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Tables for the determination of space group for single crystals, twinned crystals

and crystals with a specialized metric are presented in the form of a spreadsheet

for use on a computer. There are 14 tables, one for each of the Bravais-lattice

types. The content of the tables is arranged so that at the intersection of rows,

displaying the conditions for reflection, and of columns, displaying the Laue and

crystal classes, one finds those space groups compatible with the observed

Bravais-lattice type, the conditions for reflection and the Laue and crystal

classes. The tables are intended to be of direct use to an experimentalist working

with an unknown structure.

1. Introduction

In the fifth edition of International Tables for Crystallography,

Vol. A, Space-group symmetry (Hahn, 2002), hereafter ITA,

there is an excellent, somewhat dated, section on the Deter-

mination of Space Group (Looijenga-Vos & Buerger, 2002).

For the sixth edition of ITA, a new chapter titled Methods of

space-group determination has been written (Shmueli et al.,

2015). Moreover, a separate version of this latter text, omitting

the more advanced material but including four real didactic

examples, has also been prepared as a submission to the Brief

Teaching Edition of ITA. However, all of this material is

applicable only to single-crystal samples. The current text

provides a supplement to cover many cases of crystalline

samples that are twinned and also those that have a specia-

lized metric.

The current effort to extend the texts cited above owes

much to the recent publication of two papers, namely Effects

of merohedric twinning on the diffraction pattern (Nespolo et

al., 2014) and Partial order among the 14 Bravais types of

lattices: basics and applications (Grimmer, 2015). Without the

work of these authors, the present publication would not have

been undertaken.

This text is very definitely constructed as a supplement to

Shmueli et al. (2015). As space-group determination from

twins is an advanced topic, introductory material is not

presented here. The reader is referred to Twinning of Crystals

(Hahn & Klapper, 2003) and to Shmueli et al. (2015) for a

grounding in these matters. Relevant theory may be found in

Nespolo et al. (2014), Grimmer (2015) and Shmueli et al.

(2015). The basic steps in the process of space-group deter-

mination are presented here in outline with the sole purpose

of accentuating the similarities and differences in the obser-

vations and treatment of single and twinned crystals.
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2. Symmetry information from the diffraction pattern

Following the procedure presented in x1.6.2.1 of Shmueli et al.

(2015), the first stage in the experimental procedure of space-

group determination provides one or several observed

Bravais-lattice types from the positions of the diffraction

maxima in reciprocal space by the process of cell reduction.

For a single crystal without metric specialization, the observed

Bravais-lattice type should be that of the crystal under

investigation. For a twinned crystal, this may not be the case.

For example, a crystal with an hR Bravais-lattice type twinned

by a twofold rotation about the unique axis will display an hP

Bravais-lattice type. A crystal with a specialized metric is

another example. A crystal with an oC Bravais-lattice type

with metrical relation a =
ffiffiffi

3
p

b will display an hP Bravais-

lattice type. Tables 3 and 4 of Grimmer (2015) contain the

relevant information. In short, the observed Bravais-lattice

type may not be that of the crystal under study but never-

theless provides useful information for the process of space-

group determination.

The second stage of the procedure is to determine the Laue

class and, under favourable conditions, the crystal class of the

crystal from an examination of the symmetry of the intensities

of Bragg reflections in a diffraction pattern. For a single

crystal, the Laue and crystal class of the diffraction data

should be that of the crystal. This is not true for twinned

crystals. Nespolo et al. (2014, and references therein) provide

the necessary theory. The intersection group of the point

groups of the several domains in a twinned crystal provides

the minimum point-group symmetry of the diffraction pattern.

The corresponding Laue group is the minimal centrosym-

metric supergroup of this intersection group. However, further

symmetry may be added to this intersection group by relations

amongst the mass (or volume) fractions of the twin domains.

For example, a complete twin (i.e. all possible twin domains

present) with identical twin fractions will display the point-

group symmetry of the holohedry. The point-group symmetry

of the diffraction pattern of a twinned crystal depends on the

values of the twin fractions. As an example, consider a crystal

in crystal class 4. Its holohedry is 4/mmm. Twinning operations

are 1, 2[100], 1, m[100] generating domains called d1, d2, d3 and d4

respectively, with twin fractions vd1, vd2, vd3 and vd4, and vd1 +

vd2 + vd3 + vd4 = 1. Under each of these twinning operations

the point group 4 is invariant, so the intersection group is 4

itself. Table 1 shows the diffraction symmetry displayed for

various values of the twin fractions. Another example is given

by the case of a crystal in crystal class mm2 (Bravais-lattice

type oP), but with a specialized metric a = b, giving a metrical

symmetry of 4/mmm. If the twofold axis of mm2 is parallel to

the fourfold axis of 4/mmm, then the point group mm2 is

maintained by all of the operations of 4/mmm and the inter-

section group is mm2 itself. On the other hand, if the twofold

axis of mm2 is perpendicular to the fourfold axis of 4/mmm,

only one m plane of mm2 is maintained by the operations in

4/mmm and the intersection group is m.

The third stage of the procedure uses the conditions for

reflection, commonly called the systematic absences. The

conditions for reflection for each domain in the twinned

crystal are fixed by the space group of the structure in the

orientation of each domain. As the domains are in various

orientations, it results that the conditions for reflection for one

domain may correspond to or annihilate those of the other

domains. Consequently, the conditions for reflection for the

twinned crystal may not correspond to any space group indi-

cated in part 7 of ITA. Take as an example, a crystal structure

in the space group Pca21 (No. 29), for which the cell dimen-

sions display a = b, c, � = � = � = 90�. Thus, the crystal

structure has an oP Bravais-lattice type in the orthorhombic

family, but the metric indicates a tP Bravais-lattice type in the

tetragonal family. Table 2 displays the reflection conditions for

a single crystal of this structure both in the standard orienta-

tion and in one rotated by 90� about [001] from the standard

orientation, and, in the final line, the reflection conditions for a

twinned crystal containing the two domains. As the reflection

condition on 00l is identical in the two domains, this condition

is maintained in the twin. A reflection condition on h00 occurs

for the basic domain but not for the rotated one. Conse-

quently, the reflection condition on h00 is annihilated in the

twin, likewise for 0k0. Reflection conditions on 0kl (and h0l)

occur for both domains but are different in form. For the twin,

these conditions have to be combined by an or operation.

There is no single crystal which displays the reflection condi-

tions of this twin.

3. Selection of twin laws

The content of the tables given in the Supporting information

is restricted in various ways which will now be described.
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Table 1
Example of diffraction symmetry for various values of the twin fractions.

Crystal class 4. Twinning operations are 1, 2[100], 1, m[100] generating domains
called d1, d2, d3 and d4, respectively, with twin fractions vd1, vd2, vd3 and vd4,
and vd1 + vd2 + vd3 + vd4 = 1.

vd1 vd2 vd3 vd4 Diffraction
symmetry

arbitrary arbitrary arbitrary arbitrary 4
0.5 0.5 0.0 0.0 42m
0.5 0.0 0.5 0.0 4/m
0.5 0.0 0.0 0.5 4m2
0.25 0.25 0.25 0.25 4/mmm

Table 2
Reflection conditions for a crystal in the space group Pca21 (No. 29) with
a tetragonal metric a = b, c, � = � = � = 90�.

Domain 1 refers to a single crystal in the standard orientation. Domain 4[001]

refers to a single-crystal rotated by 90� about [001] from the standard
orientation. The final line of the table refers to a twinned crystal containing the
two domains.

Reflection
conditions

0kl h0l h00 0k0 00l

Domain 1 l = 2n h = 2n h = 2n l = 2n
Domain 4[001] k = 2n l = 2n k = 2n l = 2n
Twin 1 + 4[001] k = 2n or l = 2n h = 2n or l = 2n l = 2n



The tables apply to diffraction patterns which can be

indexed by triples of integers, hkl, using one single reciprocal

(and consequently direct) lattice. Diffraction patterns with

split reflections or reflections which separate as the tempera-

ture is changed are not dealt with directly. It may however be

possible to index them on several reciprocal lattices of the

same metric and subsequently to generate a single-reciprocal-

lattice data set. Crystals with modulated structures and

quasicrystals are not dealt with in this text. In short, the tables

apply both to single crystals and to twinned crystals.

The classes of twins that have been included in our tables

are essentially the same as those enumerated in the tables and

text of Nespolo et al. (2014). However, there are omissions and

additions in the current text. Included in the current tables are

all cases with a twin-lattice index [j] = 1, with or without metric

specialization. However, two common cases of [j] = 3 are also

included. These are ones in which a twin twofold rotation is

parallel to a threefold axis of the crystal class. These latter do

not require any metric specialization and occur in the hR, cP,

cF and cI Bravais-lattice types.

Nespolo et al. (2014) deal first with classes of twins in which

there is a group–subgroup relation between the crystal point

group and its holohedry. The figure of group–subgroup rela-

tionships amongst the three-dimensional point groups, given

in Fig. 10.1.3.2 of Hahn & Klapper (2002), is most useful in

such an analysis. Such relations impose no additional restric-

tion on the lattice metric other than those due to the holo-

hedry itself, i.e. no metric specialization is required.

Nespolo et al. (2014) also deal with twinning associated with

metric specialization, e.g. a crystal in the tetragonal family but

displaying cell dimensions a = b = c and � = � = � = 90�. In

such cases, the lattice metric would indicate one Bravais-

lattice type (in the cubic family in the above example),

whereas the crystal really has a lower one (in the tetragonal

family in the above example). The hierarchical arrangement of

Bravais-lattice types is wonderfully displayed in Fig. 2 of

Grimmer (2015). The tables in our Supporting information

only include cases of a metric specialization corresponding to

line segments without intermediate nodes in Fig. 2 of Grimmer

(2015). The tables of Nespolo et al. (2014) have a few cases

where the metric specialization covers several line segments

with intermediate nodes.

Twinning by inversion is given a special (non)treatment in

the Supporting information. This enables the tables to be
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Figure 1
Top left-hand part of the Table for Bravais-lattice type oI.



shortened. The justification is as follows. Twinning by inver-

sion never affects the conditions for reflection and the Laue

class. The crystal class of a crystal twinned by inversion with

equal volumes for the two domains will be centrosymmetric

and other instances will be noncentrosymmetric. The weak-

ness of Friedel differences (i.e. |F(hkl)|2 � |F(hkl)|2) and

systematic errors and random uncertainties in the intensity

measurements make it difficult in general to observe the true

crystal class. Moreover, it is common practice to treat twinning

by inversion at the least-squares refinement stage for any

noncentrosymmetric crystal structure by way of the Flack

(1983) parameter. Consequently, in our Supporting informa-

tion, noncentrosymmetric space groups always appear in one

or several of the noncentrosymmetric point groups in the

corresponding Laue class.

4. Description of the tables

It is helpful to study the text of this section in conjunction with

Fig. 1 which shows the top left hand part of the table for

Bravais-lattice type oI.

The tables are presented in a form for direct use by the

experimentalist wishing to determine the possible space

group(s) of a crystal. The spreadsheet containing the tables is

available in the Supporting information and at http://crystal.

flack.ch/TwinMSGD.xls. The spreadsheet contains 14 tables,

each table corresponding to one of the Bravais-lattice types.

Each table is labelled by the symbol of its Bravais-lattice type.

Each Bravais-lattice type is assumed to be presented in its

conventional setting.

In each table, the columns on the left-hand side present sets

of reflection conditions. The reflection indices of the subset of

reflections to which each reflection condition applies is indi-

cated in the column heading. Thus, hk0 means that the first

two reflection indices may take any integer value, independent

one of the other, whereas the third one must be zero. In these

tables, there are no implicit rules governing the reflection

indices. Thus, hhl means that the first two indices must be

identical. Thus, hhl does not apply to reflections with indices

hhl. A separate column, headed hhl, gives the conditions on

the hhl reflections. Should the reflection conditions on hhl and

hhl be identical, a column headed h�hl may be used. For

brevity, some of the reflection conditions have been abbre-

viated, as indicated in full in the index of the tables. In brief, a

‘,’ means ‘and’, a ‘/’ means ‘or’ and a relation with no ‘=’ should

be interpreted as ‘= 2n’. All space groups compatible with a set

of reflection conditions are presented in the same row as the

reflection conditions. However, any row many extend over

several lines of the table.

Entries of space groups in the table for each crystal class are

arranged in single columns. The columns of crystal classes

belonging to the same Laue class are placed adjacent to one

another. The symbols of the crystal and Laue classes refer to

the conventional basis set of the observed Bravais-lattice type.

Entries at the intersection of a row and a column indicate

those space groups which are compatible with the observed

Bravais-lattice type (of the table), with the crystal and Laue

class of the column, and with the reflection conditions of the

row. Entries which appear as a Hermann–Mauguin symbol

(without any prefixes) refer to single crystals with the indi-

cated space group. Entries which are preceded by a Greek

character refer to twinned crystals without any metric

specialization. The interpretation of the Greek character is

given at the foot of the table (unfortunately there are no such

examples in Fig. 1). Entries which are preceded by the char-

acter ‘Z’ with a subscripted suffix refer to single crystals with a

specialized metric. The interpretation of the ‘Z’ character is

given at the foot of the table (unfortunately there are no such

examples in Fig. 1). Finally, entries which are preceded by the

character ‘T’ with a subscripted suffix refer to twinned crystals

with a specialized metric. The interpretation of the ‘T’ char-

acter is given at the foot of the table.

All space groups on a conventional choice of unit cell are

included in the tables in the Supporting information. All

alternative settings displayed in Part 7 of ITA are thus

included. The following further alternative settings, not

displayed in Part 7 of ITA, are also included: space group Pb3

(No. 205) and all the space groups with an hR Bravais lattice in

the reverse setting on hexagonal axes. As an aid in the study of

naturally-occurring macromolecules and compounds made by

enantioselective synthesis, the space groups of enantio-

merically pure compounds (Sohncke space groups) are typeset

in bold.

4.1. Construction of the Tables

The tables were constructed as a result of some labour

(Hirshfeld, 1968). All of the published works cited above were

of considerable help and value. However, it was in the deri-

vation of the intersection groups of twin domains and the

enumeration of the reflection conditions for space groups on

nonconventional bases and settings that occasioned the most

work. No tested software could be identified to automate this

effort. Consequently, the derivations were undertaken by

hand (or perhaps more correctly, by head) using both

geometric and algebraic techniques. The author accepts full

responsibility for any errors or omissions in the tables.

5. Detection of twinning

Various ancillary techniques are helpful in the determination

of space groups. These have been covered in full for single

crystals by Shmueli et al. (2015) and are also applicable to

twinned crystals and crystals with a specialized metric. For the

determination of the space group of a twinned crystal, one also

needs information on the methods available for the detection

of twins. This can be used to make an informed selection

between the space groups of single and twinned crystals which

are displayed in the tables of the Supporting information.

Fortunately, the subject has been given rather full coverage in

various works in a style which is of immediate use by an

experimentalist. These will be cited here but the content will

not be described in detail.
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Redinbo & Yeates (1993) have a section on the detection of

twinning in a paper describing the structure determination of a

macromolecule. On reading Redinbo & Yeates (1993) (and

other macromolecular papers), one has always to bear in mind

that compounds such as this are known, or presumed, to be

enantiomerically pure, implying that the space group is

restricted to one of the 65 Sohncke space groups. Follow-ups

are available in Yeates & Fam (1999) and Padilla & Yeates

(2003). In the conclusion of their article on the refinement of

twinned structures, Herbst-Irmer & Sheldrick (1998) give a list

of 12 characteristic warning signs for twinning. The context of

their article is small-molecule crystallography. Chandra et al.

(1999) make an interesting point concerning the analysis of

the packing density. Finally, the first three sections of Dauter

(2003) give very good coverage of the subject.
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