$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from
$wR(F^2) = 0.055$	neighbouring sites
S = 1.10	H atoms treated by a mixture of independent
1801 reflections	and constrained refinement
137 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0262P)^2 + 0.1187P]$
7 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.85 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.95 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ba1	0.75000	0.28700 (3)	0.50000	0.0145 (1)
As1	0.43401 (3)	0.05954 (4)	0.40830(1)	0.0122 (1)
O1W	0.5902 (2)	0.4300 (3)	0.57359 (12)	0.0261 (8)
O2W	0.75000	0.6465 (5)	0.50000	0.0350 (11)

011	0.5036 (2)	0.2376 (3)	0.43911 (10)	0.0208 (7)	
012	0.30116 (19)	-0.0164 (3)	0.43546 (9)	0.0205 (7)	
013	0.55376 (19)	-0.1064 (3)	0.41966 (10)	0.0182 (7)	
N4	0.3301 (3)	0.0886 (4)	0.15278 (13)	0.0264 (10)	
C1	0.3921 (3)	0.0829 (4)	0.32900 (13)	0.0143 (9)	
C2	0.2955 (3)	-0.0255 (4)	0.29931 (14)	0.0174 (9)	
C3	0.2734 (3)	-0.0207 (4)	0.24105 (13)	0.0174 (9)	
C4	0.3463 (3)	0.0915 (4)	0.21100 (13)	0.0175 (9)	
C5	0.4402 (3)	0.2028 (4)	0.24149 (15)	0.0202 (10)	
C6	0.4626 (3)	0.1983 (4)	0.30002 (14)	0.0180 (9)	
H2	0.24500	-0.10250	0.31910	0.0210*	
H3	0.20750	-0.09500	0.22110	0.0210*	
Н5	0.48910	0.28230	0.22190	0.0240*	
H6	0.52650	0.27470	0.32020	0.0220*	
H11W	0.555 (3)	0.534 (3)	0.5741 (18)	0.0390*	
H12W	0.534 (3)	0.358 (4)	0.5849 (17)	0.0390*	
H13	0.636 (2)	-0.071 (4)	0.4302 (14)	0.0270*	
H21W	0.688 (4)	0.715 (5)	0.509 (2)	0.0520*	
H41	0.259 (3)	0.040 (5)	0.1339 (14)	0.0320*	
H42	0.355 (4)	0.180 (4)	0.1350 (15)	0.0320*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.0157 (1)	0.0125 (2)	0.0147 (2)	0.0000	0.0004 (1)	0.0000
As1	0.0107 (2)	0.0117 (2)	0.0143 (2)	0.0007(1)	0.0019(1)	0.0008 (1)
O1W	0.0243 (12)	0.0181 (13)	0.0382 (16)	-0.0006 (9)	0.0120 (11)	-0.0007 (12)
O2W	0.048 (2)	0.0165 (19)	0.042 (2)	0.0000	0.0120 (19)	0.0000
011	0.0238 (11)	0.0140 (11)	0.0230 (13)	0.0004 (9)	-0.0026 (10)	-0.0031 (10)
O12	0.0134 (10)	0.0255 (13)	0.0236 (13)	0.0007 (9)	0.0066 (9)	0.0071 (11)
O13	0.0114 (10)	0.0137 (11)	0.0289 (13)	0.0020 (9)	0.0006 (9)	0.0009 (11)
N4	0.0287 (16)	0.0326 (18)	0.0177 (16)	0.0031 (13)	0.0025 (13)	0.0022 (14)
C1	0.0143 (14)	0.0159 (15)	0.0125 (16)	0.0046 (12)	0.0013 (12)	0.0006 (14)
C2	0.0141 (14)	0.0161 (16)	0.0225 (18)	-0.0022 (12)	0.0041 (12)	0.0012 (15)
C3	0.0147 (14)	0.0146 (15)	0.0221 (17)	-0.0014 (12)	-0.0004 (13)	-0.0016 (14)
C4	0.0167 (15)	0.0184 (16)	0.0172 (17)	0.0074 (13)	0.0023 (13)	-0.0002 (15)
C5	0.0187 (16)	0.0210 (18)	0.0221 (19)	0.0022 (13)	0.0067 (14)	0.0083 (15)
C6	0.0141 (14)	0.0168 (16)	0.0229 (18)	-0.0003 (12)	0.0015 (13)	0.0000 (14)

Geometric parameters (Å, °)

Ba1—O1W	2.774 (2)	O13—H13	0.87 (2)	
Ba1—O2W	2.779 (4)	N4—C4	1.382 (4)	
Ba1—O11	2.706 (2)	N4—H41	0.87 (3)	
Ba1—O1W ⁱ	2.774 (2)	N4—H42	0.88 (3)	
Ba1—O11 ⁱ	2.706 (2)	C1—C2	1.395 (4)	
Ba1—O12 ⁱⁱ	2.694 (2)	C1—C6	1.384 (4)	
Ba1—O12 ⁱⁱⁱ	2.694 (2)	C2—C3	1.383 (5)	

As1—011	1.667 (2)	C3—C4	1.398 (4)
As1—012	1.668 (2)	C4—C5	1.400 (4)
As1—013	1.749 (2)	C5—C6	1.390 (5)
As1—C1	1.897 (3)	C2—H2	0.9500
O1W—H11W	0.88 (2)	С3—Н3	0.9500
O1W—H12W	0.86 (3)	С5—Н5	0.9500
O2W—H21W	0.87 (4)	С6—Н6	0.9500
O2W—H21W ⁱ	0.87 (4)		
O1W—Ba1—O2W	66.52 (5)	Ba1—O1W—H11W	130 (3)
O1W—Ba1—O11	80.60 (7)	Ba1—O1W—H12W	114 (2)
O1W—Ba1—O1W ⁱ	133.03 (7)	H11W—O1W—H12W	108 (3)
O1W—Ba1—O11 ⁱ	106.02 (7)	H21W-O2W-H21W ⁱ	105 (4)
O1W—Ba1—O12 ⁱⁱ	76.71 (7)	Ba1—O2W—H21W ⁱ	128 (3)
O1W—Ba1—O12 ⁱⁱⁱ	148.07 (6)	Ba1—O2W—H21W	128 (3)
O2W—Ba1—O11	98.11 (5)	As1—O13—H13	114 (2)
O1W ⁱ —Ba1—O2W	66.52 (5)	C4—N4—H41	120 (2)
O2W—Ba1—O11 ⁱ	98.11 (5)	H41—N4—H42	111 (3)
O2W—Ba1—O12 ⁱⁱ	140.93 (5)	C4—N4—H42	118 (2)
O2W—Ba1—O12 ⁱⁱⁱ	140.93 (5)	As1—C1—C6	120.6 (2)
O1W ⁱ —Ba1—O11	106.02 (7)	As1—C1—C2	119.5 (2)
O11—Ba1—O11 ⁱ	163.77 (7)	C2—C1—C6	119.8 (3)
O11—Ba1—O12 ⁱⁱ	88.13 (7)	C1—C2—C3	119.9 (3)
O11—Ba1—O12 ⁱⁱⁱ	79.25 (6)	C2—C3—C4	121.2 (3)
O1W ⁱ —Ba1—O11 ⁱ	80.60 (7)	N4—C4—C5	120.7 (3)
O1W ⁱ —Ba1—O12 ⁱⁱ	148.07 (6)	N4—C4—C3	121.1 (3)
O1W ⁱ —Ba1—O12 ⁱⁱⁱ	76.71 (7)	C3—C4—C5	118.2 (3)
O11 ⁱ —Ba1—O12 ⁱⁱ	79.25 (6)	C4—C5—C6	120.8 (3)
O11 ⁱ —Ba1—O12 ⁱⁱⁱ	88.13 (7)	C1—C6—C5	120.2 (3)
O12 ⁱⁱ —Ba1—O12 ⁱⁱⁱ	78.13 (7)	C1—C2—H2	120.00
O11—As1—O12	115.03 (11)	С3—С2—Н2	120.00
O11—As1—O13	107.67 (10)	С2—С3—Н3	119.00
O11—As1—C1	112.60 (12)	С4—С3—Н3	119.00
O12—As1—O13	104.29 (11)	С4—С5—Н5	120.00
O12—As1—C1	110.54 (12)	С6—С5—Н5	120.00
O13—As1—C1	105.91 (12)	C1—C6—H6	120.00
Ba1—O11—As1	130.25 (11)	С5—С6—Н6	120.00
Ba1 ⁱⁱ —O12—As1	136.46 (11)		
O1W—Ba1—O11—As1	-129.08 (16)	O12—As1—C1—C6	155.9 (2)
O2W—Ba1—O11—As1	166.49 (14)	O13—As1—C1—C2	84.0 (3)
O1W ⁱ —Ba1—O11—As1	98.70 (15)	O13—As1—C1—C6	-91.7 (3)
O12 ⁱⁱ —Ba1—O11—As1	-52.24 (15)	As1—C1—C2—C3	-173.9 (2)
O12 ⁱⁱⁱ —Ba1—O11—As1	26.03 (14)	C6—C1—C2—C3	1.9 (5)
O12—As1—O11—Ba1	113.92 (14)	As1—C1—C6—C5	173.8 (2)
O13—As1—O11—Ba1	-1.84 (18)	C2-C1-C6-C5	-1.9 (5)
C1—As1—O11—Ba1	-118.21 (16)	C1—C2—C3—C4	-0.1 (5)
O11—As1—O12—Ba1 ⁱⁱ	-106.90 (17)	C2-C3-C4-N4	176.0 (3)

O13—As1—O12—Ba1 ⁱⁱ	10.78 (18)	C2—C3—C4—C5	-1.7 (5)
C1—As1—O12—Ba1 ⁱⁱ	124.21 (17)	N4—C4—C5—C6	-176.0 (3)
O11—As1—C1—C2	-158.6 (2)	C3—C4—C5—C6	1.7 (5)
O11—As1—C1—C6	25.7 (3)	C4—C5—C6—C1	0.1 (5)
O12—As1—C1—C2	-28.4(3)		

Symmetry codes: (i) -*x*+3/2, *y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*+1/2, -*y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
01 <i>W</i> —H11 <i>W</i> ···O11 ^{iv}	0.88 (2)	1.87 (2)	2.738 (3)	168 (4)
O1 <i>W</i> —H12 <i>W</i> ···O13 ⁱⁱ	0.86 (3)	2.13 (3)	2.902 (3)	149 (3)
O13—H13…O12 ⁱⁱⁱ	0.87 (2)	1.77 (2)	2.626 (3)	167 (3)
O2W—H21W···O11 ^{iv}	0.87 (4)	2.46 (4)	3.229 (2)	149 (3)
N4—H41···O1 W^{\vee}	0.87 (3)	2.23 (3)	3.092 (4)	171 (3)
N4—H42…O13 ^{vi}	0.88 (3)	2.37 (3)	3.241 (4)	170 (3)

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) x+1/2, -y, z; (iv) -x+1, -y+1, -z+1; (v) x-1/2, y-1/2, z-1/2; (vi) -x+1, y+1/2, -z+1/2.