

STRUCTURAL CHEMISTRY

Received 19 August 2016
Accepted 22 November 2016

Edited by M. Kubicki, Adam Mickiewicz University, Poland

Keywords: halogen bonding; intermolecular interactions; iodoimidazole; crystal structure; halogen-bonded dimer; computational chemistry; molecular electrostatic potential.

CCDC references: 1518622; 1518621; 1518620

Supporting information: this article has supporting information at journals.iucr.org/c

(C) 2017 International Union of Crystallography

C—I $\cdots N$ and $C-I \cdots \pi$ halogen bonding in the structures of 1-benzyliodoimidazole derivatives

Chideraa I. Nwachukwu, ${ }^{\text {a }}$ Nathan P. Bowling ${ }^{\text {b }}$ and Eric Bosch ${ }^{\text {a }}$

${ }^{\text {a }}$ Chemistry, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Wisconsin-Stevens Point, 2001 Fourth Avenue, Stevens Point, WI 54481, USA.
*Correspondence e-mail: ericbosch@missouristate.edu

Halogen bonding is a well-established and intensively studied intermolecular interaction that has also been used in the preparation of functional materials. While polyfluoroiodo- and polyfluorobromobenzenes have been widely used as aromatic halogen-bond donors, there have been very few studies of iodoimidazoles with regard to halogen bonding. We describe here the X-ray structures of three iodoimidazole derivatives, namely 1-benzyl-2-iodo- 1 H imidazole, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2}$, (1), 1-benzyl-4-iodo- 1 H -imidazole, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2}$, (2), and 1-benzyl-2-iodo-1H-benzimidazole, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IN}_{2}$, (3), and the halogen bonds that dominate the intermolecular interactions in each of these three structures. The three-dimensional structure of (1) is dominated by a strong C-I $\cdots \mathrm{N}$ halogen bond, with an $\mathrm{N} \cdots$ I distance of 2.8765 (2) \AA, that connects the molecules into one-dimensional zigzag ribbons of molecules. In contrast, the three-dimensional structures of (2) and (3) both feature C-I $\cdots \pi$ halogen-bonded dimers.

1. Introduction

Halogen bonding is now a well-established and intensively studied intermolecular interaction that has also been used in the preparation of functional materials (Cavallo et al., 2016; Gilday et al., 2015). While polyfluoroiodo- and polyfluorobromobenzenes have been widely used as aromatic halogenbond donors, there have been very few studies of iodoimidazoles with regard to halogen bonding. Indeed, a search of the Cambridge Structural Database (CSD; Version 5.37; Groom et al., 2016) using Conquest (Bruno et al., 2002) revealed 74 examples involving iodoimidazoles. It is noteworthy, however, that only 18 of the 74 structures contained neutral iodinated imidazole derivatives. Furthermore, 14 of these 18 structures do not exhibit any close contacts to the I atoms. The structures of five neutral N -unsubstituted iodoimidazoles are dominated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds [refcodes BOWREM, BOWRUC and BOWSAJ (Andrzejewski et al., 2015), GARJUG (Chlupatý et al., 2012), and WISBUL (Ding et al., 2012)] and one structure features NH \cdots O hydrogen bonds (KOZLIW; Jansa et al., 2015), while seven more sterically hindered imidazole derivatives do not display any major intermolecular interactions and the threedimensional structures presumably have controlled close packing based on size, shape, and polarity [GOGYOR (Delest et al., 2008), IGUANM (Al-Mukhtar \& Wilson, 1978), KIRYEQ (Poverlein et al., 2007), UJOCIF (Tschamber et al., 2003), NUCRAE (Phillips et al., 1997), UNIFUS (Terinek \& Vasella, 2003), and UXOXOV (Li et al., 2011)]. In contrast, three unhindered N-substituted iodoimidazoles do display $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ halogen bonding as the major intermolecular interaction [BEQWEB (Mukai \& Nishikawa, 2013), GOGYIL

Table 1
Experimental details.

	(1)	(2)	(3)
Crystal data			
Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2}$	$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IN}_{2}$
$M_{\text {r }}$	284.09	284.09	334.15
Crystal system, space group	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$	Monoclinic, $P 2_{1} / n$	Triclinic, $P \overline{1}$
Temperature (K)	100	100	100
$a, b, c(\AA)$	8.7561 (5), 9.0016 (5), 12.8869 (7)	8.4574 (5), 6.1526 (3), 19.4261 (10)	$\begin{aligned} & 6.4606(8), 8.2346(10), \\ & 12.3451(14) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	90, 96.362 (1), 90	108.064 (1), 94.174 (2), 95.366 (2)
$V\left(\AA^{3}\right)$	1015.73 (10)	1004.61 (9)	618.05 (13)
Z	4	4	2
	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.11	3.14	2.57
Crystal size (mm)	$0.30 \times 0.20 \times 0.05$	$0.22 \times 0.22 \times 0.22$	$0.20 \times 0.20 \times 0.20$
Data collection			
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2014)	Multi-scan (SADABS; Bruker, 2014)	Multi-scan (SADABS; Bruker, 2014)
$T_{\min }, T_{\max }$	$0.622,0.746$	0.594, 0.746	0.588, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	13262, 2228, 2202	12374, 2207, 2114	8079, 2777, 2725
R_{int}	0.030	0.021	0.016
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.641	0.641	0.645
Refinement			
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.013, 0.030, 1.05	0.016, 0.037, 1.11	0.015, 0.039, 1.09
No. of reflections	2228	2207	2777
No. of parameters	118	118	154
H -atom treatment	H -atom parameters constrained	H -atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.25,-0.27$	$0.73,-0.52$	$0.74,-0.35$
Absolute structure	See §2.2	-	-

Computer programs: SMART (Bruker, 2014), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and X-SEED (Barbour, 2001).
(Delest et al., 2008) and HUDSUW (Byrne, 2015)]. A particularly striking example is the identification of a trimeric halogen-bonded unit by Mukai \& Nishikawa (2013). The

(1)

(2)

(3)
reported halogen bonds have N...I distances between 2.884 and $2.953 \AA$, corresponding to $81.7-83.7 \%$ of the sum of the van der Waals radii of $3.53 \AA$ (Bondi, 1964), and are essentially linear, with $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ angles between 171.38 and 174.86°. In this study, we present the structures of three iodoimidazole derivatives, namely 1-benzyl-2-iodo-1H-imidazole, (1), 1-benzyl-4-iodo-1H-imidazole, (2), and 1-benzyl-2-iodo-1 H benzimidazole, (3), and discuss the intermolecular halogenbonding interactions and other nonbonding interactions that dominate the crystal structures.

2. Experimental

2.1. Synthesis and crystallization

2.1.1. 1-Benzyl-2-iodo-1H-imidazole, (1). 1-Benzyl-1Himidazole was synthesized according to the procedure of Salvio et al. (2011). Compound (1) was synthesized from 1-benzyl-1 H -imidazole using a modification of the procedure of de Figueiredo (2007). Thus, 1-benzyl-1H-imidazole (2 g, 12.64 mmol) and anhydrous tetrahydrofuran (35 ml) were added to a three-necked 250 ml round-bottomed flask under an argon atmosphere. The mixture was cooled to 195 K and stirred at this temperature for $7 \mathrm{~min} .1 .6 \mathrm{Mn}-\mathrm{BuLi}(8 \mathrm{ml}$, $12.64 \mathrm{mmol}, 1$ equivalent) was added dropwise over a period of 2 mins and the resultant mixture stirred at 195 K for 45 min . Iodine ($4.81 \mathrm{~g}, 18.96 \mathrm{mmol}, 1.5$ equivalents) was crushed and added to the stirred mixture. The cooling bath was removed and the mixture stirred at room temperature for 3 h under argon. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ and the excess I_{2} was quenched with $10 \% \mathrm{Na}_{2} \mathrm{SO}_{3}(200 \mathrm{ml})$. The organic layer was separated, washed twice with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and twice with brine (200 ml), and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the crude product purified by flash column chromatography using a 10:1 (v / v) mixture of hexane and ethyl acetate to afford 2.23 g of the compound as a white solid (yield $7.85 \mathrm{mmol}, 62 \%$). $R_{\mathrm{F}}=0.27$ (hexane/EtOAc, 2:1 v/v). The solid was crystallized from a 9:1 (v / v) mixture of hexane and ethyl acetate to give white needle-

Figure 1
The molecular structure of (1), showing the imidazole $\mathrm{N} \cdots$. I halogen bond (dashed line). Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.
like crystals [m.p. 373.5-375.9 K; literature 372-374 K (Moreno-Manas et al., 1990)]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $5.10(s, 2 H), 7.01(d, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.15(m, 3 \mathrm{H}), 7.32-$ $7.38(m, 3 H)$.
2.1.2. 1-Benzyl-4-iodo-1H-imidazole, (2). Compound (2) was synthesized from commercially available 4 -iodo- 1 H imidazole using a similar procedure to that used to synthesize 1-benzyl-1 H -imidazole (see Supporting information).
2.1.3. 1-Benzyl-2-iodo-1H-benzimidazole, (3). 1-Benzyl$1 H$-benzimidazole and the iodinated compound (3) were synthesized using the modified procedure used for the preparation of (1) (see Supporting information).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were treated as riding atoms in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=$ 0.95 (aromatic) or $0.98 \AA$ (methylene) and $U_{\text {iso }}(\mathrm{H})=k U_{\text {iso }}(\mathrm{C})$, where $k=1.5$ for the methylene group and 1.2 for all aromatic H atoms. The correct absolute configuration for the molecules of compound (1) in the crystal selected for data collection was determined by the Flack x parameter (Flack, 1983) of $-0.002(13)$ by a classical fit to all intensities and was calculated using 913 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013).

2.3. Electrostatic potential calculations

All molecules were geometry optimized using the Spartan'10 (Wavefunction, 2010) molecular modeling program
with density functional theory (DFT) at the B3LYP/6$311+\mathrm{G}^{* *}$ level, and the corresponding molecular electrostatic potential energy surface was determined also using Spartan'10. The initial geometry for the optimization corresponded to that observed in the corresponding crystal structure. In the optimized geometry (gas phase), the benzyl group is rotated relative to the imidazole ring and minor confor-mation-based differences in the electrostatic potentials may be expected between the two conformations. The differences between the observed conformation and the optimized conformation of each of (1), (2), and (3) are collected in Table S1 in the Supporting information.

3. Results and discussion

The asymmetric unit of the X-ray structure of (1) contains a single molecule. The phenyl group is essentially orthogonal to the imidazole group, with a dihedral angle between the planes defined by the phenyl C atoms and the imidazole N and C atoms of 84°. Phenyl atom H6 is positioned above imidazole atom N1, with an N1-C4-C5-C6 torsion angle of $13.0(4)^{\circ}$ and an $\mathrm{H} 6 \cdots \mathrm{~N} 1$ distance of $2.58 \AA$, compared to the sum of the van der Waals radii of $2.75 \AA$ (Bondi, 1964). There is also a close contact between one of the benzyl H atoms and the I atom, with an $\mathrm{H} 4 B \cdots \mathrm{I} 1$ distance of $3.04 \AA$, compared to the sum of the van der Waals radii of $3.18 \AA$. The three-dimensional structure of (1) features an imidazole N...I halogen bond, as shown in Fig. 1. The $\mathrm{N} 2 \cdots \mathrm{I} 1^{\mathrm{i}}$ distance [symmetry code: (i) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$] is 2.8765 (2) \AA, which is 81% of the sum of the van der Waals radii of $3.53 \AA$ (Bondi, 1964). The halogen bond is almost linear, with a $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ angle of 174.42 (9) ${ }^{\circ}$.

Linear one-dimensional ribbons of zigzag halogen-bonded molecules of (1) dominate the three-dimensional structure, as shown in Fig. 2. These one-dimensional ribbons run parallel to the a axis and are close packed with no other significant intermolecular interactions.

The X-ray structure of (2) also contains a single molecule in the asymmetric unit having a bent shape. The phenyl group is also almost orthogonal to the imidazole group, with a dihedral angle between the planes defined by the phenyl and imidazole rings of 84°. The phenyl ring is not oriented above the imidazole ring; the $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1$ torsion angle is $-52.0(2)^{\circ}$. The three-dimensional structure has a weak iodo $-\pi$ interaction involving the pendant phenyl ring of an

Figure 2
The one-dimensional zigzag halogen-bonded ribbon of molecules in the single-crystal X-ray structure of (1).

Figure 3
The molecular structure of (2), showing (a) the atom labeling and the $\mathrm{C}-\mathrm{I} \cdots \pi$ (phenyl) interactions (dashed lines), with displacement ellipsoids drawn at the 50% probability level, and (b) a space-filling model.
adjacent molecule that results in the formation of $\mathrm{C}-\mathrm{I} \cdots \pi$ halogen-bonded dimers, as shown in Fig. 3.

In the $\mathrm{C}-\mathrm{I} \cdots \pi$-bonded dimer of (2), the $\mathrm{C}-\mathrm{I}$ bond is directed towards phenyl atoms $\mathrm{C} 7^{\mathrm{i}}$ and $\mathrm{C} 8^{\mathrm{i}}$ [symmetry code: (i) $-x+1,-y+1,-z+2]$ of an adjacent molecule, with $\mathrm{I} 1 \cdots \mathrm{C} 7^{\mathrm{i}}$ and $\mathrm{I} 1 \cdots \mathrm{C} 8^{\mathrm{i}}$ distances of 3.551 (2) and 3.5534 (2) \AA, respectively, both approximately 96% of the sum of the van der

Figure 4
The structure of the $\mathrm{C}-\mathrm{I} \cdots \pi$ halogen-bonded dimers formed in the structure of (3), showing (a) the atom labeling and the C-I $\cdots \pi$ (phenyl) interactions (dashed lines), with displacement ellipsoids drawn at the 50% probability level, and (b) a space-filling model.

Waals radii of $3.68 \AA$ (Bondi, 1964). The $\mathrm{C} 2-\mathrm{I} 1 \cdots \mathrm{C}^{\mathrm{i}}$ and $\mathrm{C} 2-\mathrm{I} 1 \cdots \mathrm{C} 8^{\mathrm{i}}$ angles are 152.99 (1) and $171.24(1)^{\circ}$, respectively. The $\mathrm{C}-\mathrm{I} \cdots C g 1^{\mathrm{i}}$ distance is $3.5861(2) \AA(C g 1$ is the centroid of the $\mathrm{C} 5-\mathrm{C} 10$ phenyl ring) and the $\mathrm{C}-\mathrm{I} \cdots C g 1^{1}$ angle is $162.82(1)^{\circ}$. There are two other close contacts in the three-dimensional structure of (2). One of these is a nonconventional $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond between atom N 2 and a benzylic H atom of an adjacent molecule, with an $\mathrm{N} 2 \cdots \mathrm{H} 4 B^{\mathrm{ii}}$ [symmetry code: (ii) $x, y-1, z$] distance of $2.55 \AA$, which is 93% of the sum of the van der Waals radii of $2.75 \AA$ (Bondi, 1964); the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ angle is 158°. There is a close $\mathrm{H} \cdots \mathrm{H}$ contact of $2.26 \AA$ between atoms $\mathrm{H} 4 A$ and $\mathrm{H} 7{ }^{\mathrm{iii}}$ [symmetry code: (iii) $\left.-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}\right]$ of an adjacent molecule.

Figure 5

A partial view of the three-dimensional packing of (3), viewed along the a axis. The $\mathrm{C}-\mathrm{I} \cdots \pi$ interaction is labeled as $\mathrm{I} \pi$, the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are labeled as x, y and z, and the π-stacking is labeled as $\pi \pi$.

Figure 6
A scatterplot of the $\mathrm{N} \cdots \mathrm{I}$ distances and $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ angles corresponding to all results of a search of the CSD using Conquest for $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ contacts with an $\mathrm{I} \cdots \mathrm{N}$ distance less than or equal to 3.53 A , i.e. the sum of the van der Waals radii, and an C-I $\cdots \mathrm{N}$ angle between 120 and 180°.

The structure of (3) also contains a single molecule in the asymmetric unit, with a dihedral angle between the imidazole and benzyl rings of 86°. In this structure, phenyl atom H9 is positioned above atom N 1 , with an $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14$ torsion angle of $-13.4(2)^{\circ}$. There is also a $\mathrm{C}-\mathrm{I} \cdots \pi$ interaction to the phenyl ring of an adjacent molecule, resulting in a $\mathrm{C}-\mathrm{I} \cdots \pi$ bonded molecular dimeric motif similar to that observed in (2) (Fig. 4).

In the $\mathrm{C}-\mathrm{I} \cdots \pi$-bonded dimer of (3), the $\mathrm{C}-\mathrm{I}$ bond is directed towards phenyl atom $\mathrm{C} 13^{\mathrm{i}}$ [symmetry code: (i) $-x+1$, $-y+1,-z]$ of the adjacent molecule, with a $\mathrm{C} 1-\mathrm{I} 1 \cdots \mathrm{C} 13^{\mathrm{i}}$ angle of $178.66(1)^{\circ}$ and an I3 \cdots C13 ${ }^{i}$ distance of 3.3929 (4) A. This distance is 92% of the sum of the van der Waals radii of $3.68 \AA$ (Bondi, 1964). The C-I . CCg1 1^{i} distance is 3.4562 (4) \AA (Cg1 is the centroid of the C9-C14 phenyl ring) and the $\mathrm{C}-$ $\mathrm{I} \cdots C g 1^{\mathrm{i}}$ angle is $156.94(1)^{\circ}$. There is an intramolecular $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interaction since benzyl atom H14 lies above the imidazole ring, with an $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14$ torsion angle of $-13.4(2)^{\circ}$. This interaction is labeled ' x ' in Fig. 5. The $\mathrm{H} 14 \cdots \mathrm{~N} 1$ distance is $2.51 \AA$ and the $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~N} 1$ angle is 101°. The H14 $\cdots C g 2$ distance is $2.82 \AA(C g 2$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{N} 2 / \mathrm{C} 2 / \mathrm{C} 7$ imidazole ring) and the $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Cg} 2$ angle is 125°.

The three-dimensional packing of (3) involves multiple cohesive interactions, namely two intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and two $\pi-\pi$ interactions. Benzimidazole atom H5 is involved in a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction with the pendant phenyl ring, labeled ' y ' in Fig. 5; the H5 $\cdots C g 1^{\text {ii }}$ distance is $2.78 \AA$ and the $\mathrm{C}-\mathrm{H} \cdots C g 1^{\text {ii }}$ angle is 149° [Cg1 is the centroid of C9-C14 ring; symmetry code: (ii) $-x+2,-y+1,-z+1]$. Benzyl atom H 13 is involved in an interaction with the benzimidazole benzene ring, labeled ' z ' in Fig. 5, with an $\mathrm{H} 13 \cdots \mathrm{Cg} 3^{\mathrm{iii}}$ distance of $2.94 \AA$ and a $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cg} 3^{\mathrm{iii}}$ angle of 141° [Cg 3 is the centroid of the benzimidazole $\mathrm{C} 2-\mathrm{C} 7$ ring; symmetry code: (iii) $x, y+1, z]$. The benzimidazole groups are
alternately π-stacked (labeled $\pi \pi$ in Fig. 5), with the benzene rings overlaid and slightly offset. The $C g 3 \cdots C g 3^{\text {iv }}$ distance is 4.5536 (6) \AA, the perpendicular distance between the benzene rings is $4.3405 \AA$ and the slippage is $1.377 \AA$ [symmetry code: (iv) $-x+1,-y+1,-z+1]$.

In order to place these $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{I} \cdots \pi$ interactions in context, two searches of the Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016) using Conquest (Bruno et al., 2002) were made. The first search, for crystal structures containing $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ contacts with $\mathrm{I} \cdots \mathrm{N}$ distances equal to or less than the sum of the van der Waals radii ($3.53 \AA$), yielded 763 structures with a total of 1082 contacts that met the criteria. Several of these structures corresponded to parallel-displaced π-stacked aromatics, with very short contacts and $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ angles less than 90°, which we deemed as significantly different to not include in the analysis. Accordingly, the search was modified to include those structures in which the C-I $\cdots \mathrm{N}$ angle was between 120 and 180°, resulting in 752 structures with 1058 distinct interactions that are displayed in the scatterplot of $\mathrm{N} \cdots \mathrm{I}$ distance versus C I $\cdots \mathrm{N}$ angle in Fig. 6. The N \cdots I distance reported here for (1) [2.876 (3) \AA] is less than the median $(2.973 \AA)$ of the 1058 reported $\mathrm{N} \cdots$ I distances and is clearly in the group of shorter $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ interactions. The almost linear $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ angle is consistent with the majority of the shorter N...I distances which are clustered at $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ angles above 165°.

The second search of the CSD using Conquest probed CI $\cdots \pi$ interactions specifically between an I atom bonded to carbon and a benzene ring as the π-system in which the $\mathrm{I} \cdots C g$ ($C g$ is the centroid of the benzene ring) distance was less than $3.68 \AA$ (the sum of the van der Waals radii of C and I) and the C-I $\cdots \pi$ angles were between 120 and 180°. The restrictive angle was chosen to exclude parallel-displaced π-stacked systems. The shortest $\mathrm{C}-\mathrm{I} \cdots C g$ distance from the search ($3.215 \AA$) was recorded from a crystal of 2-(2-fluoropyridin-3-yl)-2-(4-iodophenyl)-2H-3 $\lambda^{5}, 2 \lambda^{5}$-[1,3,2]oxazaborolo[5,4,3-ij]-

Figure 7
A scatterplot showing the $\mathrm{C}-\mathrm{I} \cdots C g$ contacts $(C g$ is the centroid of the benzene ring) to benzene derivatives, with an $\mathrm{I} \cdots C g$ distance less than or equal to $3.68 \AA$, i.e. the sum of the van der Waals radii, and an $\mathrm{C}-\mathrm{I} \cdots \mathrm{Cg}$ angle between 120 and 180°.

Figure 8
The molecular electrostatic potential maps of compounds (1), (2), and (3), shown on the same scale (right).
quinolone under a pressure of 4.88 GPa at ambient temperature (Wesela-Bauman et al., 2014). In fact, four of the five shortest $\mathrm{C}-\mathrm{I} \cdots C g$ distances reported correspond to that study. The $\mathrm{C}-\mathrm{I} \cdots C g$ distance for the same compound at 100 K and under atmospheric pressure is $3.525 \AA$. Accordingly, the data corresponding to pressurized crystals from that study are not included in the scatterplot of I $\cdots C g$ distances versus $\mathrm{C}-\mathrm{I} \cdots C g$ angles displayed in Fig. 7.

The shortest C-I $\cdots C g$ distance of $3.272 \AA$ in Fig. 7 corresponds to the structure of the p-xylene solvate of hexa-kis(4-iodophenyl)benzene that includes an iodo- π interaction between one of the iodobenzene molecules and the included p-xylene solvent molecule (Kobayashi et al., 2005). The next six close contacts have $\mathrm{C}-\mathrm{I} \cdots C g$ distances between 3.376 and $3.400 \AA$. The C-I $\cdots C g$ distance of 3.4562 (4) \AA reported here for (3) is clearly amongst the shorter $\mathrm{C}-\mathrm{I} \cdots C g$ distances reported to date.

In order to better understand the halogen-bonding behavior of (1), (2), and (3), the molecular electrostatic potentials of these three compounds were calculated and the plots showing the molecular electrostatic potential surfaces are shown in Fig. 8.

The calculated positive electrostatic potential associated with the positive σ-hole on the I atom of compounds (1), (2), and (3) were determined to be 123,81 , and $129 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. These modest values associated with the positive σ-hole are considerably lower than the values reported for the better known halogen-bond donors. For example, iodopentafluorobenzene has a calculated positive electrostatic potential associated with the σ-hole on the I atom of $166 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Aakeröy et al., 2014). The positive electrostatic potential associated with the σ-hole on the I atom of 1,3,5-triiodo-2,4,6trinitrobenzene has recently been reported as $213 \mathrm{~kJ} \mathrm{~mol}^{-1}$, which is the most positive value calculated to date (Goud et al., 2016). Nevertheless, the 2-iodoimidazole derivatives are distinctly better halogen-bond donors than iodobenzene, with a calculated electrostatic potential of $103 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Aakeröy et al., 2014), while the 4-iodoimidazole derivative is a poorer halogen-bond acceptor than iodobenzene. The negative electrostatic potential on the unsubstituted N atom of compounds (1), (2), and (3) are $-204,-210$, and $-193 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. These values are similar to the values reported for a series of N-substituted imidazole derivatives (Aakeröy et al., 2016). Thus, while the relatively weak halogen-bonding
interaction of (2) can be ascribed to the low positive electrostatic potential on the I atom, rationalizing the other two results is difficult. The conundrum is that compounds (1) and (3) have similar halogen-bond-donor properties and similar halogen-bond-acceptor properties on the unsubstituted imidazole N atom, yet form different types of halogen bonds ($\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ versus $\mathrm{C}-\mathrm{I} \cdots \pi$).

In conclusion, we have demonstrated that 2-iodoimidazoles are effective halogen-bond donors and acceptors and may form $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ or $\mathrm{C}-\mathrm{I} \cdots \pi$ halogen bonds but we are, as yet, unable to rationalize the factors that control the type of halogen bonding. In our future work, we plan to explore intraand intermolecular $\mathrm{C}-\mathrm{I} \cdots \pi$ interactions.

Acknowledgements

We thank the National Science Foundation for financial support of this research (RUI grant No. 1606556), the Missouri State University Provost Incentive Fund that funded the purchase of the X-ray diffractometer, and the Missouri State University Graduate College for funding CIN.

References

Aakeröy, C. B., Wijethunga, T. K., Desper, J. \& Dakovic, M. (2016). Cryst. Growth Des. 15, 2662-2670.
Aakeröy, C. B., Wijethunga, T. K., Haj, M. A., Desper, J. \& Moore, C. (2014). CrystEngComm, 16, 7218-7225.

Al-Mukhtar, J. H. \& Wilson, H. R. (1978). Acta Cryst. B34, 337339.

Andrzejewski, M., Marciniak, J., Rajewski, K. W. \& Katrusiak, A. (2015). Cryst. Growth Des. 15, 1658-1665.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389397.

Byrne, P. (2015). Private communication (refcode HUDSUW). CCDC, Cambridge, England.
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Primagi, A., Resnati, G. \& Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.

Chlupatý, T., Parík, P. \& Padelková, Z. (2012). Acta Cryst. E68, o553o554.
Delest, B., Nshimyumukiza, P., Fasbender, O., Tinant, B., MarchandBrynaert, J., Darro, F. \& Robiette, R. (2008). J. Org. Chem. 73, 6816-6823.

Ding, X., Tuikka, M. \& Haukka, M. (2012). In Recent Advances in Crystallography, edited by J. B. Benedict. Rijeka, Croatia: Intech. Figueiredo, R. M. de, Thoret, S., Huet, C. \& Dubois, J. (2007). Synthesis, 4, 529-540.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. \& Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.
Goud, N. R., Bolton, O., Burgess, E. C. \& Matzger, A. J. (2016). Cryst. Growth Des. 16, 1765-1771.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jansa, J., Lycka, A., Ruzicka, A., Grepl, M. \& Vanecek, J. (2015). Tetrahedron, 71, 27-36.
Kobayashi, K., Kobayashi, N., Ikuta, M., Therrien, B., Sakamoto, S. \& Yamaguchi, K. (2005). J. Org. Chem. 70, 749-752.
Li, T., Guo, L., Zhang, Y., Wang, J., Zhang, Z., Jing Li, J., Zhang, W., Lin, J., Zhao, W. \& Wang, P. G. (2011). Bioorg. Med. Chem. 19, 2136-2144.
Moreno-Manas, M., Bassa, J., Llado, N. \& Pleixats, R. (1990). J. Heterocycl. Chem. 27, 673-678.

Mukai, T. \& Nishikawa, K. (2013). X-ray Struct. Anal. Online, 29, 1314.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Phillips, J. G., Fadnis, L. \& Williams, D. R. (1997). Tetrahedron Lett. 38, 7835-7838.
Poverlein, C., Jacobi, N., Mayer, P. \& Lindel, T. (2007). Synthesis, pp. 3620-3626.
Salvio, R., Cacciapaglia, R. \& Maldolini, L. (2011). J. Org. Chem. 76, 5438-5443.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Terinek, M. \& Vasella, A. (2003). Helv. Chim. Acta, 86, 34823509.

Tschamber, T., Gessier, F., Neuburger, M., Gurcha, S. S., Besra, G. S. \& Streith, J. (2003). Eur. J. Org. Chem. pp. 2792-2798.
Wavefunction (2010). Spartan'10. Wavefunction Inc., Irvine, CA, USA.
Wesela-Bauman, G., Parsons, S., Serwatowskia, J. \& Woźniak, K. (2014). CrystEngComm, 16, 10780-10790.

supporting information

Acta Cryst. (2017). C73, 2-8 [https://doi.org/10.1107/S2053229616018702]

$\mathrm{C}-\mid \cdots \mathrm{N}$ and $\mathrm{C}-I \cdots \pi$ halogen bonding in the structures of 1 -benzyliodoimidazole derivatives

Chideraa I. Nwachukwu, Nathan P. Bowling and Eric Bosch

Computing details

For all structures, data collection: SMART (Bruker, 2014); cell refinement: SMART (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

1-Benzyl-2-iodo-1H-imidazole (1)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2}$
$M_{r}=284.09$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.7561$ (5) \AA
$b=9.0016$ (5) \AA
$c=12.8869$ (7) \AA
$V=1015.73(10) \AA^{3}$
$Z=4$
$F(000)=544$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\min }=0.622, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.013$
$w R\left(F^{2}\right)=0.030$
$S=1.05$
2228 reflections
118 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
$D_{\mathrm{x}}=1.858 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7864 reflections
$\theta=2.8-27.1^{\circ}$
$\mu=3.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Irregular, colourless
$0.30 \times 0.20 \times 0.05 \mathrm{~mm}$

13262 measured reflections
2228 independent reflections
2202 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.1^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-16 \rightarrow 16$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0131 P)^{2}+0.0966 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.27$ e \AA^{-3}
Absolute structure: Flack x determined using

913 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et

 al., 2013)Absolute structure parameter: - 0.002 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
I1	$0.23697(2)$	$0.28234(2)$	$0.52915(2)$	$0.01308(5)$
N1	$0.1137(3)$	$0.4336(3)$	$0.72457(18)$	$0.0140(5)$
C1	$0.0779(3)$	$0.3510(3)$	$0.6399(2)$	$0.0126(6)$
N2	$-0.0686(3)$	$0.3169(3)$	$0.63687(19)$	$0.0153(5)$
C2	$-0.1294(3)$	$0.3814(3)$	$0.7256(2)$	$0.0175(6)$
H1	-0.2337	0.3759	0.7456	0.021^{*}
C3	$-0.0203(3)$	$0.4526(3)$	$0.7792(2)$	$0.0173(6)$
H9	-0.0329	0.5057	0.8423	0.021^{*}
C4	$0.2632(4)$	$0.4913(3)$	$0.7544(2)$	$0.0163(6)$
H7	0.2484	0.5859	0.7923	0.020^{*}
H8	0.3218	0.5138	0.6906	0.020^{*}
C5	$0.3573(3)$	$0.3881(3)$	$0.8214(2)$	$0.0145(6)$
C6	$0.3217(3)$	$0.2395(3)$	$0.8364(2)$	$0.0165(6)$
H3	0.2345	0.1980	0.8035	0.020^{*}
C7	$0.4136(3)$	$0.1504(4)$	$0.8995(2)$	$0.0210(7)$
H4	0.3885	0.0487	0.9094	0.025^{*}
C8	$0.5407(3)$	$0.2094(4)$	$0.9477(2)$	$0.0215(7)$
H2	0.6027	0.1487	0.9909	0.026^{*}
C9	$0.5776(4)$	$0.3587(4)$	$0.9327(2)$	$0.0222(7)$
H5	0.6647	0.4001	0.9658	0.027^{*}
C10	$0.4869(3)$	$0.4463(3)$	$0.8693(2)$	$0.0177(6)$
H6	0.5134	0.5474	0.8583	0.021^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01264(8)$	$0.01415(9)$	$0.01244(8)$	$0.00140(7)$	$0.00028(7)$	$-0.00020(6)$
N1	$0.0139(12)$	$0.0132(12)$	$0.0150(12)$	$0.0009(10)$	$-0.0017(10)$	$-0.0015(10)$
C1	$0.0138(14)$	$0.0102(13)$	$0.0138(14)$	$0.0027(11)$	$-0.0002(11)$	$0.0008(11)$
N2	$0.0134(11)$	$0.0163(14)$	$0.0161(12)$	$0.0017(9)$	$-0.0001(9)$	$0.0000(9)$
C2	$0.0153(14)$	$0.0183(16)$	$0.0189(15)$	$0.0027(12)$	$0.0024(12)$	$-0.0005(12)$
C3	$0.0206(16)$	$0.0178(15)$	$0.0135(14)$	$0.0043(13)$	$0.0023(13)$	$-0.0010(12)$
C4	$0.0169(14)$	$0.0147(13)$	$0.0172(12)$	$-0.0036(12)$	$-0.0032(15)$	$-0.0006(10)$
C5	$0.0142(14)$	$0.0182(15)$	$0.0110(14)$	$0.0018(12)$	$0.0021(11)$	$-0.0028(11)$
C6	$0.0148(13)$	$0.0173(16)$	$0.0174(13)$	$-0.0015(11)$	$-0.0003(11)$	$-0.0018(12)$
C7	$0.0222(16)$	$0.0204(15)$	$0.0203(15)$	$0.0022(13)$	$0.0067(13)$	$0.0026(13)$
C8	$0.0211(14)$	$0.0277(17)$	$0.0156(14)$	$0.0087(15)$	$-0.0008(11)$	$0.0024(14)$
C9	$0.0171(15)$	$0.0285(18)$	$0.0210(16)$	$0.0039(14)$	$-0.0034(12)$	$-0.0039(14)$
C10	$0.0169(15)$	$0.0168(15)$	$0.0195(15)$	$-0.0010(12)$	$0.0007(13)$	$-0.0037(13)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{I}-\mathrm{C} 1$	2.088 (3)	C5-C6	1.387 (4)
N1-C1	1.357 (4)	C5-C10	1.394 (4)
N1-C3	1.379 (3)	C6-C7	1.397 (4)
N1-C4	1.461 (4)	C6-H3	0.9500
C1-N2	1.319 (3)	C7-C8	1.381 (4)
N2-C2	1.389 (4)	C7-H4	0.9500
C2-C3	1.341 (4)	C8-C9	1.395 (5)
C2-H1	0.9500	C8-H2	0.9500
C3-H9	0.9500	C9-C10	1.386 (4)
C4-C5	1.512 (4)	C9-H5	0.9500
C4-H7	0.9900	C10-H6	0.9500
C4-H8	0.9900		
C1-N1-C3	106.4 (2)	C6-C5-C10	118.9 (3)
C1-N1-C4	127.8 (2)	C6-C5-C4	123.4 (3)
C3-N1-C4	125.8 (2)	C10-C5-C4	117.7 (3)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	112.1 (2)	C5-C6-C7	120.4 (3)
N2-C1-I1	124.0 (2)	C5-C6-H3	119.8
N1-C1-I1	123.9 (2)	C7- $76-\mathrm{H} 3$	119.8
C1-N2-C2	104.5 (2)	C8-C7-C6	120.3 (3)
C3-C2-N2	110.5 (3)	C8-C7-H4	119.8
C3-C2-H1	124.7	C6-C7-H4	119.8
N2-C2-H1	124.7	C7-C8-C9	119.7 (3)
C2-C3-N1	106.5 (3)	C7- $\mathrm{C} 8-\mathrm{H} 2$	120.2
C2-C3-H9	126.8	C9-C8-H2	120.2
N1-C3-H9	126.8	C10-C9-C8	119.8 (3)
N1-C4-C5	114.8 (2)	C10-C9-H5	120.1
N1-C4-H7	108.6	C8-C9-H5	120.1
C5-C4-H7	108.6	C9-C10-C5	120.9 (3)
N1-C4-H8	108.6	C9-C10-H6	119.5
C5-C4-H8	108.6	C5-C10-H6	119.5
H7- $\mathrm{C} 4-\mathrm{H} 8$	107.5		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	0.2 (3)	C3-N1-C4-C5	90.2 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	179.7 (2)	N1-C4-C5-C6	13.0 (4)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Il}$	-178.7 (2)	N1-C4-C5-C10	-167.7 (2)
C4-N1-C1-I1	0.9 (4)	C10-C5-C6-C7	0.8 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	-0.3 (3)	C4-C5-C6-C7	-179.9 (3)
$\mathrm{I} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	178.5 (2)	C5-C6-C7-C8	0.0 (4)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	0.3 (3)	C6-C7-C8-C9	-0.3 (4)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	-0.2 (3)	C7-C8-C9-C10	-0.2 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	0.1 (3)	C8-C9-C10-C5	1.1 (4)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	-179.5 (3)	C6-C5-C10-C9	-1.4 (4)
C1-N1-C4-C5	-89.3 (3)	C4-C5-C10-C9	179.3 (3)

1-Benzyl-4-iodo-1H-benzimidazole (2)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2}$
$M_{r}=284.09$
Monoclinic, $P 2_{1} / n$
$a=8.4574$ (5) Å
$b=6.1526$ (3) \AA
$c=19.4261(10) \AA$
$\beta=96.362(1)^{\circ}$
$V=1004.61(9) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\min }=0.594, T_{\max }=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.037$
$S=1.11$
2207 reflections
118 parameters
0 restraints

$$
\begin{aligned}
& F(000)=544 \\
& D_{\mathrm{x}}=1.878 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 7481 \text { reflections } \\
& \theta=2.5-27.1^{\circ} \\
& \mu=3.14 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Cut irregular cube, colourless } \\
& 0.22 \times 0.22 \times 0.22 \mathrm{~mm} \\
& \\
& 12374 \text { measured reflections } \\
& 2207 \text { independent reflections } \\
& 2114 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.021 \\
& \theta_{\max }=27.1^{\circ}, \theta_{\min }=2.1^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-7 \rightarrow 7 \\
& l=-24 \rightarrow 24
\end{aligned}
$$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0133 P)^{2}+0.8316 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.73$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.52$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.78435(2)$	$0.28882(2)$	$0.99037(2)$	$0.02415(5)$
N1	$0.62017(18)$	$0.7607(3)$	$0.84311(8)$	$0.0184(3)$
C1	$0.6885(2)$	$0.6133(3)$	$0.80429(9)$	$0.0193(4)$
H1	0.6911	0.6269	0.7557	0.023^{*}
N2	$0.75130(18)$	$0.4480(3)$	$0.84125(8)$	$0.0202(3)$
C2	$0.7195(2)$	$0.4950(3)$	$0.90773(9)$	$0.0176(4)$
C3	$0.6390(2)$	$0.6861(3)$	$0.91019(9)$	$0.0202(4)$
H3	0.6035	0.7533	0.9497	0.024^{*}
C4	$0.5408(2)$	$0.9614(3)$	$0.81736(10)$	$0.0234(4)$
H4A	0.5420	0.9692	0.7665	0.028^{*}

H4B	0.6011	1.0876	0.8381	0.028^{*}
C5	$0.3709(2)$	$0.9758(3)$	$0.83403(9)$	$0.0180(4)$
C6	$0.2651(2)$	$0.8056(3)$	$0.81699(10)$	$0.0212(4)$
H6	0.3005	0.6781	0.7958	0.025^{*}
C7	$0.1081(2)$	$0.8218(3)$	$0.83096(10)$	$0.0256(4)$
H7	0.0365	0.7048	0.8197	0.031^{*}
C8	$0.0554(2)$	$1.0088(4)$	$0.86130(10)$	$0.0265(4)$
H8	-0.0523	1.0201	0.8705	0.032^{*}
C9	$0.1594(3)$	$1.1779(3)$	$0.87815(11)$	$0.0277(4)$
H9	0.1231	1.3058	0.8988	0.033^{*}
C10	$0.3176(2)$	$1.1619(3)$	$0.86495(10)$	$0.0240(4)$
H10	0.3891	1.2783	0.8771	0.029^{*}

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.02821(8)$	$0.02566(8)$	$0.01895(7)$	$0.00504(5)$	$0.00421(5)$	$0.00451(5)$
N1	$0.0185(8)$	$0.0183(8)$	$0.0193(8)$	$0.0004(6)$	$0.0055(6)$	$0.0031(6)$
C1	$0.0177(9)$	$0.0255(10)$	$0.0152(8)$	$0.0006(7)$	$0.0038(7)$	$-0.0016(7)$
N2	$0.0198(8)$	$0.0235(8)$	$0.0177(7)$	$0.0025(6)$	$0.0045(6)$	$-0.0027(6)$
C2	$0.0171(8)$	$0.0191(9)$	$0.0167(8)$	$0.0005(7)$	$0.0027(7)$	$0.0004(7)$
C3	$0.0248(10)$	$0.0203(10)$	$0.0167(9)$	$0.0003(7)$	$0.0075(7)$	$0.0000(7)$
C4	$0.0248(10)$	$0.0186(9)$	$0.0281(10)$	$0.0021(8)$	$0.0089(8)$	$0.0080(8)$
C5	$0.0211(9)$	$0.0178(9)$	$0.0151(8)$	$0.0028(7)$	$0.0022(7)$	$0.0043(7)$
C6	$0.0259(10)$	$0.0184(9)$	$0.0190(9)$	$0.0042(7)$	$0.0009(7)$	$-0.0028(7)$
C7	$0.0212(10)$	$0.0305(12)$	$0.0236(10)$	$-0.0015(8)$	$-0.0045(8)$	$-0.0048(8)$
C8	$0.0195(9)$	$0.0380(12)$	$0.0216(9)$	$0.0078(8)$	$0.0004(7)$	$-0.0019(8)$
C9	$0.0314(11)$	$0.0263(11)$	$0.0257(10)$	$0.0106(9)$	$0.0050(8)$	$-0.0037(8)$
C10	$0.0279(10)$	$0.0185(10)$	$0.0254(10)$	$0.0007(8)$	$0.0015(8)$	$-0.0010(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{I} 1-\mathrm{C} 2$	$2.0717(18)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.391(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.349(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.393(3)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.374(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.388(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.467(2)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{C} 1-\mathrm{N} 2$	$1.322(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.388(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{~N} 2-\mathrm{C} 2$	$1.379(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.378(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.362(3)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 9-\mathrm{C} 10$	$1.394(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.510(3)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9500
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900	$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900		
		$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6$	$119.40(17)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$107.09(15)$	$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 4$	$120.18(18)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$125.67(16)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.39(17)$

$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$112.62(16)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1$	123.7
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	123.7
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$103.82(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	$111.35(16)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{I} 1$	$126.28(13)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{I} 1$	$122.34(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$105.11(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	127.4
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3$	127.4
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 5$	$112.76(15)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.0
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.0
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.0
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.0
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.8
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$-0.3(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$179.94(17)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$0.3(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{I} 1$	$-0.1(2)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$178.38(13)$
$\mathrm{I} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$0.0(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$-178.47(13)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$0.2(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$179.96(17)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$123.20(19)$
	$-56.5(3)$

$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$120.18(18)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	119.9
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.9
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.08(19)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.0
C6-C7-H7	120.0
C9-C8-C7	$120.02(19)$
C9-C8- 88	120.0
C7-C8-H8	120.0
C8-C9-C10	$120.24(19)$
C8-C9-H9	119.9
C10-C9-H9	119.9
C5-C10-C9	$120.08(19)$
C5-C10-H10	120.0
C9-C10-H10	120.0

$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$129.69(19)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-52.0(2)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.2(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-178.49(18)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.7(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.6(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.1(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-0.5(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$177.82(18)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$0.7(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.99	2.55	$3.488(3)$	158
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.99	2.55	$3.488(3)$	158
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.99	2.55	$3.488(3)$	158
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.99	2.55	$3.488(3)$	158

Symmetry code: (i) $x, y+1, z$.

1-Benzyl-2-iodo-1H-benzimidazole (3)

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IN} \mathrm{N}_{2}$
$M_{r}=334.15$
Triclinic, $P \overline{1}$
$a=6.4606$ (8) \AA
$b=8.2346(10) \AA$
$c=12.3451(14) \AA$
$\alpha=108.064(1)^{\circ}$
$\beta=94.174(2)^{\circ}$
$\gamma=95.366(2)^{\circ}$
$V=618.05(13) \AA^{3}$
$Z=2$
$F(000)=324$
$D_{\mathrm{x}}=1.796 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6682 reflections
$\theta=2.6-27.3^{\circ}$
$\mu=2.57 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.588, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.039$
$S=1.09$
2777 reflections
154 parameters
0 restraints

Cut irregular cube, colourless
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

8079 measured reflections
2777 independent reflections
2725 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27.3^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& \text { Hydrogen site location: inferred from } \\
& \quad \text { neighbouring sites } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0194 P)^{2}+0.3329 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.74 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.36505(2)$	$0.21176(2)$	$-0.00445(2)$	$0.01647(5)$
N1	$0.6779(2)$	$0.27787(17)$	$0.20512(12)$	$0.0120(3)$
C1	$0.4707(3)$	$0.2345(2)$	$0.16333(14)$	$0.0128(3)$
N2	$0.3471(2)$	$0.20232(18)$	$0.23569(12)$	$0.0150(3)$
C2	$0.4817(3)$	$0.2263(2)$	$0.33480(14)$	$0.0139(3)$
C3	$0.4394(3)$	$0.2054(2)$	$0.43956(15)$	$0.0182(3)$
H3	0.3012	0.1724	0.4531	0.022^{*}
C4	$0.6071(3)$	$0.2349(2)$	$0.52297(15)$	$0.0194(4)$
H4	0.5828	0.2201	0.5945	0.023^{*}
C5	$0.8118(3)$	$0.2859(2)$	$0.50456(15)$	$0.0175(3)$
H5	0.9221	0.3057	0.5641	0.021^{*}
C6	$0.8566(3)$	$0.3081(2)$	$0.40127(15)$	$0.0151(3)$
H6	0.9943	0.3438	0.3885	0.018^{*}
C7	$0.6875(3)$	$0.2749(2)$	$0.31748(14)$	$0.0122(3)$
C8	$0.8525(3)$	$0.3389(2)$	$0.15353(14)$	$0.0132(3)$
H8B	0.8223	0.2938	0.0691	0.016^{*}
H8A	0.9799	0.2929	0.1749	0.016^{*}
C9	$0.8940(3)$	$0.5343(2)$	$0.19092(13)$	$0.0117(3)$

C10	$1.0811(3)$	$0.6095(2)$	$0.16685(15)$	$0.0158(3)$
H10	1.1789	0.5383	0.1290	0.019^{*}
C11	$1.1250(3)$	$0.7877(2)$	$0.19790(15)$	$0.0177(3)$
H11	1.2523	0.8376	0.1811	0.021^{*}
C12	$0.9832(3)$	$0.8928(2)$	$0.25341(15)$	$0.0160(3)$
H12	1.0129	1.0144	0.2742	0.019^{*}
C13	$0.7972(3)$	$0.8192(2)$	$0.27853(14)$	$0.0150(3)$
H13	0.7006	0.8907	0.3173	0.018^{*}
C14	$0.7526(3)$	$0.6401(2)$	$0.24673(14)$	$0.0136(3)$
H14	0.6250	0.5904	0.2633	0.016^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01853(7)$	$0.01995(7)$	$0.01172(6)$	$0.00853(4)$	$0.00073(4)$	$0.00460(4)$
N1	$0.0124(6)$	$0.0118(6)$	$0.0118(6)$	$0.0009(5)$	$0.0018(5)$	$0.0038(5)$
C1	$0.0145(8)$	$0.0118(7)$	$0.0120(7)$	$0.0031(6)$	$0.0003(6)$	$0.0036(6)$
N2	$0.0129(7)$	$0.0168(7)$	$0.0161(7)$	$0.0012(5)$	$0.0005(5)$	$0.0069(6)$
C2	$0.0138(8)$	$0.0130(7)$	$0.0157(8)$	$0.0018(6)$	$0.0016(6)$	$0.0058(6)$
C3	$0.0155(8)$	$0.0236(9)$	$0.0182(8)$	$0.0018(7)$	$0.0050(7)$	$0.0099(7)$
C4	$0.0229(9)$	$0.0238(9)$	$0.0144(8)$	$0.0035(7)$	$0.0036(7)$	$0.0098(7)$
C5	$0.0193(9)$	$0.0179(8)$	$0.0144(8)$	$0.0025(7)$	$-0.0026(7)$	$0.0048(6)$
C6	$0.0133(8)$	$0.0136(7)$	$0.0170(8)$	$0.0005(6)$	$0.0001(6)$	$0.0038(6)$
C7	$0.0158(8)$	$0.0099(7)$	$0.0113(7)$	$0.0021(6)$	$0.0025(6)$	$0.0035(6)$
C8	$0.0121(7)$	$0.0135(7)$	$0.0148(8)$	$0.0016(6)$	$0.0046(6)$	$0.0049(6)$
C9	$0.0130(7)$	$0.0128(7)$	$0.0102(7)$	$0.0022(6)$	$0.0003(6)$	$0.0051(6)$
C10	$0.0142(8)$	$0.0165(8)$	$0.0174(8)$	$0.0040(6)$	$0.0051(6)$	$0.0049(6)$
C11	$0.0155(8)$	$0.0190(8)$	$0.0194(8)$	$-0.0008(6)$	$0.0040(7)$	$0.0078(7)$
C12	$0.0199(8)$	$0.0129(7)$	$0.0151(8)$	$0.0010(6)$	$0.0011(6)$	$0.0048(6)$
C13	$0.0161(8)$	$0.0142(8)$	$0.0150(8)$	$0.0045(6)$	$0.0028(6)$	$0.0043(6)$
C14	$0.0122(7)$	$0.0159(8)$	$0.0141(8)$	$0.0021(6)$	$0.0029(6)$	$0.0063(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{I} 1-\mathrm{C} 1$	$2.0787(16)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{~N} 1-\mathrm{C} 1$	$1.372(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.522(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.392(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9900
$\mathrm{~N} 1-\mathrm{C} 8$	$1.459(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9900
$\mathrm{C} 1-\mathrm{N} 2$	$1.310(2)$	$\mathrm{C} 9-\mathrm{C} 14$	$1.392(2)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.398(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.399(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.399(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.392(2)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.403(2)$	$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.388(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.389(2)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 11-\mathrm{H} 11$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.406(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.394(2)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500	$\mathrm{C} 12-\mathrm{H} 12$	0.9500
$\mathrm{C} 5-\mathrm{C} 6$	$1.390(2)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.399(2)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500	$\mathrm{C} 13-\mathrm{H} 13$	0.9500

C6-C7	1.393 (2)
C1-N1-C7	105.30 (13)
C1-N1-C8	129.42 (14)
C7-N1-C8	124.77 (14)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	114.90 (14)
N2-C1-I1	122.95 (12)
N1-C1-I1	122.10 (12)
C1-N2-C2	103.99 (14)
N2-C2-C3	130.02 (16)
N2-C2-C7	110.06 (14)
C3-C2-C7	119.90 (16)
C4-C3-C2	117.39 (16)
C4-C3-H3	121.3
C2-C3-H3	121.3
C3-C4-C5	121.86 (16)
C3-C4-H4	119.1
C5-C4-H4	119.1
C6-C5-C4	121.53 (16)
C6-C5-H5	119.2
C4-C5-H5	119.2
C5-C6-C7	116.04 (16)
C5-C6-H6	122.0
C7-C6-H6	122.0
N1-C7-C6	131.00 (15)
N1-C7-C2	105.74 (14)
C6-C7-C2	123.26 (15)
C7-N1-C1-N2	-0.68 (19)
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	-172.65 (15)
C7-N1-C1-I1	-178.20 (11)
C8-N1-C1-I1	9.8 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	0.12 (19)
$\mathrm{I} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	177.62 (11)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	-178.00 (18)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 7$	0.49 (18)
N2-C2-C3-C4	178.48 (17)
C7-C2-C3-C4	0.1 (3)
C2-C3-C4-C5	0.8 (3)
C3-C4-C5-C6	-0.5 (3)
C4-C5-C6-C7	-0.7 (3)
C1-N1-C7-C6	-179.98(17)
C8-N1-C7-C6	-7.5 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 2$	0.92 (17)
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 2$	173.37 (14)
C5-C6-C7-N1	-177.29 (16)

C14-H14	0.9500
N1-C8-C9	112.67 (13)
N1-C8-H8B	109.1
C9-C8-H8B	109.1
N1-C8-H8A	109.1
C9-C8-H8A	109.1
H8B-C8-H8A	107.8
C14-C9-C10	119.12 (15)
C14-C9-C8	122.54 (14)
C10-C9-C8	118.33 (14)
C11-C10-C9	120.50 (16)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	119.8
C9-C10-H10	119.8
C12-C11-C10	120.19 (16)
C12-C11-H11	119.9
C10-C11-H11	119.9
C11-C12-C13	119.71 (15)
C11-C12-H12	120.1
C13-C12-H12	120.1
C12-C13-C14	120.09 (16)
C12-C13-H13	120.0
C14-C13-H13	120.0
C9-C14-C13	120.39 (15)
C9-C14-H14	119.8
C13-C14-H14	119.8
C5-C6-C7-C2	1.7 (2)
N2-C2-C7-N1	-0.90 (18)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{N} 1$	177.77 (15)
N2-C2-C7-C6	179.92 (15)
C3-C2-C7-C6	-1.4 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	93.38 (19)
C7-N1-C8-C9	-77.17 (19)
N1-C8-C9-C14	-13.4 (2)
N1-C8-C9-C10	167.25 (14)
C14-C9-C10-C11	-0.2 (2)
C8-C9-C10-C11	179.10 (15)
C9-C10-C11-C12	0.1 (3)
C10-C11-C12-C13	0.4 (3)
C11-C12-C13-C14	-0.8 (3)
C10-C9-C14-C13	-0.1 (2)
C8-C9-C14-C13	-179.45 (15)
C12-C13-C14-C9	0.6 (3)

