research papers

Received 22 September 2016 Accepted 5 December 2016

Edited by E. Y. Cheung, Amgen Inc., USA

Keywords: benzoylthiourea; crystal structure; hydrogen bonding; quasi-aromaticity; stacking interactions.

CCDC references: 1520890; 1520889

Supporting information: this article has supporting information at journals.iucr.org/c

© 2017 International Union of Crystallography

Crystallographic study of self-organization in the solid state including quasi-aromatic pseudo-ring stacking interactions in 1-benzoyl-3-(3,4-dimethoxyphenyl)thiourea and 1-benzoyl-3-(2-hydroxypropyl)thiourea

Andrzej Okuniewski,* Damian Rosiak, Jarosław Chojnacki and Barbara Becker

Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland. *Correspondence e-mail: andrzej.okuniewski@pg.gda.pl

1-Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen-bond formation. Two novel 1-benzoylthiourea derivatives, namely 1-benzoyl-3-(3,4-dimethoxyphenyl)thiourea, C₁₆H₁₆N₂O₃S, (I), and 1-benzoyl-3-(2-hydroxypropyl)thiourea, C₁₁H₁₄N₂O₂S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group $P\overline{1}$, while (II) crystallizes in the space group $P2_1/c$. In both structures, intramolecular N-H···O hydrogen bonding is present. The resulting six-membered pseudorings are quasi-aromatic and, in each case, interact with phenyl rings via stacking-type interactions. C–H···O, C–H···S and C–H··· π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular $N-H \cdots S$ hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry-independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen-bond donor and acceptor -OH groups participate in the formation of intermolecular N-H···O and O-H...S hydrogen bonds that join molecules into chains extending in the [001] direction.

1. Introduction

A few years ago, we became interested in the properties and crystal structures of thioureas (Okuniewski *et al.*, 2011*a,b*; Mietlarek-Kropidłowska *et al.*, 2012). Recently, we have focused our attention on especially interesting 1-benzoyl-thioureas as they simultaneously contain carbonyl and thiocarbonyl functions (Okuniewski *et al.*, 2012). Because of their biological activity, metal coordination ability and involvement in hydrogen-bond formation (Aly *et al.*, 2007; Saeed *et al.*, 2013, 2016), they are the subject of extensive research, with several hundred structures deposited to the Cambridge Structural Database (CSD; Groom *et al.*, 2016).

In most structures of 3-monosubstituted 1-benzoylthioureas, intramolecular $N-H\cdots O$ hydrogen bonds are present and form six-membered pseudo-rings. These rings exhibit some aromatic properties and, for this reason, are called quasiaromatic (Karabıyık *et al.*, 2012). For some time, we have been searching for novel examples of such quasi-aromatic ring interactions. For this reason, we have prepared two 1-benzoylthiourea derivatives that contain such rings. The first compound contains an aromatic substituent, while the second contains an aliphatic substituent, both with additional O atoms

Table 1Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{16}H_{16}N_2O_2S$	C11H14N2O2S
M.	316.37	238.3
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	293	293
a, b, c (Å)	6.5450 (4), 9.3526 (6), 12.7820 (8)	22.4150 (17), 8.1479 (5), 13.4592 (9)
α, β, γ (°)	94.047 (5), 93.143 (5), 95.735 (5)	90, 102.618 (7), 90
$V(\dot{A}^3)$	775.05 (8)	2398.8 (3)
Z	2	8
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.22	0.26
Crystal size (mm)	$0.73 \times 0.41 \times 0.27$	$0.52 \times 0.46 \times 0.14$
Data collection		
Diffractometer	Agilent Xcalibur (Sapphire2, large Be window)	Agilent Xcalibur (Sapphire2, large Be window)
Absorption correction	Analytical [<i>CrysAlis PRO</i> (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]	Analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
T _{min} , T _{max}	0.923, 0.959	0.911, 0.971
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4858, 3039, 1883	8922, 4710, 2847
R _{int}	0.026	0.038
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.071, 0.209, 1.04	0.066, 0.220, 1.04
No. of reflections	3039	4710
No. of parameters	201	293
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.59, -0.25	0.71, -0.30

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS2013 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

that can participate in hydrogen bonding. The compounds are 1-benzoyl-3-(3,4-dimethoxyphenyl)thiourea, (I), and 1-benzoyl-3-(2-hydroxypropyl)thiourea, (II), and the crystal structures were determined by single-crystal X-ray diffraction.

2. Experimental

2.1. Synthesis and crystallization

Both title compounds were synthesized according to a procedure proposed by Douglass & Dains (1934). Ammonium thiocyanate (46 mmol, 3.50 g) and dry acetone (30 ml) were placed in a two-necked flask. Through a dropping funnel, benzoyl chloride (40 mmol, 4.64 ml) in acetone (20 ml) was added with stirring. When addition was complete, the mixture was refluxed for an additional 15 min and then amine [40 mmol; 6.13 g of 3,4-dimethoxyaniline for (I) and 3.09 ml of

1-aminopropan-2-ol for (II)] in acetone (20 ml) was added through the dropping funnel. The mixture was poured carefully into cold water (500 ml) with stirring. In the case of (I), the resulting precipitate was filtered on a Büchner funnel. The crude product was recrystallized from acetone. In the case of (II), the resulting oil was extracted with toluene, dried with anhydrous magnesium sulfate and left to evaporate slowly. In both cases, colourless single crystals suitable for X-ray diffraction analysis were isolated.

2.2. Analytic and spectroscopic data

2.2.1. 1-Benzoyl-3-(3,4-dimethoxyphenyl)thiourea, (I). For (I), yield 79%; m.p. 403 (1) K; ¹H NMR (500 MHz, COMe₂- d_6): δ 12.71 (s, 1H), 10.22 (s, 1H), 8.10–6.95 (m, 8H), 3.85 (s, 6H); ¹H NMR (400 MHz, CDCl₃): δ 12.52 (s, 1H), 9.15 (s, 1H), 7.94–6.89 (m, 8H), 3.91 (s, 3H), 3.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 178.09, 167.01, 148.84, 147.70, 133.73, 131.64, 130.80, 129.21 (2C), 127.51 (2C), 116.35, 110.90, 108.18, 56.06 (2C).

2.2.2. 1-Benzoyl-3-(2-hydroxypropyl)thiourea, (II). For (II), yield 66%; m.p. 408 (1) K; ¹H NMR (500 MHz, COMe₂- d_6): δ 11.10 (*s*, 1H), 10.05 (*s*, 1H), 8.10–7.50 (*m*, 5H), 4.23 (*d*, *J* = 4.8 Hz, 1H), 4.16–4.05 (*m*, 1H), 3.92–3.84 (*m*, 1H), 3.55–3.46 (*m*, 1H), 1.24 (*d*, *J* = 6.3 Hz, 3H); ¹H NMR (400 MHz, CDCl₃): δ 11.03 (*t*, *J* = 5.4 Hz, 1H), 9.30 (*s*, 1H), 7.88–7.25 (*m*, 5H), 4.25–4.12 (*m*, 1H), 3.91 (*ddd*, *J* = 13.8, 6.0, 3.5 Hz, 1H), 3.57 (*ddd*, *J* = 13.8, 7.9, 5.0 Hz, 1H), 2.89 (*s*, 1H), 1.28 (*d*, *J* = 6.3 Hz, 3H); ¹³C

Figure 1

The structure of the centrosymmetric dimer found in (I). Displacement ellipsoids are drawn at the 50% probability level. Selected hydrogen bonds are marked with dashed lines. [Symmetry code: (i) -x + 1, -y + 1, -z.]

NMR (101 MHz, CDCl₃): δ 180.44, 167.02, 133.51, 131.71, 129.02 (2C), 127.61 (2C), 66.10, 52.65, 21.16.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed at calculated positions (C-H = 0.93–0.98 Å, N-H = 0.86 Å and O-H = 0.82 Å) and were treated as riding on their parent atoms, with $U_{\rm iso}$ (H) values set at 1.2–1.5 $U_{\rm eq}$ (C), 1.2 $U_{\rm eq}$ (N) or 1.5 $U_{\rm eq}$ (O).

3. Results and discussion

The molecules of compounds (I) and (II) (Figs. 1 and 2) both adopt an S-type conformation (Woldu & Dillen, 2008), with intramolecular $N-H\cdots O$ hydrogen bonds (for their parameters, see Tables 2 and 3) forming an S(6) motif (Etter, 1990) that is common among 3-monosubstituted 1-acylthioureas (Okuniewski *et al.*, 2012). The resulting six-membered pseudorings are quasi-aromatic (Karabıyık *et al.*, 2012). The HOMA indices of aromaticity (Krygowski, 1993) are equal to 0.80 [(I), CgS1], 0.74 [(II), CgS1] and 0.78 [(II), CgS3], indicating that such motifs are rather aromatic. The mean HOMA value for

Figure 2

The structure of the two symmetry-independent molecules found in (II). Displacement ellipsoids are drawn at the 50% probability level. Selected hydrogen bonds are marked with dashed lines.

Table 2			
Hydrogen-bond geometry	(Å, °`) for (]	ſ).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O1$ $N1-H1\cdots S1^{i}$ $C14-H14\cdots O2^{ii}$ $C22-H22\cdots S1$	0.86 0.86 0.93 0.93	1.9 2.79 2.52 2.54	2.633 (3) 3.485 (3) 3.453 (4) 3.203 (3)	143 139 178 129

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 2, y + 1, z.

O/C/N/C/N/H hydrogen-bridged chelate rings that interact with phenyl groups in the 153 compounds deposited to the CSD (Groom *et al.*, 2016) is equal to 0.78 (5) (Okuniewski *et al.*, 2015).

Compound (I) is a derivative of 1-benzoyl-3-phenylthiourea (Yamin & Yusof, 2003) substituted with two methoxy groups (Fig. 1). It crystallizes in the space group $P\overline{1}$ with one molecule in the asymmetric unit. The (MeO)₂C₆H₃NHC(S)NHC(O) fragment is almost flat (the maximum distances from the mean plane *d* are 0.26 Å for atoms S1 and C3). The planarity of this fragment is reinforced by intramolecular a C22-H22···S1 interaction [motif *S*(6)]. The phenyl ring of the benzoyl group is twisted; it forms a dihedral angle of 31° with the mean plane of the thiourea core, *i.e.* the NC(S)N fragment.

The molecules are connected via $N1-H1\cdots S1^{i}$ hydrogen bonds (Fig. 3 and Table 2) into centrosymmetric dimers with

Hydrogen bonds, $C-H\cdots(O,S)$ interactions and selected motifs present in the structures of (I) (top) and (II) (bottom), viewed in the [010] direction. In the case of (II), the background colours correspond to the colour codes of symmetrically independent molecules (for designations, see Fig. 2). an $R_2^2(8)$ motif. Additionally, quite strong C14-H14···O2ⁱⁱ interactions connect molecules into chains with a C(13) motif extending in the [210] direction.

The quasi-aromatic pseudo-rings form interactions with phenyl groups $[CgS1 \cdots Cg1^{iii} (d = 4.10 \text{ Å and } \alpha = 30^\circ)$ and $CgS1 \cdots Cg2^{iv} (d = 3.83 \text{ Å and } \alpha = 8^\circ)$; symmetry codes: (iii) x - 1, y, z; (iv) x + 1, y, z], so molecules are stacked one over another. These interactions are depicted in Fig. 4.

Compound (II) is a hydroxy derivative of 1-benzoyl-3propylthiourea (Dago *et al.*, 1989). Its molecules are chiral, but the crystal is formed out of a racemic mixture that crystallizes in the centrosymmetric space group $P2_1/c$. In the asymmetric unit, there are two similar molecules (molecule *A* refers to the molecule containing atom S1, while the second molecule, containing atom S3, will be referred to as *B*; see: Fig. 2). The planes of the phenyl rings in both molecules are at different dihedral angles in relation to the mean plane of the thiourea core, *viz. ca* 19° for molecule *A* and *ca* 5° for molecule *B*. If these two molecules are superimposed with respect to the NC(S)NC(O) group (r.m.s. deviation = 0.033 Å), then it is revealed that the conformations of the CH₂CH(OH)CH₃ groups are also slightly different.

Figure 4

Stacking-type interactions found in (I) and (II). Ordinary aromatic rings are drawn as gray planes, while quasiaromatic pseudo-rings are coloured green. Centroid–centroid distances are marked with bold dashed lines and their values are provided in Å.

Table 3				
Hydrogen-bond	geometry	(Å,	°) for	(II).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O2^{i}$	0.86	2.2	2.977 (3)	151
$N2-H2\cdots O1$	0.86	1.94	2.632 (3)	137
$O2-H2A\cdots S1^{ii}$	0.82	2.66	3.242 (3)	130
$N3-H3\cdots O4^{i}$	0.86	2.21	2.999 (4)	153
$N4-H4\cdots O3$	0.86	1.96	2.640 (4)	135
$O4-H4A\cdots S3^{ii}$	0.82	2.41	3.161 (3)	152
$C15-H15\cdots O1^{i}$	0.93	2.53	3.265 (4)	136
$C36-H36\cdots O4^{i}$	0.93	2.57	3.412 (5)	150
$C21 - H21B \cdot \cdot \cdot S3^{ii}$	0.97	2.98	3.844 (4)	149
$C23-H23C\cdots S3^{ii}$	0.96	2.98	3.842 (4)	150

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Strong hydrogen-bond donor and acceptor –OH groups participate in the formation of intermolecular hydrogen bonds that join the molecules of (II) into chains extending in the [001] direction with a $C(7)R_2^2(6)$ motif: N1–H1···O2ⁱ and O2–H2A···S1ⁱⁱ for molecule A and N3–H3···O4ⁱ and O4– H4A···S3ⁱⁱ for molecule B (Table 3). Hydrogen bonds are formed only within the symmetry equivalents of molecules, so that two types of chains can be distinguished, *i.e.* ···A–A– A··· and ···B–B–B··· (Fig. 3), both of fc11 (R5) rod group symmetry (International Tables for Crystallography, 2010).

Chains of B molecules are additionally stabilized by a C36-H36 $\cdot \cdot \cdot$ O4ⁱ interaction, while a greater twist of the phenyl ring in molecule A causes the corresponding interaction to be insignificant. On the other hand, in the chains of A molecules, the $C15-H15\cdots O1^{i}$ interaction is stronger than the corresponding interaction in molecule B (Fig. 3). Overall, molecules B form stronger interactions with each other $(-23.7 \text{ kJ mol}^{-1})$ than do molecules A ($-22.5 \text{ kJ mol}^{-1}$). The energies were estimated as counterpoise BSSE-corrected (Boys & Bernardi, 1970) differences of half of the energy of the dimer and the energy of isolated molecules, with normalized C-H (1.089 Å), N-H (1.015 Å) and O-H (0.993 Å) bond lengths, in GAUSSIAN09 (Frisch et al., 2009) at the MP2/6-31+G(d,p) level of theory. Chains A and B are interconnected by weak acceptor-bifurcated interactions, *i.e.* $C21 - H21B \cdots S3^{ii}$ and C23-H23C···S3ⁱⁱ (Fig. 3 and Table 3).

In (II), like in (I), quasi-aromatic pseudo-rings are involved in all parallel-displaced stacking-type interactions with phenyl rings $[CgS1\cdots Cg1^{iii} (d = 3.91 \text{ Å and } \alpha = 18^\circ) \text{ and } CgS3\cdots Cg3^{iv}$ $(d = 3.68 \text{ Å and } \alpha = 8^\circ)$; symmetry codes: (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1;], but also with each other $[CgS1\cdots CgS1^{iv} (d = 4.06 \text{ Å}, \alpha = 0^\circ \text{ and slippage} = 2.52 \text{ Å})$, $CgS3\cdots CgS3^v (d = 4.00 \text{ Å}, \alpha = 0^\circ \text{ and slippage} = 2.14 \text{ Å})$; symmetry code: (v) -x + 1, -y + 1, -z + 1]. In the latter two interactions, the mid-points of the centroid–centroid distances are the centres of inversion. Stacking interactions for (II) are depicted in Fig. 4.

4. Conclusions

Both achiral (I) and racemic (II) crystallize in centrosymmetric space groups. Intramolecular $N-H\cdots O$ hydrogen bonds allow the formation of quasi-aromatic pseudo-rings. In

both (I) and (II), all the stacking interactions involve such rings (they interact with phenyl rings or with each other). Weak $C-H\cdots(O,S)$ interactions also play an important role in the formation of the three-dimensional structures of the crystals. Our results are further confirmation that hydrogenbridged chelate rings are formed readily within 3-monosubstituted 1-benzoylthioureas and that such quasi-aromatic rings have a significant contribution to the stabilization of the crystal structures.

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.
- Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E.-A. F. (2007). J. Sulfur Chem. 28, 73–93.
- Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553-566.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Dago, A., Shepelev, Yu., Fajardo, F., Alvarez, F. & Pomés, R. (1989). Acta Cryst. C45, 1192–1194.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Douglass, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719-721.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA. http://www.gaussian.com.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- *International Tables for Crystallography* (2010). Vol. E, *Subperiodic Groups*, edited by V. Kopský & D. B. Litvin, 2nd ed. Chichester: John Wiley and Sons.
- Karabıyık, H., Karabıyık, H. & Ocak İskeleli, N. (2012). Acta Cryst. B68, 71-79.
- Krygowski, T. M. (1993). J. Chem. Inf. Model. 33, 70-78.
- Mietlarek-Kropidłowska, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o2521.
- Okuniewski, A., Chojnacki, J. & Becker, B. (2011a). Acta Cryst. E67, 055.
- Okuniewski, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, 0619–0620.
- Okuniewski, A., Dąbrowska, A. & Chojnacki, J. (2011b). Acta Cryst. E67, 0925.
- Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.
- Saeed, A., Flörke, U. & Erben, M. F. (2013). J. Sulfur Chem. 35, 318–355.
- Saeed, A., Qamar, R., Fattah, T. A., Flörke, U. & Erben, M. F. (2016). *Res. Chem. Intermed.* doi:10.1007s11164-016-2811-5.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Woldu, M. G. & Dillen, J. (2008). Theor. Chem. Acc. 121, 71-82.
- Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, 0151– 0152.

Acta Cryst. (2017). C73, 52-56 [https://doi.org/10.1107/S2053229616019495]

Crystallographic study of self-organization in the solid state including quasiaromatic pseudo-ring stacking interactions in 1-benzoyl-3-(3,4-dimethoxyphenyl)thiourea and 1-benzoyl-3-(2-hydroxypropyl)thiourea

Andrzej Okuniewski, Damian Rosiak, Jarosław Chojnacki and Barbara Becker

Computing details

For both compounds, data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS2016* (Sheldrick, 2015); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

(I) N-[(3,4-Dimethoxyphenyl)carbamothioyl]benzamide

Crystal data

 $C_{16}H_{16}N_{2}O_{3}S$ $M_{r} = 316.37$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.5450 (4) Å b = 9.3526 (6) Å c = 12.7820 (8) Å a = 94.047 (5)° $\beta = 93.143$ (5)° $\gamma = 95.735$ (5)° V = 775.05 (8) Å³

Data collection

Agilent Xcalibur (Sapphire2, large Be window) diffractometer Graphite monochromator Detector resolution: 8.1883 pixels mm⁻¹ ω scans Absorption correction: analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)] $T_{\min} = 0.923, T_{\max} = 0.959$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.209$ S = 1.04 Z = 2 F(000) = 332 $D_x = 1.356 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1629 reflections $\theta = 2.7-26.2^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.73 \times 0.41 \times 0.27 \text{ mm}$

4858 measured reflections 3039 independent reflections 1883 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -6 \rightarrow 8$ $k = -11 \rightarrow 10$ $l = -15 \rightarrow 15$

3039 reflections201 parameters0 restraintsHydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.1069P)^2 + 0.0208P]$	$\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.32892 (14)	0.32856 (10)	0.05322 (7)	0.0746 (4)
C1	0.4131 (5)	0.4076 (3)	0.1704 (2)	0.0525 (8)
N1	0.5964 (4)	0.4994 (3)	0.1768 (2)	0.0573 (7)
H1	0.657793	0.504603	0.119202	0.069*
C10	0.6924 (5)	0.5822 (3)	0.2617 (3)	0.0532 (8)
01	0.6254 (3)	0.5821 (3)	0.34928 (18)	0.0712 (7)
C11	0.8843 (4)	0.6730 (3)	0.2414 (2)	0.0539 (8)
C12	0.9348 (5)	0.7985 (4)	0.3058 (3)	0.0662 (10)
H12	0.847406	0.823665	0.357432	0.079*
C13	1.1126 (6)	0.8867 (4)	0.2942 (3)	0.0781 (11)
H13	1.145054	0.970734	0.337792	0.094*
C14	1.2425 (5)	0.8490 (5)	0.2174 (3)	0.0797 (12)
H14	1.363019	0.907938	0.209513	0.096*
C15	1.1947 (5)	0.7253 (4)	0.1527 (3)	0.0740 (11)
H15	1.282663	0.701004	0.101048	0.089*
C16	1.0151 (5)	0.6361 (4)	0.1640 (3)	0.0635 (9)
H16	0.982791	0.552392	0.120094	0.076*
N2	0.3251 (4)	0.3968 (3)	0.26128 (19)	0.0560 (7)
H2	0.397118	0.442046	0.313960	0.067*
C21	0.1357 (4)	0.3255 (3)	0.2886 (2)	0.0502 (8)
C22	0.0066 (5)	0.2298 (3)	0.2205 (2)	0.0544 (8)
H22	0.043178	0.207574	0.152455	0.065*
C23	-0.1769 (5)	0.1676 (3)	0.2545 (2)	0.0539 (8)
C24	-0.2322 (5)	0.2002 (3)	0.3560 (3)	0.0537 (8)
C25	-0.1021 (5)	0.2949 (4)	0.4232 (3)	0.0621 (9)
H25	-0.138185	0.317599	0.491289	0.075*
C26	0.0820 (5)	0.3560 (4)	0.3894 (3)	0.0597 (9)
H26	0.169978	0.418272	0.435404	0.072*
C2	-0.2492 (6)	0.0273 (4)	0.0926 (3)	0.0800 (12)
H2A	-0.235014	0.109237	0.051399	0.120*
H2B	-0.351384	-0.044283	0.058549	0.120*
H2C	-0.119844	-0.012469	0.099279	0.120*
O2	-0.3101 (3)	0.0704 (3)	0.19344 (18)	0.0705 (7)
C3	-0.4927 (6)	0.1837 (5)	0.4788 (3)	0.0822 (12)
H3A	-0.402770	0.159968	0.535411	0.123*
H3B	-0.628717	0.137493	0.485211	0.123*

H3C	-0.496586	0.286205	0.481580	0.123*
O3	-0.4187 (3)	0.1352 (3)	0.38104 (18)	0.0715 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0804 (7)	0.0811 (7)	0.0543 (6)	-0.0276 (5)	0.0185 (5)	-0.0112 (5)
C1	0.0475 (18)	0.0529 (19)	0.056 (2)	-0.0036 (14)	0.0098 (14)	0.0031 (15)
N1	0.0499 (15)	0.0656 (18)	0.0532 (16)	-0.0093 (13)	0.0125 (12)	-0.0025 (13)
C10	0.0481 (18)	0.059 (2)	0.0511 (19)	-0.0005 (15)	0.0031 (14)	0.0002 (15)
O1	0.0658 (15)	0.0902 (18)	0.0508 (14)	-0.0209 (12)	0.0091 (11)	-0.0049 (12)
C11	0.0447 (18)	0.059 (2)	0.056 (2)	-0.0046 (14)	0.0013 (14)	0.0027 (15)
C12	0.063 (2)	0.071 (2)	0.061 (2)	-0.0083 (18)	0.0038 (16)	-0.0002 (17)
C13	0.073 (3)	0.073 (3)	0.081 (3)	-0.018 (2)	-0.010 (2)	0.009 (2)
C14	0.051 (2)	0.091 (3)	0.093 (3)	-0.021 (2)	-0.002(2)	0.026 (2)
C15	0.050(2)	0.091 (3)	0.083 (3)	0.0012 (19)	0.0157 (18)	0.021 (2)
C16	0.052 (2)	0.067 (2)	0.071 (2)	0.0025 (16)	0.0069 (16)	0.0079 (18)
N2	0.0535 (15)	0.0650 (18)	0.0453 (15)	-0.0131 (13)	0.0068 (12)	-0.0015 (12)
C21	0.0500 (18)	0.0528 (19)	0.0462 (18)	-0.0044 (14)	0.0094 (13)	0.0029 (13)
C22	0.0534 (18)	0.063 (2)	0.0443 (17)	-0.0072 (15)	0.0099 (14)	-0.0006 (14)
C23	0.0507 (19)	0.0526 (19)	0.056 (2)	-0.0052 (14)	0.0073 (14)	0.0011 (15)
C24	0.0498 (18)	0.0535 (19)	0.059 (2)	0.0003 (15)	0.0186 (15)	0.0057 (15)
C25	0.071 (2)	0.061 (2)	0.055 (2)	0.0026 (17)	0.0228 (16)	0.0009 (16)
C26	0.062 (2)	0.063 (2)	0.0510 (19)	-0.0061 (16)	0.0082 (15)	-0.0026 (15)
C2	0.075 (2)	0.097 (3)	0.059 (2)	-0.022 (2)	0.0073 (18)	-0.016 (2)
O2	0.0577 (14)	0.0827 (17)	0.0639 (15)	-0.0223 (12)	0.0134 (11)	-0.0108 (12)
C3	0.066 (2)	0.108 (3)	0.074 (3)	0.001 (2)	0.0301 (19)	0.005 (2)
O3	0.0632 (15)	0.0813 (17)	0.0683 (16)	-0.0092 (12)	0.0278 (12)	-0.0020 (12)

Geometric parameters (Å, °)

S1—C1	1.663 (3)	C21—C26	1.372 (4)
C1—N2	1.330 (4)	C21—C22	1.389 (4)
C1—N1	1.399 (4)	C22—C23	1.387 (4)
N1-C10	1.372 (4)	C22—H22	0.9300
N1—H1	0.8600	C23—O2	1.365 (4)
C10—O1	1.224 (4)	C23—C24	1.387 (4)
C10-C11	1.490 (4)	C24—O3	1.373 (3)
C11—C12	1.386 (4)	C24—C25	1.382 (5)
C11—C16	1.391 (4)	C25—C26	1.386 (4)
C12—C13	1.379 (5)	C25—H25	0.9300
С12—Н12	0.9300	C26—H26	0.9300
C13—C14	1.384 (6)	C2—O2	1.414 (4)
С13—Н13	0.9300	C2—H2A	0.9600
C14—C15	1.373 (5)	C2—H2B	0.9600
C14—H14	0.9300	C2—H2C	0.9600
C15—C16	1.392 (4)	C3—O3	1.426 (4)
С15—Н15	0.9300	C3—H3A	0.9600

C16—H16 N2—C21 N2—H2	0.9300 1.421 (3) 0.8600	C3—H3B C3—H3C	0.9600 0.9600
N2—C1—N1	114.3 (3)	C26—C21—N2	116.0 (3)
N2—C1—S1	127.9 (2)	C22—C21—N2	124.3 (3)
N1—C1—S1	117.8 (2)	C23—C22—C21	119.7 (3)
C10—N1—C1	129.3 (3)	C23—C22—H22	120.1
C10—N1—H1 C1—N1—H1 O1—C10—N1	115.3 115.3 122.4 (3) 121.6 (3)	C21—C22—H22 O2—C23—C22 O2—C23—C24 C22 C23 C24	120.1 123.4 (3) 116.1 (3) 120.4 (3)
N1-C10-C11 C12-C11-C16 C12-C11-C10	121.0 (3) 116.1 (3) 119.3 (3) 117.2 (3)	C22-C23-C24 O3-C24-C25 O3-C24-C23 C25-C24-C23	120.4 (3) 124.8 (3) 115.8 (3) 119.4 (3)
C16—C11—C10	123.5 (3)	C24—C25—C26	120.1 (3)
C13—C12—C11	120.9 (3)	C24—C25—H25	119.9
C13—C12—H12	119.5	C26—C25—H25	119.9
C11—C12—H12	119.5	C21—C26—C25	120.6 (3)
C12—C13—C14	119.5 (4)	C21—C26—H26	119.7
C12—C13—H13	120.3	C25—C26—H26	119.7
C14—C13—H13	120.3	O2—C2—H2A	109.5
C15—C14—C13	120.4 (3)	O2—C2—H2B	109.5
C15—C14—H14	119.8	H2A—C2—H2B	109.5
C13—C14—H14	119.8	O2—C2—H2C	109.5
C14—C15—C16	120.3 (3)	H2A—C2—H2C	109.5
C14—C15—H15	119.9	H2B—C2—H2C	109.5
C16—C15—H15	119.9	C23—O2—C2	117.0 (2)
C11—C16—C15	119.6 (3)	O3—C3—H3A	109.5
C11—C16—H16	120.2	O3—C3—H3B	109.5
C15—C16—H16	120.2	H3A—C3—H3B	109.5
C1—N2—C21	132.8 (3)	O3—C3—H3C	109.5
C1—N2—H2	113.6	H3A—C3—H3C	109.5
C21—N2—H2	113.6	H3B—C3—H3C	109.5
C26—C21—C22	119.7 (3)	C24—O3—C3	116.7 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H…A	
N2—H2…O1	0.86	1.90	2.633 (3)	143	
N1—H1···S1 ⁱ	0.86	2.79	3.485 (3)	139	
C22—H22…S1	0.93	2.54	3.203 (3)	129	
C14—H14…O2 ⁱⁱ	0.93	2.52	3.453 (4)	178	

Symmetry codes: (i) –*x*+1, –*y*+1, –*z*; (ii) *x*+2, *y*+1, *z*.

(II) N-[(2-Hydroxypropyl)carbamothioyl]benzamide

Crystal data

C₁₁H₁₄N₂O₂S $M_r = 238.3$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 22.4150 (17) Å b = 8.1479 (5) Å c = 13.4592 (9) Å $\beta = 102.618$ (7)° V = 2398.8 (3) Å³ Z = 8

Data collection

Agilent Xcalibur (Sapphire2, large Be window) diffractometer Graphite monochromator Detector resolution: 8.1883 pixels mm⁻¹ ω scans Absorption correction: analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)] $T_{\min} = 0.911, T_{\max} = 0.971$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.220$	$w = 1/[\sigma^2(F_o^2) + (0.1058P)^2 + 0.9789P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4710 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
293 parameters	$\Delta ho_{ m max} = 0.71$ e Å ⁻³
0 restraints	$\Delta ho_{ m min} = -0.30 \ m e \ m \AA^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.30$ e A ⁵

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1008

 $\theta = 3.0 - 27.0^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.038$

 $k = -10 \rightarrow 5$

 $l = -12 \rightarrow 16$

Prism. colourless

 $0.52 \times 0.46 \times 0.14 \text{ mm}$

8922 measured reflections

 $\theta_{\text{max}} = 26^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ $h = -27 \rightarrow 26$

4710 independent reflections

2847 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.32 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2940 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	17	7	I 7. */ I 7	
	X	y	2	U _{iso} / U _{eq}	
S1	0.19684 (4)	0.87980 (15)	0.50453 (8)	0.0834 (4)	
C1	0.13064 (15)	0.8780 (4)	0.5415 (2)	0.0551 (8)	
N1	0.08038 (11)	0.7993 (3)	0.47955 (18)	0.0544 (6)	
H1	0.086382	0.757529	0.423876	0.065*	
C10	0.02251 (13)	0.7809 (4)	0.4973 (2)	0.0536 (7)	
01	0.00807 (11)	0.8385 (3)	0.57212 (18)	0.0733 (7)	
C11	-0.02165 (14)	0.6848 (4)	0.4201 (2)	0.0513 (7)	
C12	-0.07310 (15)	0.6253 (4)	0.4510 (3)	0.0628 (9)	
H12	-0.078547	0.648068	0.516116	0.075*	

C13	-0.11598 (17)	0.5328 (4)	0.3850 (3)	0.0715 (10)
H13	-0.150034	0.492347	0.405936	0.086*
C14	-0.10823(17)	0.5005 (4)	0.2880 (3)	0.0694 (9)
H14	-0.137038	0.437750	0.243800	0.083*
C15	-0.05831 (17)	0.5604 (4)	0.2565 (3)	0.0691 (9)
H15	-0.053570	0.539344	0.190748	0.083*
C16	-0.01498(16)	0.6522 (4)	0.3224 (2)	0.0601 (8)
H16	0.018903	0.692269	0.300705	0.072*
N2	0.12153 (12)	0.9439(3)	0.62596 (19)	0.0591(7)
H2	0.085767	0.934134	0.638807	0.071*
C21	0 16758 (15)	1 0322 (4)	0.6993 (2)	0.0606 (8)
H21A	0.174053	1 139570	0.672334	0.073*
H21B	0.205956	0.972713	0.710785	0.073*
C22	0.14791 (16)	1.0517(4)	0.7982(2)	0.073
022 Н22	0.108336	1.08048	0.782686	0.0052 ())
C23	0.100550	1 1614 (5)	0.702000 0.8704 (3)	0.070
H23A	0.179488	1.166057	0.934629	0.108*
H23R	0.170488	1.100037	0.842165	0.108*
H23C	0.190433	1.209822	0.842103	0.108*
02	0.232107 0.13845(13)	0.0014(3)	0.860391	0.108
U2 U2A	0.13843 (13)	0.9014 (3)	0.8418(2)	0.126*
112A S2	0.1/1319 0.21692 (5)	0.65280 (16)	0.35460 (8)	0.120°
33 C2	0.31082(3) 0.38036(16)	0.05289(10)	0.33400(8)	0.0899(4)
US N2	0.38030(10) 0.42200(12)	0.0339(4) 0.7287(2)	0.4407(2)	0.0004(8)
IN 3 11 2	0.43299 (12)	0.7287 (3)	0.42895 (19)	0.0606 (7)
нэ С20	0.429205	0.776200	0.370800	0.073^{+}
02	0.49006 (15)	0.7300 (4)	0.4918(2)	0.0383(8)
03	0.50078(11)	0.6740(4)	0.57620(19)	0.0813(8)
C31 C22	0.53750(15)	0.8255 (4)	0.4511(2)	0.0577(8)
C32	0.59318 (17)	0.8526 (5)	0.5187(3)	0.0763 (11)
H32	0.5990/1	0.815394	0.585456	0.092*
033	0.63991 (19)	0.9348 (5)	0.4869 (3)	0.0855 (12)
H33	0.676964	0.953283	0.532325	0.103*
C34	0.63133 (18)	0.9883 (5)	0.3887 (3)	0.0778 (11)
H34	0.662525	1.044306	0.367595	0.093*
C35	0.57669 (18)	0.9599 (5)	0.3207 (3)	0.0820 (11)
H35	0.571295	0.995335	0.253641	0.098*
C36	0.53014 (16)	0.8791 (5)	0.3522 (3)	0.0730 (10)
H36	0.493314	0.860439	0.306177	0.088*
N4	0.38426 (13)	0.5899 (3)	0.5372 (2)	0.0658 (8)
H4	0.419002	0.591900	0.579720	0.079*
C41	0.33257 (17)	0.5161 (5)	0.5688 (3)	0.0723 (10)
H41A	0.317194	0.425266	0.523817	0.087*
H41B	0.300098	0.596451	0.563276	0.087*
C42	0.34964 (17)	0.4567 (5)	0.6734 (3)	0.0744 (10)
H42	0.379516	0.368619	0.674185	0.089*
C43	0.29559 (19)	0.3810 (6)	0.7075 (3)	0.0959 (14)
H43A	0.308436	0.342723	0.776353	0.144*
H43B	0.280074	0.290445	0.663856	0.144*

H43C	0.264075	0.461939	0.703996	0.144*
O4	0.37882 (12)	0.5781 (4)	0.7412 (2)	0.0909 (9)
H4A	0.353521	0.645707	0.750645	0.136*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S 1	0.0569 (6)	0.1220 (9)	0.0779 (7)	-0.0110 (5)	0.0288 (5)	-0.0136 (6)
C1	0.0531 (18)	0.0614 (18)	0.0516 (17)	0.0057 (15)	0.0131 (14)	0.0080 (14)
N1	0.0511 (15)	0.0676 (16)	0.0471 (13)	0.0035 (13)	0.0163 (12)	0.0003 (12)
C10	0.0463 (17)	0.0658 (18)	0.0505 (16)	0.0060 (15)	0.0145 (14)	0.0035 (14)
01	0.0551 (14)	0.1070 (18)	0.0625 (14)	-0.0042 (13)	0.0234 (11)	-0.0203 (13)
C11	0.0478 (17)	0.0562 (17)	0.0502 (16)	0.0087 (14)	0.0115 (13)	0.0036 (13)
C12	0.0552 (19)	0.077 (2)	0.0576 (19)	0.0030 (17)	0.0150 (16)	0.0076 (16)
C13	0.060 (2)	0.074 (2)	0.080 (2)	-0.0027 (18)	0.0150 (19)	0.0137 (19)
C14	0.067 (2)	0.061 (2)	0.074 (2)	-0.0034 (18)	0.0016 (18)	-0.0027 (17)
C15	0.079 (2)	0.071 (2)	0.059 (2)	-0.001 (2)	0.0166 (18)	-0.0064 (17)
C16	0.064 (2)	0.0615 (18)	0.0571 (18)	0.0009 (16)	0.0192 (16)	-0.0009 (15)
N2	0.0488 (15)	0.0744 (17)	0.0548 (15)	-0.0031 (13)	0.0130 (12)	-0.0024 (13)
C21	0.0554 (19)	0.073 (2)	0.0521 (17)	-0.0063 (16)	0.0102 (15)	0.0043 (15)
C22	0.062 (2)	0.069 (2)	0.0584 (19)	-0.0039 (17)	0.0130 (16)	-0.0015 (16)
C23	0.066 (2)	0.085 (2)	0.063 (2)	0.0008 (19)	0.0075 (17)	-0.0092 (18)
O2	0.0850 (18)	0.0949 (19)	0.0745 (17)	-0.0147 (16)	0.0226 (15)	0.0151 (14)
S3	0.0696 (7)	0.1317 (10)	0.0633 (6)	-0.0337 (6)	0.0031 (5)	0.0118 (6)
C3	0.062 (2)	0.0653 (19)	0.0564 (19)	-0.0084 (16)	0.0195 (16)	-0.0024 (15)
N3	0.0547 (16)	0.0760 (18)	0.0521 (15)	-0.0081 (14)	0.0137 (12)	0.0068 (13)
C30	0.0555 (19)	0.0667 (19)	0.0538 (18)	-0.0005 (16)	0.0141 (15)	0.0007 (16)
03	0.0641 (16)	0.113 (2)	0.0638 (15)	-0.0126 (14)	0.0075 (12)	0.0215 (14)
C31	0.0533 (19)	0.0629 (19)	0.0570 (18)	-0.0002 (15)	0.0122 (15)	-0.0021 (15)
C32	0.068 (2)	0.098 (3)	0.062 (2)	-0.021 (2)	0.0129 (18)	-0.0093 (19)
C33	0.069 (2)	0.106 (3)	0.081 (3)	-0.028 (2)	0.015 (2)	-0.015 (2)
C34	0.069 (2)	0.070 (2)	0.100 (3)	-0.0127 (19)	0.030 (2)	-0.003 (2)
C35	0.069 (2)	0.097 (3)	0.083 (3)	-0.005 (2)	0.022 (2)	0.026 (2)
C36	0.0507 (19)	0.090 (2)	0.076 (2)	-0.0053 (19)	0.0087 (17)	0.0187 (19)
N4	0.0625 (17)	0.0811 (19)	0.0542 (16)	-0.0181 (15)	0.0138 (13)	0.0022 (13)
C41	0.068 (2)	0.091 (2)	0.059 (2)	-0.022 (2)	0.0153 (17)	-0.0016 (18)
C42	0.067 (2)	0.097 (3)	0.061 (2)	-0.018 (2)	0.0192 (17)	-0.003 (2)
C43	0.074 (3)	0.144 (4)	0.072 (3)	-0.028 (3)	0.022 (2)	0.017 (2)
04	0.0747 (18)	0.133 (3)	0.0643 (16)	-0.0221 (17)	0.0133 (14)	-0.0206 (16)

Geometric parameters (Å, °)

S1—C1	1.665 (3)	S3—C3	1.671 (4)	
C1—N2	1.313 (4)	C3—N4	1.311 (4)	
C1—N1	1.402 (4)	C3—N3	1.394 (4)	
N1-C10	1.378 (4)	N3—C30	1.373 (4)	
N1—H1	0.8600	N3—H3	0.8600	
C10—O1	1.217 (4)	C30—O3	1.220 (4)	

C10-C11	1.491 (4)	C30—C31	1.488 (4)
C11—C16	1.382 (4)	C31—C36	1.376 (5)
C11—C12	1.395 (4)	C31—C32	1.391 (5)
C12—C13	1 381 (5)	C_{32} — C_{33}	1.387(5)
C12—H12	0.9300	C32—H32	0.9300
C_{12} C_{14}	1 379 (5)	C_{33} C_{34}	1 364 (6)
$C_{13} = C_{14}$	0.0300	C33 H33	0.0300
	0.9300	C34 C25	1.270(5)
C14 $U14$	1.570(5)	$C_{24} = U_{24}$	1.579(5)
C14—H14	0.9300	C34—H34	0.9300
	1.383 (5)		1.377(5)
C15—H15	0.9300	C35—H35	0.9300
C16—H16	0.9300	С36—Н36	0.9300
N2—C21	1.453 (4)	N4—C41	1.449 (4)
N2—H2	0.8600	N4—H4	0.8600
C21—C22	1.500 (4)	C41—C42	1.459 (5)
C21—H21A	0.9700	C41—H41A	0.9700
C21—H21B	0.9700	C41—H41B	0.9700
C22—O2	1.394 (4)	C42—O4	1.407 (4)
C22—C23	1.511 (5)	C42—C43	1.517 (5)
C22—H22	0.9800	C42—H42	0.9800
C23—H23A	0.9600	C43—H43A	0.9600
C23—H23B	0.9600	C43—H43B	0.9600
С23—Н23С	0.9600	C43—H43C	0.9600
O2—H2A	0.8200	O4—H4A	0.8200
	0.0200		0.0200
N2-C1-N1	116 4 (3)	N4—C3—N3	116 5 (3)
N2 - C1 - S1	1249(3)	N4-C3-S3	1241(3)
N1_C1_S1	124.9(3) 118.7(2)	N3-C3-S3	124.1(3) 1194(2)
C_{10} N1 C_{1}	110.7(2) 127.7(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.7(2) 128.7(3)
C_{10} N1 H1	127.7 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.7(3)
C_{10} N1 U_{1}	110.1	$C_{2} N_{2} H_{2}$	115.7
	110.1	$C_3 = N_3 = H_3$	113.7
OI = CI0 = NI	122.2 (3)	03 - C30 - N3	121.5(3)
	121.5 (3)	03 - C30 - C31	122.3 (3)
NI-CIO-CII	116.3 (3)	N3-C30-C31	116.2 (3)
C16—C11—C12	119.0 (3)	C36—C31—C32	118.9 (3)
C16—C11—C10	124.8 (3)	C36—C31—C30	124.5 (3)
C12—C11—C10	116.2 (3)	C32—C31—C30	116.6 (3)
C13—C12—C11	120.2 (3)	C33—C32—C31	120.3 (4)
C13—C12—H12	119.9	C33—C32—H32	119.9
C11—C12—H12	119.9	C31—C32—H32	119.9
C14—C13—C12	119.9 (3)	C34—C33—C32	119.8 (4)
С14—С13—Н13	120.0	С34—С33—Н33	120.1
C12—C13—H13	120.0	С32—С33—Н33	120.1
C15—C14—C13	120.3 (3)	C33—C34—C35	120.4 (4)
C15—C14—H14	119.8	C33—C34—H34	119.8
C13—C14—H14	119.8	C35—C34—H34	119.8
C14—C15—C16	120.1 (3)	C36—C35—C34	119.9 (4)
C14—C15—H15	120.0	C36—C35—H35	120.0
-			

	100.0		1200
C16—C15—H15	120.0	С34—С35—Н35	120.0
C11—C16—C15	120.5 (3)	C31—C36—C35	120.7 (3)
C11—C16—H16	119.8	С31—С36—Н36	119.7
C15—C16—H16	119.8	С35—С36—Н36	119.7
C1—N2—C21	124.7 (3)	C3—N4—C41	122.9 (3)
C1—N2—H2	117.7	C3—N4—H4	118.6
C21—N2—H2	117.7	C41—N4—H4	118.6
N2-C21-C22	110.6 (3)	N4—C41—C42	111.3 (3)
N2-C21-H21A	109.5	N4—C41—H41A	109.4
C22—C21—H21A	109.5	C42—C41—H41A	109.4
N2—C21—H21B	109.5	N4—C41—H41B	109.4
C22—C21—H21B	109.5	C42—C41—H41B	109.4
H21A—C21—H21B	108.1	H41A—C41—H41B	108.0
O2—C22—C21	112.4 (3)	O4—C42—C41	112.3 (3)
O2—C22—C23	112.7 (3)	O4—C42—C43	112.2 (3)
C21—C22—C23	111.1 (3)	C41—C42—C43	111.6 (3)
O2—C22—H22	106.7	O4—C42—H42	106.7
C21—C22—H22	106.7	C41—C42—H42	106.7
C23—C22—H22	106.7	C43—C42—H42	106.7
С22—С23—Н23А	109.5	C42—C43—H43A	109.5
С22—С23—Н23В	109.5	С42—С43—Н43В	109.5
H23A—C23—H23B	109.5	H43A—C43—H43B	109.5
С22—С23—Н23С	109.5	С42—С43—Н43С	109.5
H23A—C23—H23C	109.5	H43A—C43—H43C	109.5
H23B—C23—H23C	109.5	H43B—C43—H43C	109.5
С22—О2—Н2А	109.5	C42—O4—H4A	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N1—H1····O2 ⁱ	0.86	2.20	2.977 (3)	151
N2—H2…O1	0.86	1.94	2.632 (3)	137
$O2$ — $H2A$ ···· $S1^{ii}$	0.82	2.66	3.242 (3)	130
N3—H3····O4 ⁱ	0.86	2.21	2.999 (4)	153
N4—H4…O3	0.86	1.96	2.640 (4)	135
$O4$ — $H4A$ ···· $S3^{ii}$	0.82	2.41	3.161 (3)	152
C15—H15…O1 ⁱ	0.93	2.53	3.265 (4)	136
C16—H16···O2 ⁱ	0.93	2.72	3.420 (5)	132
C35—H35···O3 ⁱ	0.93	2.91	3.531 (5)	126
C36—H36…O4 ⁱ	0.93	2.57	3.412 (5)	150
C21—H21 <i>B</i> ····S3 ⁱⁱ	0.97	2.98	3.844 (3)	149
C23—H23 <i>C</i> ···S3 ⁱⁱ	0.96	2.98	3.842 (4)	150

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) *x*, -*y*+3/2, *z*+1/2.