Response to Heterocyclic tautomerism: reassignment of two crystal structures of 2-amino-1,3-thiazolidin-4-one derivatives by Gzella et al. (2014)

Jiří Váňa, ${ }^{\text {a }}$ Jiří Hanusek, ${ }^{\text {a }}$ Aleš Růžička ${ }^{\text {b }}$ and Miloš Sedlák ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic, and ${ }^{\mathbf{b}}$ Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
Correspondence e-mail: jiri.hanusek@upce.cz

Received 8 July 2014
Accepted 21 July 2014

Prototropy tautomerism and E / Z-stereoisomerism of 2 -im-inothiazolidin-4-ones was extensively studied in the literature during the past several decades. This tautomerism was studied for both alkyl/aryl-amino/imino-substituted thiazolidinones/ thiazolinones by several authors (Comrie, 1964; Åkerblom, 1967; Chowdry et al., 2000; Mornon \& Raveau, 1971; Ramsh et al., 1978) in the solid state, as well as in solution, and the results can be generalized as follows. Exo- N -unsubstituted and N -alkyl-substituted compounds exist in solution preferentially as 2-(alkyl)aminothiazolin-4-ones, whereas N-aryl-substituted compounds prefer the 2-(arylimino)thiazolidin-4-one arrangement, although some exceptions to this rule were also reported (Sedlák et al., 2002; Kammel \& Hanusek, 2014). For example, in a recent article (Kammel \& Hanusek, 2014) we have found that base-catalyzed cyclization of N -isopropyl- S -(2-oxo-2,3-
dihydro-1-benzofuran-3-yl)isothiouronium bromide gives 5-(2-hydroxyphenyl)-2-isopropylimino-1,3-thiazolidin-4-one, which during crystallization or simple heating undergoes the above-mentioned prototropy tautomerism to give 5-(2-hy-droxyphenyl)-2-isopropylamino-1,3-thiazolin-4-one. From this observation it is evident that the solvent, purification method, temperature and other parameters can influence the position of tautomeric equilibrium and also the crystal packing. In our article from 2009 (Váňa et al., 2009), the single crystal of 5-(2-hydroxyethyl)-2-[(pyridin-2-yl)imino]-1,3-thiazolidin-4one was grown from dimethyl sulfoxide (DMSO), whereas the single crystal studied by Gzella et al. (2014) was grown from methanol from a sample previously prepared in refluxing ethanol. In order to support our refinement (Váňa et al., 2009), the following arguments are given: three peaks assignable to the 'amino or imine' H atoms were located on our Fourier difference map under the given measurement conditions (150 K). Both tautomers were refined but based on the known NMR assignment, literature data and higher electron density we decided to refine the structure as the imine tautomer.

To conclude, we are surprised how Gzella et al. (2014) could suggest that our structure had an incorrectly-positioned H atom based on the measurement under different conditions on crystals grown from a different solvent, and last, but not least, from a disordered structure, when tautomerism is always a chemical equilibrium.

References

Åkerblom, E. (1967). Acta Chem. Scand. 21, 1437-1442.
Chowdry, M. M., Mingos, D. M. P., White, A. J. P. \& Williams, D. J. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 2265-2268.

Comrie, A. (1964). J. Chem. Soc. p. 3478.
Gzella, A. K., Kowiel, M., Suseł, A., Wojtyra, M. N. \& Lesyk, R. (2014). Acta Cryst. C70, 812-816.
Kammel, R. \& Hanusek, R. J. (2014). J. Heterocycles, 89, 1183-1194.
Mornon, J.-P. \& Raveau, B. (1971). Acta Cryst. B27, 95-108.
Ramsh, S. M., Ginak, A. I., Sochilin, E. G. \& Skachko, T. G. (1978). Zh. Org. Khim. 14, 1070.
Sedlák, M., Hejtmánková, L., Hanusek, J. \& Macháček, V. (2002). J. Heterocycl. Chem. 39, 1105-1107.
Váňa, J., Hanusek, J., Růžička, A. \& Sedlák, M. (2009). J. Heterocycl. Chem. 46, 635-639.

Structural Chemistry

ISSN 2053-2296

Heterocyclic tautomerism: reassignment of two crystal structures of 2-amino-1,3-thiazolidin-4-one derivatives

Andrzej K. Gzella, ${ }^{\text {a }}{ }^{*}$ Marcin Kowiel, ${ }^{\text {a }}$ Aneta Suseł, ${ }^{\text {a }}$ Magdalena N. Wojtyra ${ }^{\text {b }}$ and Roman Lesyk ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland, and ${ }^{\text {b }}$ Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
Correspondence e-mail: akgzella@ump.edu.pl

Received 8 May 2014
Accepted 27 June 2014
The structures of 5-(2-hydroxyethyl)-2-[(pyridin-2-yl)amino]-1,3-thiazolidin-4-one, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, (I), and ethyl 4-[(4-oxo-1,3-thiazolidin-2-yl)amino]benzoate, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, (II), which are identical to the entries with refcodes GACXOZ [Váňa et al. (2009). J. Heterocycl. Chem. 46, 635-639] and HEGLUC [Behbehani \& Ibrahim (2012). Molecules, 17, 6362-6385], respectively, in the Cambridge Structural Database [Allen (2002). Acta Cryst. B58, 380-388], have been redetermined at 130 K . This structural study shows that both investigated compounds exist in their crystal structures as the tautomer with the carbonyl-imine group in the five-membered heterocyclic ring and an exocyclic amine N atom, rather than the previously reported tautomer with a secondary amide group and an exocyclic imine N atom. The physicochemical and spectroscopic data of the two investigated compounds are the same as those of GACXOZ and HEGLUC, respectively. In the thiazolidin-4-one system of (I), the S and chiral C atoms, along with the hydroxyethyl group, are disordered. The thiazolidin-4-one fragment takes up two alternative locations in the crystal structure, which allows the molecule to adopt R and S configurations. The occupancy factors of the disordered atoms are 0.883 (2) (for the R configuration) and 0.117 (2) (for the S configuration). In (I), the main factor that determines the crystal packing is a system of hydrogen bonds, involving both strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, linking the molecules into a three-dimensional hydrogen-bond network. On the other hand, in (II), the molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into chains.

> Keywords: crystal structure; amine-imine tautomerism; hydrogen bonding; 2-amino(imino)-1,3-thiazolidin-4-ones; pharmaceutical compounds; heterocyclic tautomerism; medicinal chemistry; biologically active compounds.

1. Introduction

1,3-Thiazolidin-4-one derivatives are a well known class of patented drugs, examples being hypoglycaemic thiazolidinediones (pioglitazone and its analogues), aldose reductase inhibitors (epalrestat), anti-inflammatory agents (darbufelone) and new-generation diuretics (etozoline). In modern medicinal chemistry, the thiazolidinone core is a powerful biophore for the rational design of 'drug-like' molecules. Modern research into the pharmacological potential of 1,3-thiazolidin-4-ones has allowed the establishment of a wide spectrum of pharmacological activities, including anticancer, anti-inflammatory, antiviral, antiparasitic, antimicrobial and anti-oxidant (Lesyk \& Zimenkovsky, 2004; Lesyk et al., 2011).

Scheme 1

It is worth noting that studies regarding amino-imino tautomerism in 2-amino(imino)-1,3-thiazolidin-4-one derivatives have been ongoing for almost 50 years. The investigations have been performed on crystalline and liquid phases using different spectroscopic techniques, e.g. IR, UV, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, or sometimes with quantum-chemical calculations. X-ray crystallography is not commonly used among the analytical methods applied to structural studies concerning

tautomerism. In the Cambridge Structural Database (CSD, Version 5.35; Allen, 2002), we found only 21 structures with the amine form (refcodes EKELEL FIVPIJ, FOWQOY, IHUFAS, IMPTHA01, IMPTHA12, IMTAZO01, INMTZO, JOBGOW, KUKZUM, PACPIU, PATAZO, PTHAZO10, SALYOT, SINQOW, SINQUC, TEBDAH, ULACAM, VELBEU, WOSMAS and YUQCAP) and 16 with the imine form (refcodes EHITZO, GACXOZ, HEGLUC, HEGMAJ,

Table 1
Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{\text {r }}$	237.28	264.30
Crystal system, space group	Triclinic, $P \overline{1}$	Triclinic, $P \overline{1}$
Temperature (K)	130	130
$a, b, c(\AA)$	5.78910 (15), 8.8045 (2), 10.9688 (3)	3.9850 (2), 5.5113 (3), 26.8877 (14)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90.638 (2), 95.794 (2), 107.990 (2)	84.483 (5), 89.670 (5), 86.338 (5)
$V\left(\mathrm{~A}^{3}\right)$	528.50 (3)	586.58 (6)
Z	2	2
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.29	0.28
Crystal size (mm)	$0.42 \times 0.22 \times 0.10$	$0.40 \times 0.34 \times 0.05$
Data collection		
Diffractometer	Agilent Xcalibur Atlas diffractometer	Agilent Xcalibur Atlas diffractometer
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2012)	Multi-scan (CrysAlis PRO; Agilent, 2010)
$T_{\text {min }}, T_{\text {max }}$	0.939, 1.000	0.908, 1.000
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	5332, 2501, 2338	7855, 2804, 2604
$R_{\text {int }}$	0.016	0.017
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.684	0.684
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.036, 0.088, 1.13	0.030, 0.078, 1.05
No. of reflections	2501	2804
No. of parameters	167	168
No. of restraints	4	0
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.34,-0.21$	$0.54,-0.23$

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

HEGMEN, HEGMIR, HEGMOX, IMTAZO, IOTAGP, IXTAZD10, RIPMOT, ROMXUN, SOHHIH, ULACEQ, VAMPUW and YARLIN), the latter set including two structures, GACXOZ (Váňa et al., 2009) and HEGLUC (Behbehani \& Ibrahim, 2012), with an incorrectly specified tautomeric form, as will be demonstrated here.

As part of a programme aimed at the development of new biologically active compounds, we have prepared 5-(2-hy-droxyethyl)-2-[(pyridin-2-yl)amino]-1,3-thiazolidin-4-one, (I) (cf. CSD refcode GACXOZ), and ethyl 4-[(4-oxo-1,3-thia-zolidin-2-yl)amino]benzoate, (II) (cf. CSD refcode HEGLUC) (Scheme 1), and have made corrections to the interpretations of their previously published structures. According to the previous reports, the investigated compounds exist in tautomeric form $A 2$, with a secondary amide group in the fivemembered heterocyclic ring and an exocyclic imine N atom (see Scheme 2).

2. Experimental

2.1. Synthesis and crystallization

The title compounds were synthesized by methods used for obtaining 2 -amino(imino)-1,3-thiazolidin-4-one derivatives (Subtel'na et al., 2010; Geronikaki et al., 2008; Ostapiuk et al., 2012). Compound (I) was prepared by the [2+3]-cyclocondensation reaction of 3-bromotetrahydrofuran-2-one (α-bromo- γ-butyrolactone) with 1-(pyridin-2-yl)thiourea in
the presence of fused sodium acetate in refluxing ethanol. Compound (II) was synthesized through cyclocondensation of ethyl 4-(2-chloroacetylamino)benzoate and ammonium thiocyanate in ethanol (Behbehani \& Ibrahim, 2012). It is known that the above-mentioned reactions do not stop at the nucleophilic substitution stage (Geronikaki et al., 2008; Ostapiuk et al., 2012). The intermediate α-thiocyanatoamide undergoes spontaneous cyclization/rearrangement to give the thiazolidin-4-one derivative, (II).

The physicochemical and spectroscopic data of (I) and (II) (see Supporting information) are the same as for GACXOZ and HEGLUC, respectively. Crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of solutions in methanol [for (I)] and dimethylformamide [for (II)].

2.2. Refinement

For both (I) and (II), N-bound H atoms were obtained from difference Fourier maps and refined freely and isotropically. The remaining H atoms were positioned geometrically and refined within the riding-model approximation, with methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.99 \AA$, methine $\mathrm{C}-\mathrm{H}=$ $1.00 \AA, \mathrm{Csp} p^{2} \mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{O}-\mathrm{H}=0.88 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for methyl and hydroxy H atoms, or $1.2 U_{\text {eq }}(\mathrm{C})$ otherwise. The methyl groups were refined as rigid groups, which were allowed to rotate. Non-H atoms of the disordered part of the molecule of (I) were obtained from

Figure 1
The molecular structure of (I), showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered part b of the molecule is coloured grey, as distinct from the major component shown in black.

Figure 2
A view of the molecule of (II), showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
difference Fourier maps. During refinement, the atomic displacement ellipsoids of the corresponding atoms in the alternative conformations, a and b, were constrained to be identical. Corresponding bond distances within the two disordered components were restrained to be similar. The H atoms of the -OH groups of the hydroxyethyl residues in positions a and b were separated in an arbitrary manner by applying a $\mathrm{H} \cdots \mathrm{H}$ distance restraint of 0.61 (2) \AA.

3. Results and discussion

3.1. Tautomeric forms

Our revision of the X-ray studies has shown that, in their crystal structures, compounds (I) and (II) adopt tautomeric form $A 1$ rather than the previously suggested form $A 2$ (Scheme 2, and Figs. 1 and 2). In both structures, the H atom was located at the exocyclic N atom (N6). This observation for (II) is supported by the presence of an intermolecular N6H6 $\cdots \mathrm{O} 18^{\mathrm{i}}$ hydrogen bond (Table 2 and Fig. 3), in which atom N6 acts as a proton donor and carbonyl atom O18 acts as a

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H6 $\cdots \mathrm{O} 18^{\mathrm{i}}$	$0.857(17)$	$1.954(17)$	$2.7882(14)$	$164.3(17)$
Symmetry code: (i) $x+1, y-1, z$.				

Symmetry code: (i) $x+1, y-1, z$.

Figure 3
Part of the crystal structure of (II), showing the formation of the hydrogen-bonded chain along [110]. See Table 2 for symmetry code. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
proton acceptor. The formation of this $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is promoted by the antiperiplanar conformation of the $\mathrm{C} 2-\mathrm{N} 3$ and N6-H6 bonds [torsion angle N3-C2-N6$\left.\mathrm{H} 6=180(2)^{\circ}\right]$.

In (I), the presence of an intermolecular N6-H6 $\cdots{ }^{2} 3^{i}$ hydrogen bond between the amidine groups (Table 3 and Fig. $4 a$) may lead to ambiguity about the amine/imine character of atoms N3 and N6. It is known that the presence of N$\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond contacts enhances the resonance effect, which is significant even for unassociated molecules. Therefore, one may be inclined to think that, for structure (I) forming hydrogen-bonded dimers, both tautomeric forms are possible, and that the $\mathrm{C} 2-\mathrm{N} 3$ and $\mathrm{C} 2-\mathrm{N} 6$ bond lengths do

Table 3
Hydrogen-bond geometry ($\AA,^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H6 . . N3 ${ }^{\text {i }}$	0.88 (2)	2.10 (2)	2.9733 (17)	173 (2)
$\mathrm{O} 16 a-\mathrm{H} 16 A \cdots \mathrm{O} 13^{\text {ii }}$	0.84	2.00	2.7940 (19)	158
$\mathrm{O} 16 b-\mathrm{H} 16 B \cdots \mathrm{O} 3^{\text {ii }}$	0.84	1.86	2.692 (12)	168
C10-H10 \cdots O16aii	0.95	2.52	3.442 (2)	164
C12-H12 . ${ }^{\text {O }} 13{ }^{\text {i }}$	0.95	2.31	3.199 (2)	155
$\mathrm{C} 14 a-\mathrm{H} 14 B \cdots \mathrm{O} 16 a^{\text {iv }}$	0.99	2.54	3.448 (2)	152

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $-x+1$, $-y+1,-z$; (iv) $x-1, y, z$.

(a)

(b)

Figure 4
(a) The molecular tape in (I), generated by the centrosymmetric dimers. See Table 3 for symmetry codes. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. (b) The molecular tape in (I), expanded along the [110] direction. Grey shading denotes the disordered part of the molecule.
not provide much useful information for solving this problem because of resonance interactions which render their lengths similar regardless of the tautomeric form. However, atom H6 was located and refined at this position and, in addition, analysis of the $\mathrm{C} 2-\mathrm{N} 3$ and $\mathrm{C} 2-\mathrm{N} 6$ bond lengths performed for tautomeric forms $A 1$ and $A 2$ did not confirm these suppositions.

The average $\mathrm{C} 2-\mathrm{N} 3$ and $\mathrm{C} 2-\mathrm{N} 6$ bond lengths in 20 2-amino-1,3-thiazolidin-4-one derivatives deposited in the CSD and exhibiting the $A 1$ tautomeric form are similar and have values of $1.325(1)$ and 1.315 (2) \AA, respectively (refcodes EKELEL, FIVPIJ, FOBQOY, IHUFAS, IMPTHA12, IMTAZO01, INMTZO, JOBGOW, KUKZUM, PACPIU, PTHAZO10, SALYOT, SINQOW, SINQUC, TEBDAH, ULACAM, VELBEU, VEQFAA, WOSMAS and YUQCAP; $R<0.07$). These mean $\mathrm{C} 2-\mathrm{N} 3$ and $\mathrm{C} 2-\mathrm{N} 6$ bond lengths are intermediate between the lengths of single and double $\mathrm{C}-\mathrm{N}$ bonds. In comparison with the normal literature $\mathrm{C}=\mathrm{N}$ double-bond value of 1.279 (1) \AA (Allen et al., 1987), they are lengthened by about 33σ and 16σ, respectively. On the other hand, they are shortened by about 26σ and 24σ, respectively, compared with the mean value for a $\mathrm{Csp}^{2}-\mathrm{N}$ single-bond length of 1.383 (2) A. This latter value was obtained from 117 structures of 2-imino-1,3-thiazolidin-4-one
derivatives substituted at $\mathrm{N} 3(R<0.07)$. Based on six records revealing the $A 2$ tautomeric form, the average $\mathrm{C} 2-\mathrm{N} 3$ and $\mathrm{C} 2-\mathrm{N} 6$ bond lengths were calculated as 1.374 (3) and 1.280 (2) Å, respectively (refcodes EHITZO, HEGMAJ, HEGMEN, HEGMIR, HEGMOX and VAMPUV; $R<0.07$), which are clearly different from one another. The former is similar to the normal $\mathrm{Csp}^{2}-\mathrm{N}$ single-bond length in heterocyclic rings, while the latter is close to a normal $\mathrm{C}=\mathrm{N}$ doublebond length.

Our observations thus indicate an unequal resonance effect in tautomeric forms $A 1$ and $A 2$, which allows the use of the $\mathrm{C}-\mathrm{N}$ bond lengths to distinguish the two forms. Crystal structure analysis of (I) and (II) shows that the interatomic lengths C2-N3 and C2-N6 [1.3256 (17) and 1.3385 (19) Å in (I), and 1.3182 (15) and 1.3282 (15) \AA in (II), respectively] have comparable values, which is a typical feature of tautomeric form $A 1$.

We thus submit that the original tautomeric assignments of GACXOZ and HEGLUC were incorrect, and propose they both be reassigned to the $A 1$ form, supported by the evidence presented here. From the comparison of (I)/GACXOZ and (II)/HEGLUC it is clear that the molecules in pairs have the same geometry and, what is particularly important, very similar $\mathrm{C} 2-\mathrm{N} 3$ and $\mathrm{C} 2-\mathrm{N} 6$ bond lengths. In the first pair, the bond lengths are $1.326 / 1.322$ and $1.338 / 1.337 \AA$, while in the second pair the values are $1.318 / 1.308$ and $1.328 / 1.333 \AA$, respectively. The structural differences relate to the position of the mobile $\mathrm{N}-\mathrm{H}$ hydrogen only. We think that incorrect localization of the H atom at the endocyclic and not at the exocyclic N atom in GACXOZ and HEGLUC is most likely a result of the fact that the H atoms bonded to N atoms were positioned geometrically and were treated using a riding model, with the $U_{\text {iso }}(\mathrm{H})$ parameter calculated and not refined. If the $U_{\text {iso }}(\mathrm{H})$ parameter had been refined in the earlier report, the mistake would have been noticed and corrected.

3.2. Further details of the structural analysis

Some atoms in the crystal structure of (I) are disordered. This observation concerns the part of the molecule that includes atoms S1, C5, C14, C15 and O16 of the 2-hydroxy-ethyl-1,3-thiazolidin-4-one fragment. Each of these atoms takes up two alternative locations in the crystal structure, labelled a and b. This arrangement results in two different enantiomers of the molecule, with atoms S1, C5, C14, C15 and O16 in position a having an R configuration and the atoms in position b having an S configuration (for the molecule shown in Fig. 1), and vice versa for a symmetry-related site. The occupancy factor for these five atoms in orientation a is 0.883 (2), while in orientation b the occupancy factor is 0.117 (2).

The thiazolidine ring with atoms S 1 and C 5 in arrangement a is approximately planar (r.m.s. deviation $=0.0213 \AA$), while the ring with these atoms in arrangement b is folded (r.m.s. deviation $=0.1130 \AA$) and adopts a half-chair conformation [Cremer \& Pople (1975) puckering parameters $Q=$ $0.253(8) \AA$ and $\left.\varphi=130.0(16)^{\circ}\right]$.

The pairs of bonds $\mathrm{S} 1-\mathrm{C} 2 / \mathrm{N} 6-\mathrm{C} 7$ and $\mathrm{C} 2-\mathrm{N} 6 / \mathrm{C} 7-\mathrm{N} 8$ are in a synperiplanar conformation. The torsion angles S1al $\mathrm{S} 1 b-\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 7$ and $\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 7-\mathrm{N} 8$ are $4.2(2) /$ -14.7 (3) and $-10.6(2)^{\circ}$, respectively. The arrangements of the two alternative hydroxyethyl residues are determined by torsion angles $\mathrm{C} 5 a-14 a-\mathrm{C} 15 a-\mathrm{O} 16 a=55.8$ (2) ${ }^{\circ}$ and $\mathrm{C} 5 b-$ $\mathrm{C} 14 b-\mathrm{C} 15 b-\mathrm{O} 16 b=178.1(14)^{\circ}$, from which the pairs of bonds C5a-C14a/C15a-O16a and C5b-C14b/C15b-O16b are synclinal and synperiplanar, respectively.

The heterocyclic and benzene rings in (II) are both flat and approximately coplanar. The dihedral angle between their mean planes is $6.59(6)^{\circ}$. Atoms C13, O14, O15 and C16 form a flat system (r.m.s. deviation $=0.0015 \AA$) that is twisted out of the mean plane of the benzene ring by $2.23(8)^{\circ}$. The remaining atom C 17 is tilted from the planar system formed by atoms C13, O14, O15 and C16 and is 0.201 (3) \AA from that plane. Atoms C13 and C17 are in an antiperiplanar conformation [torsion angle $\mathrm{C} 13-\mathrm{O} 15-\mathrm{C} 16-\mathrm{C} 17=172.17$ (12) ${ }^{\circ}$]. On the other hand, the $\mathrm{C} 13=\mathrm{O} 14$ carbonyl group is in a synperiplanar conformation relative to the $\mathrm{S} 1-\mathrm{C} 2$ bond of the heterocyclic ring [torsion angle $\mathrm{S} 1-\mathrm{C} 2 \cdots \mathrm{C} 13-\mathrm{O} 14=$ $\left.-1.83(18)^{\circ}\right]$.

The partial double-bond character of the $\mathrm{C} 2-\mathrm{N} 6$ bond in (I) and (II) accounts for the hindered rotation of the pyridin-2-ylamino [in (I)] or phenylamino [in (II)] residues in the analysed structures. The dihedral angles between the cyclic systems are 11.67 (11)/27.4 (4) ${ }^{\circ}$ for (I) and 6.59 (6) ${ }^{\circ}$ for (II). The two values given for (I) result from the previously described disorder concerning the arrangement of atoms S1 and C 5 in the crystal structure.

The main factor that determines the crystal packing and the formation of the supramolecular structure of (I) is the system of hydrogen bonds, involving both strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 3). The $\mathrm{N} 6-\mathrm{H} 6 \cdots \mathrm{~N} 3^{\mathrm{i}}$ and $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 13^{\mathrm{i}}$ hydrogen bonds link (symmetry codes as in Table 3) the molecules into centrosymmetric dimers and generate centrosymmetric $R_{2}^{2}(8)$ (Bernstein et al., 1995) ring motifs. Neighbouring dimers are linked through $\mathrm{O} 16 a-\mathrm{H} 16 A \cdots \mathrm{O} 13^{\mathrm{ii}}$ and $\mathrm{O} 16 b-\mathrm{H} 16 B \cdots$
$\mathrm{O} 13^{\text {ii }}$ hydrogen bonds to form the next centrosymmetric ring motif of $R_{2}^{2}(14)$ type (Fig. $4 a$). These contacts link the molecules of (I) into tapes extending along the [110] direction (Table 3, and Figs. $4 a$ and $4 b$). Neighbouring molecular tapes are linked through nonclassical $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 16^{\text {iii }}$ hydrogen bonds into layers parallel to the (111) plane, and these layers are connected by $\mathrm{C} 14 a-\mathrm{H} 14 B \cdots \mathrm{O} 16 a^{\text {iv }}$ hydrogen bonds, forming a three-dimensional hydrogen-bond network.

The molecules of (II) are linked in the crystal structure through N6-H6․O18 hydrogen bonds into chains extending along the [110] direction (Table 2 and Fig. 3).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WQ3065).

References

Agilent (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Agilent (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Behbehani, H. \& Ibrahim, H. M. (2012). Molecules, 17, 6362-6385.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Geronikaki, A., Eleftheriou, P., Vicini, P., Alam, I., Dixit, A. \& Saxena, A. K. (2008). J. Med. Chem. 51, 5221-5228.

Lesyk, R. B. \& Zimenkovsky, B. S. (2004). Curr. Org. Chem. 8, 1547-1577.
Lesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havrylyuk, D. Ya., Atamanyuk, D. V., Subtel'na, I. Yu. \& Khyluk, D. V. (2011). Biopolym. Cell, 27, 107-117.

Ostapiuk, Y. V., Obushak, M. D., Matiychuk, V. S., Naskrent, M. \& Gzella, A. K. (2012). Tetrahedron Lett. 53, 543-545.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Subtel'na, I., Atamanyuk, D., Szymanska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A. \& Lesyk, R. (2010). Bioorg. Med. Chem. 18, 5090-5102.
Váňa, J., Hanusek, J., Růžička, A. \& Sedlák, M. (2009). J. Heterocycl. Chem. 46, 635-639.

supporting information

Acta Cryst. (2014). C70, 812-816 [doi:10.1107/S2053229614015162]

Heterocyclic tautomerism: reassignment of two crystal structures of 2-amino-1,3-thiazolidin-4-one derivatives

Andrzej K. Gzella, Marcin Kowiel, Aneta Susel, Magdalena N. Wojtyra and Roman Lesyk

Computing details

For both compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).
(I) 5-(2-Hydroxyethyl)-2-[(pyridin-2-yl)amino]-1,3-thiazolidin-4-one

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$F(000)=248$
$M_{r}=237.28$
Triclinic, $P \overline{1}$
$a=5.78910$ (15) \AA
$b=8.8045$ (2) \AA
$c=10.9688(3) \AA$
$\alpha=90.638(2)^{\circ}$
$\beta=95.794(2)^{\circ}$
$\gamma=107.990(2)^{\circ}$
$V=528.50(3) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=1.491 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=459-461 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3632 reflections
$\theta=3.0-29.1^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=130 \mathrm{~K}$
Lath, colourless
$0.42 \times 0.22 \times 0.10 \mathrm{~mm}$

Data collection

Agilent Xcalibur Atlas
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Detector resolution: 10.3088 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
$T_{\min }=0.939, T_{\text {max }}=1.000$
5332 measured reflections
2501 independent reflections
2338 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-6 \rightarrow 7$
$k=-11 \rightarrow 11$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.088$
$S=1.13$
2501 reflections

167 parameters

4 restraints
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0328 P)^{2}+0.2306 P\right]\)
    where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1A	0.40161 (15)	0.38579 (7)	0.27170 (4)	0.01982 (15)	0.883 (2)
C2	0.2062 (3)	0.44461 (16)	0.36246 (12)	0.0199 (3)	
N3	0.1772 (2)	0.38288 (14)	0.47166 (10)	0.0214 (3)	
C4	0.2935 (3)	0.26908 (18)	0.48923 (13)	0.0267 (3)	
N6	0.0916 (2)	0.55040 (14)	0.32764 (11)	0.0206 (3)	
H6	0.004 (4)	0.572 (2)	0.3822 (18)	0.034 (5)*	
C7	0.0942 (3)	0.62302 (16)	0.21345 (12)	0.0202 (3)	
N8	0.2530 (2)	0.60269 (15)	0.14094 (11)	0.0230 (3)	
C9	0.2538 (3)	0.66848 (18)	0.03061 (13)	0.0259 (3)	
H9	0.3640	0.6533	-0.0234	0.031*	
C10	0.1021 (3)	0.75713 (19)	-0.00803 (13)	0.0274 (3)	
H10	0.1087	0.8026	-0.0862	0.033*	
C11	-0.0599 (3)	0.77766 (19)	0.07079 (14)	0.0274 (3)	
H11	-0.1652	0.8388	0.0472	0.033*	
C12	-0.0682 (3)	0.70917 (18)	0.18365 (13)	0.0233 (3)	
H12	-0.1794	0.7202	0.2386	0.028*	
O 13	0.2882 (3)	0.19347 (15)	0.58229 (10)	0.0383 (3)	
C15A	0.5049 (3)	0.0412 (2)	0.2396 (2)	0.0218 (4)	0.883 (2)
H15A	0.4441	-0.0734	0.2128	0.026*	0.883 (2)
H15B	0.4880	0.1044	0.1670	0.026*	0.883 (2)
C5A	0.4400 (3)	0.2454 (2)	0.38628 (14)	0.0206 (3)	0.883 (2)
H5A	0.6166	0.2736	0.4186	0.025*	0.883 (2)
C14A	0.3496 (3)	0.07226 (19)	0.33477 (15)	0.0219 (3)	0.883 (2)
H14A	0.3511	-0.0003	0.4030	0.026*	0.883 (2)
H14B	0.1786	0.0475	0.2970	0.026*	0.883 (2)
O16A	0.7567 (2)	0.08204 (17)	0.28591 (13)	0.0269 (3)	0.883 (2)
H16A	0.7756	0.0159	0.3375	0.040*	0.883 (2)
S1B	0.3118 (10)	0.3571 (5)	0.2556 (4)	0.01982 (15)	0.117 (2)
C5B	0.312 (3)	0.2013 (16)	0.3623 (11)	0.0206 (3)	0.117 (2)
H5B	0.1685	0.1039	0.3387	0.025*	0.117 (2)
C14B	0.547 (2)	0.1577 (14)	0.3752 (11)	0.0219 (3)	0.117 (2)
H14C	0.5457	0.0840	0.4428	0.026*	0.117 (2)
H14D	0.6892	0.2551	0.3939	0.026*	0.117 (2)
C15B	0.564 (3)	0.077 (2)	0.2534 (17)	0.0218 (4)	0.117 (2)
H15C	0.4218	-0.0207	0.2370	0.026*	0.117 (2)
H15D	0.5559	0.1502	0.1864	0.026*	0.117 (2)

O16B	$0.778(2)$	$0.0357(15)$	$0.2525(11)$	$0.0269(3)$	$0.117(2)$
H16B	0.7745	-0.0389	0.3001	0.040^{*}	$0.117(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	$0.0243(3)$	$0.0197(2)$	$0.0173(2)$	$0.0081(2)$	$0.0067(2)$	$0.00383(16)$
C2	$0.0251(7)$	$0.0173(6)$	$0.0162(6)$	$0.0040(5)$	$0.0048(5)$	$0.0009(5)$
N3	$0.0285(7)$	$0.0208(6)$	$0.0167(5)$	$0.0093(5)$	$0.0056(5)$	$0.0035(4)$
C4	$0.0405(9)$	$0.0245(7)$	$0.0194(7)$	$0.0151(7)$	$0.0078(6)$	$0.0030(6)$
N6	$0.0242(6)$	$0.0225(6)$	$0.0167(5)$	$0.0082(5)$	$0.0065(5)$	$0.0046(5)$
C7	$0.0233(7)$	$0.0186(6)$	$0.0163(6)$	$0.0028(5)$	$0.0025(5)$	$0.0034(5)$
N8	$0.0280(7)$	$0.0226(6)$	$0.0186(6)$	$0.0067(5)$	$0.0065(5)$	$0.0041(5)$
C9	$0.0286(8)$	$0.0287(8)$	$0.0189(7)$	$0.0052(6)$	$0.0073(6)$	$0.0045(6)$
C10	$0.0291(8)$	$0.0307(8)$	$0.0190(7)$	$0.0039(6)$	$0.0032(6)$	$0.0095(6)$
C11	$0.0259(8)$	$0.0294(8)$	$0.0256(7)$	$0.0072(6)$	$0.0011(6)$	$0.0089(6)$
C12	$0.0228(7)$	$0.0247(7)$	$0.0221(7)$	$0.0061(6)$	$0.0045(5)$	$0.0045(6)$
O13	$0.0691(9)$	$0.0381(7)$	$0.0218(5)$	$0.0333(6)$	$0.0163(5)$	$0.0136(5)$
C15A	$0.0223(11)$	$0.0206(11)$	$0.0222(8)$	$0.0058(8)$	$0.0040(8)$	$0.0014(7)$
C5A	$0.0244(9)$	$0.0209(8)$	$0.0184(7)$	$0.0095(7)$	$0.0032(6)$	$0.0034(6)$
C14A	$0.0216(8)$	$0.0198(8)$	$0.0248(8)$	$0.0064(6)$	$0.0052(6)$	$0.0025(6)$
O16A	$0.0254(7)$	$0.0284(8)$	$0.0295(8)$	$0.0108(5)$	$0.0069(5)$	$0.0088(6)$
S1B	$0.0243(3)$	$0.0197(2)$	$0.0173(2)$	$0.0081(2)$	$0.0067(2)$	$0.00383(16)$
C5B	$0.0244(9)$	$0.0209(8)$	$0.0184(7)$	$0.0095(7)$	$0.0032(6)$	$0.0034(6)$
C14B	$0.0216(8)$	$0.0198(8)$	$0.0248(8)$	$0.0064(6)$	$0.0052(6)$	$0.0025(6)$
C15B	$0.0223(11)$	$0.0206(11)$	$0.0222(8)$	$0.0058(8)$	$0.0040(8)$	$0.0014(7)$
O16B	$0.0254(7)$	$0.0284(8)$	$0.0295(8)$	$0.0108(5)$	$0.0069(5)$	$0.0088(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1A-C2	1.7655 (15)	C12-H12	0.9500
S1A-C5A	1.8178 (16)	C15A-O16A	1.427 (2)
C2-N3	1.3256 (17)	C15A-C14A	1.520 (3)
C2-N6	1.3385 (19)	C15A-H15A	0.9900
C2-S1B	1.660 (5)	C15A-H15B	0.9900
N3-C4	1.3744 (19)	C5A-C14A	1.532 (2)
C4-O13	1.2227 (18)	C5A-H5A	1.0000
C4-C5A	1.528 (2)	C14A-H14A	0.9900
C4-C5B	1.535 (13)	C14A-H14B	0.9900
N6-C7	1.4119 (17)	O16A-H16A	0.8400
N6-H6	0.88 (2)	S1B-C5B	1.813 (13)
C7-N8	1.3251 (19)	C5B-C14B	1.520 (14)
C7-C12	1.396 (2)	C5B-H5B	1.0000
N8-C9	1.3473 (18)	C14B-C15B	1.533 (15)
C9-C10	1.384 (2)	C14B-H14C	0.9900
C9-H9	0.9500	C14B-H14D	0.9900
C10-C11	1.387 (2)	C15B-O16B	1.397 (16)
C10-H10	0.9500	C15B-H15C	0.9900

C11-C12	1.382 (2)
C11-H11	0.9500
C2-S1A-C5A	89.64 (7)
N3-C2-N6	118.87 (13)
N3-C2-S1B	120.45 (18)
N6-C2-S1B	118.35 (18)
N3-C2-S1A	117.77 (11)
N6-C2-S1A	123.35 (10)
C2-N3-C4	111.24 (12)
O13-C4-N3	123.02 (14)
O13-C4-C5A	121.08 (14)
N3-C4-C5A	115.86 (12)
O13-C4-C5B	123.3 (5)
N3-C4-C5B	107.5 (4)
C2-N6-C7	126.46 (13)
C2-N6-H6	114.2 (13)
C7-N6-H6	119.3 (13)
N8-C7-C12	124.43 (13)
N8-C7-N6	116.53 (12)
C12-C7-N6	119.04 (13)
C7-N8-C9	117.15 (13)
N8-C9-C10	123.26 (14)
N8-C9-H9	118.4
C10-C9-H9	118.4
C9-C10-C11	118.06 (13)
C9-C10-H10	121.0
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	121.0
C12-C11-C10	120.01 (14)
C12-C11-H11	120.0
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	120.0
C11-C12-C7	117.06 (14)
C11-C12-H12	121.5
C7-C12-H12	121.5
O16A-C15A-C14A	112.19 (16)
O16A-C15A-H15A	109.2
C14A-C15A-H15A	109.2
O16A-C15A-H15B	109.2
C5A_a-S1A_a-C2-N3	4.74 (12)
C5A-S1A-C2-N6	-176.87 (13)
C5A-S1A-C2-S1B	-99.0 (5)
N6-C2-N3-C4	175.93 (13)
S1B-C2-N3-C4	13.5 (3)
S1A-C2-N3-C4	-5.60 (17)
C2-N3-C4-O13	-178.53 (15)
C2-N3-C4-C5A	3.5 (2)
C2-N3-C4-C5B	-25.5 (6)

C15B-H15D	0.9900
O16B-H16B	0.8400
C14A-C15A-H15B	109.2
H15A-C15A-H15B	107.9
C4-C5A-C14A	111.18 (14)
C4-C5A-S1A	105.24 (11)
C14A-C5A-S1A	112.27 (11)
$\mathrm{C} 4-\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A}$	109.3
C14A-C5A-H5A	109.3
S1A-C5A-H5A	109.3
C15A-C14A-C5A	112.54 (14)
C15A-C14A-H14A	109.1
C5A-C14A-H14A	109.1
C15A-C14A-H14B	109.1
C5A-C14A-H14B	109.1
H14A-C14A-H14B	107.8
C15A-O16A-H16A	109.5
C2-S1B-C5B	87.4 (4)
C14B-C5B-C4	105.5 (9)
C14B-C5B-S1B	113.8 (9)
C4-C5B-S1B	106.5 (7)
C14B-C5B-H5B	110.3
C4-C5B-H5B	110.3
S1B-C5B-H5B	110.3
C5B-C14B-C15B	107.7 (11)
C5B-C14B-H14C	110.2
C15B-C14B-H14C	110.2
C5B-C14B-H14D	110.2
C15B-C14B-H14D	110.2
H14C-C14B-H14D	108.5
O16B-C15B-C14B	113.1 (13)
O16B-C15B-H15C	109.0
C14B-C15B-H15C	109.0
O16B-C15B-H15D	109.0
C14B-C15B-H15D	109.0
H15C-C15B-H15D	107.8
C15B-O16B-H16B	109.5
C5B-C4-C5A-C14A	-43.3 (9)
O13-C4-C5A-S1A	-178.17 (14)
N3-C4-C5A-S1A	-0.17 (18)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	78.4 (10)
$\mathrm{C} 2-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4$	-2.25 (12)
C2-S1A-C5A-C14A	118.83 (13)
O16A-C15A-C14A-C5A	55.8 (2)
C4-C5A-C14A-C15A	-175.19 (15)
S1A-C5A-C14A-C15A	67.21 (17)

$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 7$	$-177.41(13)$
$\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 7$	$-14.7(3)$
$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 7$	$4.2(2)$
$\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 7-\mathrm{N} 8$	$-10.6(2)$
$\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 7-\mathrm{C} 12$	$168.97(14)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 9$	$-0.9(2)$
$\mathrm{N} 6-\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 9$	$178.62(12)$
$\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 9-\mathrm{C} 10$	$1.3(2)$
$\mathrm{N} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.6(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-0.6(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$1.0(2)$
$\mathrm{N} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$-0.3(2)$
$\mathrm{N} 6-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$-179.74(13)$
$\mathrm{O} 13-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}$	$60.0(2)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}$	$-121.96(15)$

$\mathrm{N} 3-\mathrm{C} 2-\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$3.1(5)$
$\mathrm{N} 6-\mathrm{C} 2-\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$-159.4(5)$
$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 2-\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$88.8(7)$
$\mathrm{O} 13-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}$	$-59.0(11)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}$	$148.0(7)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}$	$35.7(7)$
$\mathrm{O} 13-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}$	$179.7(3)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}$	$26.7(8)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 5 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}$	$-85.6(11)$
$\mathrm{C} 2-\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}$	$-132.4(10)$
$\mathrm{C} 2-\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4$	$-16.6(7)$
$\mathrm{C} 4-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}$	$175.6(11)$
$\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}$	$-67.9(14)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}-\mathrm{O} 16 \mathrm{~B}$	$178.1(14)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H6 ${ }^{\text {N }} 3^{\text {i }}$	0.88 (2)	2.10 (2)	2.9733 (17)	173 (2)
O16a-H16A \cdots O13 ${ }^{\text {ii }}$	0.84	2.00	2.7940 (19)	158
O16b-H16B \cdots O13 ${ }^{\text {ii }}$	0.84	1.86	2.692 (12)	168
C10-H10…O16a ${ }^{\text {iii }}$	0.95	2.52	3.442 (2)	164
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 13^{\text {i }}$	0.95	2.31	3.199 (2)	155
C14a-H14B \cdots O16a ${ }^{\text {iv }}$	0.99	2.54	3.448 (2)	152

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $-x+1,-y+1,-z$; (iv) $x-1, y, z$.

(II) Ethyl 4-[(4-oxothiazolidin-2-yl)amino]benzoate

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$F(000)=276$
$M_{r}=264.30$
Triclinic, $P \overline{1}$
$a=3.9850$ (2) \AA
$b=5.5113$ (3) \AA
$c=26.8877(14) \AA$
$\alpha=84.483(5)^{\circ}$
$\beta=89.670(5)^{\circ}$
$\gamma=86.338(5)^{\circ}$
$V=586.58(6) \AA^{3}$
$Z=2$

Data collection

Agilent Xcalibur Atlas
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Detector resolution: 10.3088 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
$T_{\min }=0.908, T_{\text {max }}=1.000$
$D_{\mathrm{x}}=1.496 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=461-462 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5612 reflections
$\theta=2.3-29.0^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=130 \mathrm{~K}$
Lath, colourless
$0.40 \times 0.34 \times 0.05 \mathrm{~mm}$

7855 measured reflections
2804 independent reflections
2604 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-5 \rightarrow 5$
$k=-7 \rightarrow 7$
$l=-35 \rightarrow 35$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.078$
$S=1.05$
2804 reflections
168 parameters
0 restraints

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0367 P)^{2}+0.3017 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	0.90166 (7)	0.46485 (5)	0.05976 (2)	0.01454 (9)
C2	0.7690 (3)	0.4621 (2)	0.12301 (4)	0.0130 (2)
N3	0.5653 (3)	0.64554 (18)	0.13492 (4)	0.0152 (2)
C4	0.4898 (3)	0.8077 (2)	0.09439 (4)	0.0145 (2)
C5	0.6724 (3)	0.7546 (2)	0.04612 (4)	0.0151 (2)
H5A	0.8277	0.8836	0.0360	0.018*
H5B	0.5092	0.7468	0.0188	0.018*
N6	0.8822 (3)	0.27244 (18)	0.15391 (4)	0.0148 (2)
H6	1.014 (4)	0.167 (3)	0.1409 (7)	0.028 (4)*
C7	0.8121 (3)	0.2168 (2)	0.20533 (4)	0.0142 (2)
C8	0.6325 (3)	0.3760 (2)	0.23453 (5)	0.0177 (2)
H8	0.5475	0.5321	0.2203	0.021*
C9	0.5797 (3)	0.3034 (2)	0.28469 (5)	0.0188 (3)
H9	0.4585	0.4111	0.3049	0.023*
C10	0.7019 (3)	0.0748 (2)	0.30575 (4)	0.0168 (2)
C11	0.8843 (3)	-0.0814 (2)	0.27639 (5)	0.0185 (2)
H11	0.9711	-0.2368	0.2908	0.022*
C12	0.9398 (3)	-0.0119 (2)	0.22645 (5)	0.0174 (2)
H12	1.0643	-0.1191	0.2065	0.021*
C13	0.6394 (3)	-0.0095 (2)	0.35919 (5)	0.0198 (3)
O14	0.7419 (3)	-0.20429 (19)	0.37957 (4)	0.0322 (3)
O15	0.4537 (3)	0.15882 (17)	0.38186 (3)	0.0237 (2)
C16	0.3732 (4)	0.0971 (3)	0.43390 (5)	0.0244 (3)
H16A	0.5800	0.0440	0.4532	0.029*
H16B	0.2180	-0.0367	0.4374	0.029*
C17	0.2087 (4)	0.3256 (3)	0.45242 (5)	0.0288 (3)
H17A	0.0085	0.3785	0.4323	0.043*
H17B	0.3674	0.4549	0.4496	0.043*
H17C	0.1435	0.2917	0.4875	0.043*
O18	0.2933 (2)	0.98859 (16)	0.09484 (3)	0.01938 (19)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
S1	$0.01742(16)$	$0.01331(14)$	$0.01236(14)$	$0.00285(11)$	$0.00282(10)$	$-0.00122(10)$
C2	$0.0132(5)$	$0.0136(5)$	$0.0126(5)$	$-0.0021(4)$	$0.0011(4)$	$-0.0021(4)$
N3	$0.0167(5)$	$0.0141(5)$	$0.0145(5)$	$0.0019(4)$	$0.0017(4)$	$-0.0020(4)$
C4	$0.0147(5)$	$0.0137(5)$	$0.0153(5)$	$-0.0005(4)$	$0.0011(4)$	$-0.0033(4)$
C5	$0.0167(6)$	$0.0129(5)$	$0.0149(5)$	$0.0025(4)$	$0.0020(4)$	$0.0000(4)$
N6	$0.0170(5)$	$0.0129(5)$	$0.0141(5)$	$0.0028(4)$	$0.0021(4)$	$-0.0023(4)$
C7	$0.0155(5)$	$0.0136(5)$	$0.0136(5)$	$-0.0012(4)$	$-0.0004(4)$	$-0.0015(4)$
C8	$0.0233(6)$	$0.0133(5)$	$0.0161(6)$	$0.0023(5)$	$0.0015(5)$	$-0.0007(4)$
C9	$0.0238(6)$	$0.0157(6)$	$0.0166(6)$	$0.0020(5)$	$0.0023(5)$	$-0.0020(4)$
C10	$0.0190(6)$	$0.0162(6)$	$0.0150(6)$	$-0.0019(5)$	$-0.0004(4)$	$-0.0002(4)$
C11	$0.0224(6)$	$0.0136(5)$	$0.0187(6)$	$0.0015(5)$	$-0.0010(5)$	$0.0002(4)$
C12	$0.0205(6)$	$0.0133(5)$	$0.0182(6)$	$0.0025(5)$	$0.0005(5)$	$-0.0019(4)$
C13	$0.0238(6)$	$0.0185(6)$	$0.0166(6)$	$-0.0004(5)$	$0.0008(5)$	$0.0003(5)$
O14	$0.0480(7)$	$0.0236(5)$	$0.0217(5)$	$0.0104(5)$	$0.0064(4)$	$0.0063(4)$
O15	$0.0336(5)$	$0.0215(5)$	$0.0143(4)$	$0.0049(4)$	$0.0051(4)$	$0.0020(3)$
C16	$0.0315(7)$	$0.0260(7)$	$0.0142(6)$	$0.0027(6)$	$0.0048(5)$	$0.0024(5)$
C17	$0.0338(8)$	$0.0298(7)$	$0.0214(7)$	$0.0054(6)$	$0.0058(6)$	$-0.0011(5)$
O18	$0.0223(5)$	$0.0150(4)$	$0.0201(4)$	$0.0060(3)$	$0.0021(3)$	$-0.0024(3)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

S1-C2	1.7770 (12)	C9-H9	0.9500
S1-C5	1.7957 (12)	C10-C11	1.3918 (18)
C2-N3	1.3182 (15)	C10-C13	1.4915 (17)
C2-N6	1.3282 (15)	C11-C12	1.3811 (17)
N3-C4	1.3634 (15)	C11-H11	0.9500
C4-O18	1.2287 (15)	C12-H12	0.9500
C4-C5	1.5279 (16)	C13-O14	1.2054 (16)
C5-H5A	0.9900	C13-O15	1.3400 (16)
C5-H5B	0.9900	O15-C16	1.4470 (15)
N6-C7	1.4171 (15)	C16-C17	1.5081 (19)
N6-H6	0.859 (19)	C16-H16A	0.9900
C7-C8	1.3946 (17)	C16-H16B	0.9900
C7-C12	1.3977 (16)	C17-H17A	0.9800
C8-C9	1.3881 (17)	C17-H17B	0.9800
C8-H8	0.9500	C17-H17C	0.9800
C9-C10	1.3902 (17)		
C2-S1-C5	89.35 (5)	C9-C10-C11	119.57 (11)
N3-C2-N6	125.95 (11)	C9-C10-C13	121.63 (12)
N3-C2-S1	117.49 (9)	C11-C10-C13	118.79 (11)
N6-C2-S1	116.55 (9)	C12-C11-C10	120.38 (11)
C2-N3-C4	111.51 (10)	C12- $\mathrm{C} 11-\mathrm{H} 11$	119.8
O18-C4-N3	124.59 (11)	C10-C11-H11	119.8
O18-C4-C5	119.87 (10)	C11-C12-C7	119.75 (11)

N3-C4-C5	115.53 (10)
C4-C5-S1	105.83 (8)
C4-C5-H5A	110.6
S1-C5-H5A	110.6
C4-C5-H5B	110.6
S1-C5-H5B	110.6
H5A-C5-H5B	108.7
C2-N6-C7	129.30 (10)
C2-N6-H6	115.7 (12)
C7-N6-H6	115.0 (12)
C8-C7-C12	120.37 (11)
C8-C7-N6	123.86 (11)
C12-C7-N6	115.76 (11)
C9-C8-C7	119.11 (11)
C9-C8-H8	120.4
C7-C8-H8	120.4
C8-C9-C10	120.81 (12)
C8-C9-H9	119.6
C10-C9-H9	119.6
C5-S1-C2-N3	2.42 (10)
C5-S1-C2-N6	-178.37 (10)
N6-C2-N3-C4	-178.45 (11)
S1-C2-N3-C4	0.67 (14)
C2-N3-C4-O18	176.49 (11)
C2-N3-C4-C5	-4.32 (15)
O18-C4-C5-S1	-174.96 (9)
N3-C4-C5-S1	5.82 (13)
C2-S1-C5-C4	-4.21 (8)
N3-C2-N6-C7	1.3 (2)
S1-C2-N6-C7	-177.79 (10)
C2-N6-C7-C8	-8.0 (2)
C2-N6-C7-C12	172.90 (12)
C12-C7-C8-C9	-0.62 (19)
N6-C7-C8-C9	-179.66 (11)

$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.1
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{H} 12$	120.1
$\mathrm{O} 14-\mathrm{C} 13-\mathrm{O} 15$	$124.04(12)$
$\mathrm{O} 14-\mathrm{C} 13-\mathrm{C} 10$	$124.54(12)$
$\mathrm{O} 15-\mathrm{C} 13-\mathrm{C} 10$	$111.42(11)$
$\mathrm{C} 13-\mathrm{O} 15-\mathrm{C} 16$	$116.64(10)$
$\mathrm{O} 15-\mathrm{C} 16-\mathrm{C} 17$	$106.36(11)$
$\mathrm{O} 15-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	110.5
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	110.5
$\mathrm{O} 15-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	110.5
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	110.5
$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	108.6
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	109.5
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	109.5
H17A-C17-H17B	109.5
C16-C17-H17C	109.5
H17A-C17-H17C	109.5
H17B-C17-H17C	109.5

$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10 \quad-0.3(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 \quad 1.1$ (2)
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13 \quad-178.21$ (12)
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12 \quad-0.94$ (19)
$\mathrm{C} 13-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12 \quad 178.37$ (12)
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7 \quad 0.04$ (19)
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11 \quad 0.75$ (19)
N6-C7-C12-C11 179.87 (11)
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13-\mathrm{O} 14 \quad-179.18$ (13)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 13-\mathrm{O} 14 \quad 1.5(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13-\mathrm{O} 15 \quad 0.89$ (18)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 13-\mathrm{O} 15 \quad-178.41$ (11)
$\mathrm{O} 14-\mathrm{C} 13-\mathrm{O} 15-\mathrm{C} 16 \quad-0.5(2)$
C10-C13-O15-C16
179.45 (11)

C13-O15-C16-C17
172.17 (12)

Hydrogen-bond geometry (A, ${ }^{9}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 6-\mathrm{H} 6 \cdots \mathrm{O} 18^{\mathrm{i}}$	$0.857(17)$	$1.954(17)$	$2.7882(14)$	$164.3(17)$

Symmetry code: (i) $x+1, y-1, z$.

