## organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

## Three substituted (*E*)-3-aryl-2-(thienyl)acrylonitriles: isolated molecules, simple hydrogen-bonded chains and hydrogen-bonded sheets

# Debora Cobo,<sup>a</sup> Jairo Quiroga,<sup>a</sup> José M. de la Torre,<sup>b</sup> Justo Cobo,<sup>b</sup> John N. Low<sup>c</sup> and Christopher Glidewell<sup>d</sup>\*

<sup>a</sup>Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, <sup>b</sup>Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, <sup>c</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and <sup>d</sup>School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Received 22 June 2006 Accepted 11 July 2006 Online 11 August 2006

The structure of (E)-2-(2-thienyl)-3-(3,4,5-trimethoxyphenyl)acrylonitrile, C<sub>16</sub>H<sub>15</sub>NO<sub>3</sub>S, contains no direction-specific intermolecular interactions. The molecules of (E)-3-(4bromophenyl)-2-(2-thienyl)acrylonitrile, C<sub>13</sub>H<sub>8</sub>BrNS, exhibit orientational disorder of the thienyl fragment, and the molecules are linked into simple C(5) chains by a single C-H···N hydrogen bond. In (E)-3-phenyl-2-(3-thienyl)acrylonitrile, C<sub>13</sub>H<sub>9</sub>NS, the molecules are linked into sheets by a combination of one C-H···N hydrogen bond and one C-H··· $\pi$ (arene) hydrogen bond.

#### Comment

We report here the structures of three substituted (E)-3-aryl-2-(thienyl)acrylonitriles, namely (E)-2-(2-thienyl)-3-(3,4,5trimethoxyphenyl)acrylonitrile, (I) (Fig. 1), (E)-3-(4-bromophenyl)-2-(2-thienyl)acrylonitrile, (II) (Fig. 2), and (E)-3phenyl-2-(3-thienyl)acrylonitrile, (III) (Fig. 3), which have been synthesized for use as potential intermediates in the synthesis of new fused heterocyclic systems. The structure of the analogous (E)-3-(4-chlorophenyl)-2-(2-thienyl)acrylonitrile, (IV), was reported recently (Cobo *et al.*, 2005).

For compound (I), the key torsion angles (Table 1) show that the non-H atoms are very nearly coplanar, with the sole exception of atom C141 of the 4-methoxy group. The exocyclic angles at the methoxy substituents in (I) show the usual patterns of behaviour, with markedly different C-C-Oangles for the 3- and 5-methoxy substituents, which are effectively coplanar with the aryl ring, and rather similar angles for the 4-methoxy substituent, where the methyl C atom is displaced from the plane of the aryl ring by 1.261 (2) Å. Compound (II) is isomorphous and isostructural with the chloro analogue, viz. (IV) (Cobo *et al.*, 2005). In (II), there is a significant rotation of the aryl group around the



C11-C17 bond, so that this fragment is not coplanar with the rest of the molecule (Table 2). There is no obvious reason for this conformational difference between compounds (I) and (II), as the aryl ring in (II) is not involved in any hydrogen bonding. In the isostructural pair (II) and (IV), although not in compound (I), the 2-thienyl group exhibits orientational disorder over two sets of sites corresponding to a 180° rotation about the C2-C27 bond. The populations of the major and minor conformers in compounds (II) and (IV) are experimentally indistinguishable: 0.798 (3) and 0.202 (3) in (II), and 0.802 (3) and 0.198 (3) in (IV).

The molecules of compound (III) are almost planar, as shown by the key torsion angles (Table 4). In (I)–(III), the nitrile components exhibit quite long C–C bonds and very short C–N bonds. The remaining bond distances in (I)–(III) show no unusual features.

There are no direction-specific intermolecular interactions in the structure of compound (I). In particular,  $C-H \cdots N$ ,  $C-H \cdots O$  and  $C-H \cdots \pi$ (arene) hydrogen bonds and aromatic  $\pi-\pi$  stacking interactions are all absent, so that the structure consists of effectively isolated molecules.

By contrast, the molecules of compound (II) are linked by a single  $C-H \cdots N$  hydrogen bond (Table 3), exactly as in compound (IV). Alkene atom C17 in the molecule at (x, y, z)



#### Figure 1

The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

acts as hydrogen-bond donor to atom N27 in the molecule at  $(-\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z)$ , so forming a *C*(5) chain (Bernstein *et al.*, 1995) running parallel to the [101] direction and generated by



#### Figure 2

The molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.



#### Figure 3

The molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For the sake of clarity, only the major orientation of the disordered thienyl ring is shown.



#### Figure 4

Part of the crystal structure of compound (II), showing the formation of a C(5) chain along [ $\overline{1}01$ ]. For the sake of clarity, only the major orientation of the disordered thienyl ring is shown, and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (\*) or a hash symbol (#) are at the symmetry positions  $(-\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z)$  and  $(\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z)$ , respectively.

the *n*-glide plane at  $y = \frac{1}{4}$  (Fig. 4). Two chains of this type, which are related to one another by inversion and hence are antiparallel, and generated by the *n*-glide planes at  $y = \frac{1}{4}$  and  $y = \frac{3}{4}$ , pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

In the structure of compound (III), the molecules are linked into sheets by a combination of  $C-H\cdots N$  and  $C-H\cdots \pi$ (arene) hydrogen bonds (Table 5). Atom C2 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom N37 in the molecule at (1 - x, -y, 1 - z), so generating by inversion an  $R_2^2(12)$  dimer centred at  $(\frac{1}{2}, 0, \frac{1}{2})$  (Fig. 5). In addition, atoms C13 in the molecules at (x, y, z) and (1 - x, -y, 1 - z), which form a dimer centred at  $(\frac{1}{2}, 0, \frac{1}{2})$ , act as hydrogen-bond donors to the aryl rings of the molecules at  $(2 - x, -\frac{1}{2} + y, \frac{3}{2} - z)$  and  $(-1 + x, \frac{1}{2} - y, -\frac{1}{2} + z)$ , respectively, which themselves are components of dimers centred at  $(\frac{3}{2}, -\frac{1}{2}, 1)$  and  $(-\frac{1}{2}, \frac{1}{2}, 0)$ , respectively. Similarly, the aryl rings at (x, y, z) and (1 - x, -y, 1 - z) accept hydrogen bonds from atom C13 in the molecules at  $(2 - x, \frac{1}{2} + y, \frac{3}{2} - z)$  and  $(-1 + x, -\frac{1}{2} - y, -\frac{1}{2} + z)$ , themselves parts of dimers centred at  $(\frac{3}{2}, \frac{1}{2}, 1)$ 



#### Figure 5

Part of the crystal structure of compound (III), showing the formation of an  $R_2^2(12)$  dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (\*) are at the symmetry position (1 - x, -y, 1 - z).



#### Figure 6

A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded sheet parallel to  $(10\overline{2})$ . For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

and  $\left(-\frac{1}{2}, -\frac{1}{2}, 0\right)$ , respectively. Propagation of this interaction then links the  $R_2^2(12)$  dimers into a sheet parallel to  $(10\overline{2})$ (Fig. 6).

#### **Experimental**

Compounds (I)-(III) were prepared using procedures similar to that employed for the synthesis of compound (IV) (Cobo et al., 2005). A solution of 2-thiopheneacetonitrile [for (I) and (II)] or 3-thiopheneacetonitrile [for (III)] (1 mmol) and potassium tert-butoxide (1 mmol) in anhydrous ethanol (3 ml) was stirred at room temperature for 15 min. A solution of the appropriate benzaldehyde (1 mmol) in anhydrous ethanol (3 ml) was then added, and the overall mixtures were then heated under reflux for 2-3 h. The resulting solid products were collected by filtration, washed with ethanol, dried, and finally crystallized from dimethylformamide to give yellow crystals suitable for single-crystal X-ray diffraction. Compound (I): m.p. 391-392 K, yield 70%; MS EI (30 eV) m/z (%): 302 (21), 301 (100, *M*<sup>+</sup>), 286 (39 *M*<sup>+</sup> – CH<sub>3</sub>), 226 (16). Compound (II): m.p. 368-370 K, yield 68%; MS EI (30 eV) m/z (%): 292 (17), 291/289  $(100/98, M^+), 290 (22), 211 (16), 210 (81), 209 (89), 208 (91), 183 (16),$ 177 (35), 166 (19) 139 (16), 154 (17), 127 (10), 45 (14). Compound (III): m.p. 348-349 K [literature m.p. 348 K (Stuart et al., 1986)], yield 60%.

Z = 4

 $D_x = 1.413 \text{ Mg m}^{-3}$ 

Mo Ka radiation

Block, colourless

 $0.30 \times 0.20 \times 0.10 \ \mathrm{mm}$ 

17457 measured reflections

3228 independent reflections

2538 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.24 \text{ mm}^{-1}$ 

T = 120 (2) K

 $R_{\rm int} = 0.041$  $\theta_{\rm max} = 27.5^\circ$ 

#### Compound (I)

#### Crystal data

C<sub>16</sub>H<sub>15</sub>NO<sub>3</sub>S  $M_r = 301.36$ Monoclinic,  $P2_1/c$ a = 22.5423 (6) Å b = 8.4647 (3) Å c = 7.4243 (2) Å  $\beta = 91.510 \ (2)^{\circ}$ V = 1416.17 (7) Å<sup>3</sup> Data collection Bruker-Nonius KappaCCD area-

detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003)  $T_{\rm min} = 0.920, \ T_{\rm max} = 0.977$ 

#### Refinement

Refinement on  $F^2$  $w = 1/[\sigma^2(F_o^2) + (0.0648P)^2]$  $R[F^2 > 2\sigma(F^2)] = 0.038$ + 0.0444P]  $wR(F^2) = 0.113$ where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.12 $\Delta \rho_{\rm max} = 0.40 \text{ e} \text{ Å}^{-3}$ 3228 reflections  $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$ 193 parameters H-atom parameters constrained

#### Table 1

| Selected | geometric | parameters ( | (Å, ' | ) for ( | (I) | ). |
|----------|-----------|--------------|-------|---------|-----|----|
|----------|-----------|--------------|-------|---------|-----|----|

| C27-C271        | 1.443 (2)   | C271-N27         | 1.145 (2)   |
|-----------------|-------------|------------------|-------------|
| O13-C13-C12     | 124.05 (14) | O14-C14-C15      | 119.86 (13) |
| O13-C13-C14     | 115.33 (13) | O15-C15-C14      | 115.80 (12) |
| O14-C14-C13     | 120.47 (14) | O15-C15-C16      | 124.47 (14) |
| S1-C2-C27-C17   | -9.0 (2)    | C12-C13-O13-C131 | 7.9 (2)     |
| C2-C27-C17-C11  | 174.72 (15) | C13-C14-O14-C141 | 75.54 (17)  |
| C27-C17-C11-C12 | -5.5 (3)    | C16-C15-O15-C151 | 2.2 (2)     |

#### Compound (II)

#### Crystal data

| C12H2BrNS                      | Z = 4                                     |
|--------------------------------|-------------------------------------------|
| $M_r = 290.17$                 | $D_{\rm r} = 1.669 {\rm Mg m}^{-3}$       |
| Monoclinic, $P2_1/n$           | Mo $K\alpha$ radiation                    |
| a = 3.8557 (2) Å               | $\mu = 3.71 \text{ mm}^{-1}$              |
| b = 24.0484 (7) Å              | T = 120 (2) K                             |
| c = 12.5466 (4) Å              | Needle, colourless                        |
| $\beta = 96.877 \ (2)^{\circ}$ | $0.38 \times 0.04 \times 0.03 \text{ mm}$ |
| V = 1154.99 (8) Å <sup>3</sup> |                                           |
| Data collection                |                                           |

12766 measured reflections

 $R_{\rm int} = 0.059$ 

 $\theta_{\rm max} = 27.5^{\circ}$ 

2598 independent reflections

1983 reflections with  $I > 2\sigma(I)$ 

Bruker-Nonius KappaCCD areadetector diffractometer  $\omega$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003)  $T_{\min} = 0.333, T_{\max} = 0.897$ 

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F^2) + (0.032P)^2]$                       |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.040$ | + 0.6935P]                                                 |
| $wR(F^2) = 0.081$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.09                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 2598 reflections                | $\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 147 parameters                  | $\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   | Extinction correction: SHELXL97                            |
| •                               | (Sheldrick, 1997)                                          |
|                                 | Extinction coefficient: 0.0211 (12)                        |

#### Table 2

Selected geometric parameters (Å, °) for (II).

| C27-C271                        | 1.446 (4)             | C271-N27        | 1.143 (4) |
|---------------------------------|-----------------------|-----------------|-----------|
| S1-C2-C27-C17<br>C2-C27-C17-C11 | 5.2 (4)<br>-178.1 (3) | C27-C17-C11-C12 | 38.7 (4)  |

#### Table 3

Sy

Hydrogen-bond geometry (Å,  $^\circ)$  for (II).

| $D - H \cdot \cdot \cdot A$ | D-H                                               | $H \cdot \cdot \cdot A$ | $D{\cdots}A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|---------------------------------------------------|-------------------------|--------------|---------------------------|
| $C17 - H17 \cdots N27^{i}$  | 0.95                                              | 2.55                    | 3.450 (4)    | 159                       |
| Symmetry code: (i) x –      | $\frac{1}{2} - v + \frac{1}{2} + z + \frac{1}{2}$ | 1                       |              | · · ·                     |

Compound (III)

| Crystal data                    |                                           |
|---------------------------------|-------------------------------------------|
| $C_{13}H_9NS$                   | Z = 4                                     |
| $M_r = 211.27$                  | $D_x = 1.360 \text{ Mg m}^{-3}$           |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation                    |
| $a = 9.6280 (11) \text{\AA}$    | $\mu = 0.27 \text{ mm}^{-1}$              |
| b = 5.7190 (3)  Å               | T = 120 (2) K                             |
| c = 19.247 (2)  Å               | Block, yellow                             |
| $\beta = 103.129 \ (7)^{\circ}$ | $0.49 \times 0.31 \times 0.20 \text{ mm}$ |
| $V = 1032.09 (17) \text{ Å}^3$  |                                           |
|                                 |                                           |

#### Data collection

| Bruker–Nonius KappaCCD area-               |
|--------------------------------------------|
| detector diffractometer                    |
| $\varphi$ and $\omega$ scans               |
| Absorption correction: multi-scan          |
| [SADABS (Sheldrick, 2003) and              |
| EVALCCD (Duisenberg et al.,                |
| 2003)]                                     |
| $T_{\rm min} = 0.878, T_{\rm max} = 0.947$ |

24963 measured reflections 2368 independent reflections 1788 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.036$  $\theta_{\rm max} = 27.5^\circ$ 

| $w = 1/[\sigma^2(F_o^2) + (0.1146P)^2]$                    |
|------------------------------------------------------------|
| + 1.443 <i>P</i> ]                                         |
| where $P = (F_0^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| $\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$ |
|                                                            |
|                                                            |

#### Table 4

Selected geometric parameters (Å, °) for (III).

| C37-C371                        | 1.444 (4)               | C371-N37        | 1.146 (4) |
|---------------------------------|-------------------------|-----------------|-----------|
| C2-C3-C37-C17<br>C3-C37-C17-C11 | 179.0 (3)<br>-178.1 (2) | C37-C17-C11-C12 | -1.7 (5)  |

#### Table 5

Hydrogen-bond geometry (Å, °) for (III).

*Cg* is the centroid of the C11–C16 ring.

| $D-\mathrm{H}\cdots A$ | $D-\mathrm{H}$     | $H \cdot \cdot \cdot A$ | $D \cdots A$                         | $D - \mathbf{H} \cdots A$ |
|------------------------|--------------------|-------------------------|--------------------------------------|---------------------------|
| $C2-H2\cdots N37^{i}$  | 0.95               | 2.59                    | 3.324 (5)                            | 135                       |
| $C13-H13\cdots Cg^n$   | 0.95               | 2.86                    | 3.566 (4)                            | 132                       |
| Symmetry codes: (i) -  | -x + 1, -y, -z - z | +1; (ii) $-x + 2,$      | $y - \frac{1}{2}, -z + \frac{3}{2}.$ |                           |

The space groups  $P2_1/c$ ,  $P2_1/n$  and  $P2_1/c$  for compounds (I), (II) and (III), respectively, were uniquely assigned from the systematic absences. All H atoms were located in difference maps and then treated as riding atoms, with C-H distances of 0.95 Å and with  $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ , or C-H = 0.98 Å and  $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$  for

the methyl groups. In compound (II), the disorder of the thienyl group was modelled using a common set of sites for atoms C2, C4 and C5 in the two orientations and individual sites for the remaining atoms of this unit, denoted S1 and C3 for the major orientation, and S3 and C1 for the minor orientation. The refined site occupancies for the two orientations were 0.798 (3) and 0.202 (3).

For all compounds, data collection: *COLLECT* (Nonius, 1999). Cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* for (I) and (II); *DIRAX/LSQ* (Duisenberg *et al.*, 2000) for (III). Data reduction: *DENZO* and *COLLECT* for (I) and (II); *EVALCCD* (Duisenberg *et al.*, 2003) for (III). For all compounds, program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *OSCAIL* (McArdle, 2003) and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain), and the Universidad de Jaén for financial support. JT also thanks the Universidad de Jaén for a research scholarship supporting a short stay at the EPSRC National X-ray Crystallography Service. JQ and DC thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3037). Services for accessing these data are described at the back of the journal.

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, 03639–03641.
- Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stuart, J. G., Quast, M. J., Martin, G. E., Lynch, V. M., Simonsen, S. H., Lee, M. L., Castle, R. N., Dallas, J. L., John, B. K. & Johnson, L. F. (1986). J. *Heterocycl. Chem.* 23, 1215–1234.

# supporting information

Acta Cryst. (2006). C62, o550-o553 [doi:10.1107/S0108270106026874]

# Three substituted (*E*)-3-aryl-2-(thienyl)acrylonitriles: isolated molecules, simple hydrogen-bonded chains and hydrogen-bonded sheets

# Debora Cobo, Jairo Quiroga, José M. de la Torre, Justo Cobo, John N. Low and Christopher Glidewell

### **Computing details**

For all compounds, data collection: *COLLECT* (Nonius, 1999). Cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* for (I), (II); *DIRAX/LSQ* (Duisenberg *et al.*, 2000) for (III). Data reduction: *DENZO* and *COLLECT* for (I), (II); *EVALCCD* (Duisenberg *et al.*, 2003) for (III). For all compounds, program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *OSCAIL* (McArdle, 2003) and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

### (I) (E)-2-(2-thienyl)-3-(3,4,5-trimethoxyphenyl)acrylonitrile

Crystal data

C<sub>16</sub>H<sub>15</sub>NO<sub>3</sub>S  $M_r = 301.36$ MonoclinicP2<sub>1</sub>/c Hall symbol: -P 2ybc a = 22.5423 (6) Å b = 8.4647 (3) Å c = 7.4243 (2) Å  $\beta = 91.510$  (2)° V = 1416.17 (7) Å<sup>3</sup> Z = 4

#### Data collection

Bruker Nonius KappaCCD area-detector diffractometer Radiation source: Bruker Nonius FR591 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) F(000) = 632  $D_x = 1.413 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3228 reflections  $\theta = 3.6-27.5^{\circ}$   $\mu = 0.24 \text{ mm}^{-1}$  T = 120 KBlock, colourless  $0.30 \times 0.20 \times 0.10 \text{ mm}$ 

 $T_{\min} = 0.920, T_{\max} = 0.977$ 17457 measured reflections 3228 independent reflections 2538 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.041$   $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 3.6^{\circ}$   $h = -29 \rightarrow 29$   $k = -10 \rightarrow 10$  $l = -9 \rightarrow 9$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.113$                               | neighbouring sites                                        |
| S = 1.12                                        | H-atom parameters constrained                             |
| 3228 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.0444P]$         |
| 193 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                            |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\min} = -0.43 \text{ e} \text{ Å}^{-3}$     |
|                                                 |                                                           |

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\AA^2)$ |
|-------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------|

|           | x                         | v                        | 7.                      | Uico*/Uca              |  |
|-----------|---------------------------|--------------------------|-------------------------|------------------------|--|
| <u>S1</u> | 0 365337 (18)             | -0.03283(5)              | 0 35486 (6)             | 0.02416 (15)           |  |
| C3        | 0.30337(10)<br>0.43017(7) | 0.05203(5)               | 0.35400(0)<br>0.2500(2) | 0.02410(13)            |  |
| C4        | 0.46269(7)                | 0.1900(2)<br>0.0567(2)   | 0.2200(2)<br>0.2213(2)  | 0.0221(1)<br>0.0273(4) |  |
| C5        | 0.10209(7)<br>0.43338(7)  | -0.0758(2)               | 0.2219(2)<br>0.2709(2)  | 0.0275(4)              |  |
| C2        | 0.37542(7)                | 0.16707(19)              | 0.2707(2)               | 0.0191(3)              |  |
| C27       | 0.37512(7)<br>0.33118(7)  | 0.28406 (18)             | 0.3227(2)<br>0.3742(2)  | 0.0182(3)              |  |
| C271      | 0.35110(7)<br>0.35150(7)  | 0.4454(2)                | 0.3712(2)<br>0.3625(2)  | 0.0205(4)              |  |
| N27       | 0.36949 (6)               | 0.1131(2)<br>0.57108(17) | 0.3475(2)               | 0.0285(4)              |  |
| C17       | 0.27596 (7)               | 0.24530(19)              | 0.3175(2)<br>0.4285(2)  | 0.0184(3)              |  |
| C11       | 0 22779 (6)               | 0.34124(19)              | 0.49727(19)             | 0.0174(3)              |  |
| C12       | 0.23237(7)                | 0.5027(2)                | 0.5352(2)               | 0.0187(3)              |  |
| C13       | 0.18419(7)                | 0.58327(18)              | 0.6037(2)               | 0.0176 (3)             |  |
| 013       | 0.18495 (5)               | 0.73973 (13)             | 0.64863 (15)            | 0.0215 (3)             |  |
| C131      | 0.23604 (7)               | 0.8279 (2)               | 0.6012 (2)              | 0.0233 (4)             |  |
| C14       | 0.13091 (7)               | 0.50422 (19)             | 0.6354 (2)              | 0.0166 (3)             |  |
| 014       | 0.08350 (5)               | 0.58386 (12)             | 0.70614 (14)            | 0.0195 (3)             |  |
| C141      | 0.05347 (7)               | 0.6835 (2)               | 0.5761 (2)              | 0.0245 (4)             |  |
| C15       | 0.12678 (6)               | 0.34192 (19)             | 0.6026 (2)              | 0.0168 (3)             |  |
| 015       | 0.07431 (4)               | 0.27269 (13)             | 0.64579 (15)            | 0.0206 (3)             |  |
| C151      | 0.07015 (7)               | 0.10541 (19)             | 0.6219 (2)              | 0.0236 (4)             |  |
| C16       | 0.17474 (7)               | 0.26185 (18)             | 0.5325 (2)              | 0.0173 (3)             |  |
| H3        | 0.4443                    | 0.2993                   | 0.2226                  | 0.027*                 |  |
| H4        | 0.5012                    | 0.0554                   | 0.1722                  | 0.033*                 |  |
| Н5        | 0.4488                    | -0.1797                  | 0.2602                  | 0.033*                 |  |
| H17       | 0.2671                    | 0.1358                   | 0.4201                  | 0.022*                 |  |
| H12       | 0.2684                    | 0.5573                   | 0.5141                  | 0.022*                 |  |
| H13A      | 0.2715                    | 0.7802                   | 0.6577                  | 0.035*                 |  |
| H13B      | 0.2320                    | 0.9370                   | 0.6431                  | 0.035*                 |  |
| H13C      | 0.2398                    | 0.8271                   | 0.4699                  | 0.035*                 |  |
| H14A      | 0.0824                    | 0.7522                   | 0.5186                  | 0.037*                 |  |
| H14C      | 0.0240                    | 0.7484                   | 0.6367                  | 0.037*                 |  |
| H14B      | 0.0335                    | 0.6177                   | 0.4844                  | 0.037*                 |  |
| H15A      | 0.0755                    | 0.0793                   | 0.4947                  | 0.035*                 |  |
| H15B      | 0.0310                    | 0.0690                   | 0.6588                  | 0.035*                 |  |

# supporting information

| H15C | 0.1010 | 0.0532 | 0.6957 | 0.035* |
|------|--------|--------|--------|--------|
| H16  | 0.1716 | 0.1519 | 0.5082 | 0.021* |

Atomic displacement parameters  $(Å^2)$ 

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-------------|-------------|--------------|--------------|--------------|
| C3 $0.0173$ (8) $0.0215$ (9) $0.0285$ (9) $-0.0005$ (6) $0.0027$ (7) $-0.0024$ (7)C4 $0.0155$ (9) $0.0281$ (10) $0.0385$ (11) $0.0004$ (7) $0.0062$ (7) $-0.0056$ (8)C5 $0.0191$ (9) $0.0234$ (9) $0.0402$ (11) $0.0049$ (7) $0.0037$ (7) $-0.0030$ (8)C2 $0.0166$ (8) $0.0193$ (8) $0.0213$ (8) $0.0007$ (6) $-0.0011$ (6) $-0.0017$ (6)C27 $0.0179$ (8) $0.0178$ (8) $0.0190$ (8) $-0.0003$ (6) $0.0001$ (6) $-0.0005$ (6)C271 $0.0155$ (8) $0.0248$ (10) $0.0214$ (9) $0.0035$ (6) $0.0045$ (6) $0.0006$ (7)N27 $0.0247$ (8) $0.0226$ (9) $0.0386$ (9) $-0.0001$ (6) $0.0077$ (7) $0.0028$ (6)C17 $0.0180$ (8) $0.0170$ (8) $0.0202$ (8) $-0.0001$ (6) $0.0011$ (6) $-0.0016$ (6)C11 $0.0178$ (8) $0.0188$ (8) $0.0158$ (8) $0.0018$ (6) $0.0010$ (6) $-0.0003$ (6)C12 $0.0164$ (8) $0.0200$ (8) $0.0199$ (8) $-0.0014$ (6) $0.0021$ (6) $-0.0033$ (6)C13 $0.0202$ (8) $0.0156$ (8) $0.0262$ (9) $-0.0046$ (7) $0.0028$ (7) $-0.0038$ (5)C131 $0.0267$ (9) $0.0172$ (8) $0.0262$ (9) $-0.0046$ (7) $0.0028$ (7) $-0.0019$ (7)C14 $0.0165$ (8) $0.0176$ (8) $0.0156$ (8) $0.0033$ (6) $0.0020$ (6) $-0.0022$ (6)C141 $0.0155$ (6) $0.0186$ (6) $0.0228$ (6) $-0.0016$ (4) <td< td=""><td>S1</td><td>0.0187 (2)</td><td>0.0200 (2)</td><td>0.0340 (3)</td><td>0.00169 (16)</td><td>0.00617 (18)</td><td>0.00149 (17)</td></td<> | S1   | 0.0187 (2) | 0.0200 (2)  | 0.0340 (3)  | 0.00169 (16) | 0.00617 (18) | 0.00149 (17) |
| C4 $0.0155$ (9) $0.0281$ (10) $0.0385$ (11) $0.0004$ (7) $0.0062$ (7) $-0.0056$ (8C5 $0.0191$ (9) $0.0234$ (9) $0.0402$ (11) $0.0049$ (7) $0.0037$ (7) $-0.0030$ (8C2 $0.0166$ (8) $0.0193$ (8) $0.0213$ (8) $0.0007$ (6) $-0.0011$ (6) $-0.0017$ (6C27 $0.0179$ (8) $0.0178$ (8) $0.0190$ (8) $-0.0003$ (6) $0.0001$ (6) $-0.0005$ (6C271 $0.0155$ (8) $0.0248$ (10) $0.0214$ (9) $0.0035$ (6) $0.0045$ (6) $0.0006$ (7)N27 $0.0247$ (8) $0.0226$ (9) $0.0386$ (9) $-0.0001$ (6) $0.0077$ (7) $0.0028$ (6)C17 $0.0180$ (8) $0.0170$ (8) $0.0202$ (8) $-0.0001$ (6) $0.0011$ (6) $-0.0016$ (6)C11 $0.0178$ (8) $0.0188$ (8) $0.0158$ (8) $0.0018$ (6) $0.0010$ (6) $-0.0003$ (6)C12 $0.0164$ (8) $0.0200$ (8) $0.0199$ (8) $-0.0014$ (6) $0.0021$ (6) $-0.0003$ (6)C13 $0.0200$ (8) $0.0199$ (8) $-0.0016$ (6) $0.0001$ (6) $-0.0033$ (6)C13 $0.0207$ (9) $0.0172$ (8) $0.0262$ (9) $-0.0046$ (7) $0.0028$ (7) $-0.0038$ (5)C141 $0.0165$ (8) $0.0176$ (8) $0.0156$ (8) $0.0033$ (6) $0.0020$ (6) $-0.0021$ (6)C141 $0.0185$ (6) $0.0186$ (6) $0.0287$ (6) $-0.0009$ (6) $0.0008$ (6) $0.0016$ (6)C141 $0.0185$ (6) $0.0181$ (6) $0.0287$ (6) $-0.0016$ (4) $0.0057$ (5) $-$                                                                                                                                                     | C3   | 0.0173 (8) | 0.0215 (9)  | 0.0285 (9)  | -0.0005 (6)  | 0.0027 (7)   | -0.0024 (7)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C4   | 0.0155 (9) | 0.0281 (10) | 0.0385 (11) | 0.0004 (7)   | 0.0062 (7)   | -0.0056 (8)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C5   | 0.0191 (9) | 0.0234 (9)  | 0.0402 (11) | 0.0049 (7)   | 0.0037 (7)   | -0.0030 (8)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2   | 0.0166 (8) | 0.0193 (8)  | 0.0213 (8)  | 0.0007 (6)   | -0.0011 (6)  | -0.0017 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C27  | 0.0179 (8) | 0.0178 (8)  | 0.0190 (8)  | -0.0003 (6)  | 0.0001 (6)   | -0.0005 (6)  |
| N27 $0.0247 (8)$ $0.0226 (9)$ $0.0386 (9)$ $-0.0001 (6)$ $0.0077 (7)$ $0.0028 (6)$ C17 $0.0180 (8)$ $0.0170 (8)$ $0.0202 (8)$ $-0.0001 (6)$ $0.0011 (6)$ $-0.0016 (6)$ C11 $0.0178 (8)$ $0.0188 (8)$ $0.0158 (8)$ $0.0018 (6)$ $0.0010 (6)$ $0.0005 (6)$ C12 $0.0164 (8)$ $0.0200 (8)$ $0.0199 (8)$ $-0.0014 (6)$ $0.0021 (6)$ $-0.0003 (6)$ C13 $0.0202 (8)$ $0.0156 (8)$ $0.0169 (8)$ $0.0016 (6)$ $0.0001 (6)$ $-0.0003 (6)$ C13 $0.0200 (6)$ $0.0166 (6)$ $0.0282 (6)$ $-0.0010 (4)$ $0.0056 (5)$ $-0.0038 (5)$ C131 $0.0267 (9)$ $0.0172 (8)$ $0.0262 (9)$ $-0.0046 (7)$ $0.0028 (7)$ $-0.0019 (7)$ C14 $0.0165 (8)$ $0.0176 (8)$ $0.0156 (8)$ $0.0033 (6)$ $0.0020 (6)$ $-0.0002 (6)$ C141 $0.0213 (8)$ $0.0228 (9)$ $0.0296 (9)$ $0.0059 (7)$ $0.0023 (7)$ $0.0050 (7)$ C15 $0.0149 (7)$ $0.0197 (8)$ $0.0158 (7)$ $-0.0016 (4)$ $0.0057 (5)$ $-0.0018 (5)$ C151 $0.0211 (9)$ $0.0197 (9)$ $0.0303 (9)$ $-0.0049 (7)$ $0.0054 (7)$ $-0.0016 (7)$ C16 $0.0195 (8)$ $0.0150 (8)$ $0.0174 (8)$ $0.0011 (6)$ $0.0004 (6)$ $-0.0015 (6)$                                                                                                                                                                                                                                                                                       | C271 | 0.0155 (8) | 0.0248 (10) | 0.0214 (9)  | 0.0035 (6)   | 0.0045 (6)   | 0.0006 (7)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N27  | 0.0247 (8) | 0.0226 (9)  | 0.0386 (9)  | -0.0001 (6)  | 0.0077 (7)   | 0.0028 (6)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C17  | 0.0180 (8) | 0.0170 (8)  | 0.0202 (8)  | -0.0001 (6)  | 0.0011 (6)   | -0.0016 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C11  | 0.0178 (8) | 0.0188 (8)  | 0.0158 (8)  | 0.0018 (6)   | 0.0010 (6)   | 0.0005 (6)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C12  | 0.0164 (8) | 0.0200 (8)  | 0.0199 (8)  | -0.0014 (6)  | 0.0021 (6)   | -0.0003 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C13  | 0.0202 (8) | 0.0156 (8)  | 0.0169 (8)  | 0.0016 (6)   | 0.0001 (6)   | -0.0003 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O13  | 0.0200 (6) | 0.0166 (6)  | 0.0282 (6)  | -0.0010 (4)  | 0.0056 (5)   | -0.0038 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C131 | 0.0267 (9) | 0.0172 (8)  | 0.0262 (9)  | -0.0046 (7)  | 0.0028 (7)   | -0.0019 (7)  |
| O14         0.0185 (6)         0.0186 (6)         0.0218 (6)         0.0062 (4)         0.0066 (5)         0.0021 (5)           C141         0.0213 (8)         0.0228 (9)         0.0296 (9)         0.0059 (7)         0.0023 (7)         0.0050 (7)           C15         0.0149 (7)         0.0197 (8)         0.0158 (7)         -0.0009 (6)         0.0008 (6)         0.0016 (6)           O15         0.0153 (6)         0.0181 (6)         0.0287 (6)         -0.0016 (4)         0.0057 (5)         -0.0018 (5)           C151         0.0211 (9)         0.0197 (9)         0.0303 (9)         -0.0049 (7)         0.0054 (7)         -0.0016 (7)           C16         0.0195 (8)         0.0150 (8)         0.0174 (8)         0.0011 (6)         0.0004 (6)         -0.0015 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C14  | 0.0165 (8) | 0.0176 (8)  | 0.0156 (8)  | 0.0033 (6)   | 0.0020 (6)   | -0.0002 (6)  |
| C141         0.0213 (8)         0.0228 (9)         0.0296 (9)         0.0059 (7)         0.0023 (7)         0.0050 (7)           C15         0.0149 (7)         0.0197 (8)         0.0158 (7)         -0.0009 (6)         0.0008 (6)         0.0016 (6)           O15         0.0153 (6)         0.0181 (6)         0.0287 (6)         -0.0016 (4)         0.0057 (5)         -0.0018 (5)           C151         0.0211 (9)         0.0197 (9)         0.0303 (9)         -0.0049 (7)         0.0054 (7)         -0.0016 (7)           C16         0.0195 (8)         0.0150 (8)         0.0174 (8)         0.0011 (6)         0.0004 (6)         -0.0015 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O14  | 0.0185 (6) | 0.0186 (6)  | 0.0218 (6)  | 0.0062 (4)   | 0.0066 (5)   | 0.0021 (5)   |
| C15         0.0149 (7)         0.0197 (8)         0.0158 (7)         -0.0009 (6)         0.0008 (6)         0.0016 (6)           O15         0.0153 (6)         0.0181 (6)         0.0287 (6)         -0.0016 (4)         0.0057 (5)         -0.0018 (5)           C151         0.0211 (9)         0.0197 (9)         0.0303 (9)         -0.0049 (7)         0.0054 (7)         -0.0016 (7)           C16         0.0195 (8)         0.0150 (8)         0.0174 (8)         0.0011 (6)         0.0004 (6)         -0.0015 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C141 | 0.0213 (8) | 0.0228 (9)  | 0.0296 (9)  | 0.0059 (7)   | 0.0023 (7)   | 0.0050 (7)   |
| O15         0.0153 (6)         0.0181 (6)         0.0287 (6)         -0.0016 (4)         0.0057 (5)         -0.0018 (5)           C151         0.0211 (9)         0.0197 (9)         0.0303 (9)         -0.0049 (7)         0.0054 (7)         -0.0016 (7)           C16         0.0195 (8)         0.0150 (8)         0.0174 (8)         0.0011 (6)         0.0004 (6)         -0.0015 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C15  | 0.0149 (7) | 0.0197 (8)  | 0.0158 (7)  | -0.0009 (6)  | 0.0008 (6)   | 0.0016 (6)   |
| C151         0.0211 (9)         0.0197 (9)         0.0303 (9)         -0.0049 (7)         0.0054 (7)         -0.0016 (7)           C16         0.0195 (8)         0.0150 (8)         0.0174 (8)         0.0011 (6)         0.0004 (6)         -0.0015 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O15  | 0.0153 (6) | 0.0181 (6)  | 0.0287 (6)  | -0.0016 (4)  | 0.0057 (5)   | -0.0018 (5)  |
| C16 0.0195 (8) 0.0150 (8) 0.0174 (8) 0.0011 (6) 0.0004 (6) -0.0015 (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C151 | 0.0211 (9) | 0.0197 (9)  | 0.0303 (9)  | -0.0049 (7)  | 0.0054 (7)   | -0.0016 (7)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C16  | 0.0195 (8) | 0.0150 (8)  | 0.0174 (8)  | 0.0011 (6)   | 0.0004 (6)   | -0.0015 (6)  |

Geometric parameters (Å, °)

| <u>81—C5</u> | 1.7100 (17) | C13—C14   | 1.400 (2)   |
|--------------|-------------|-----------|-------------|
| S1—C2        | 1.7248 (17) | O13—C131  | 1.4243 (17) |
| C3—C2        | 1.383 (2)   | C131—H13A | 0.98        |
| C3—C4        | 1.412 (2)   | C131—H13B | 0.98        |
| С3—Н3        | 0.95        | C131—H13C | 0.98        |
| C4—C5        | 1.357 (2)   | C14—O14   | 1.3792 (17) |
| C4—H4        | 0.95        | C14—C15   | 1.398 (2)   |
| С5—Н5        | 0.95        | O14—C141  | 1.4377 (19) |
| C2—C27       | 1.463 (2)   | C141—H14A | 0.98        |
| C27—C17      | 1.359 (2)   | C141—H14C | 0.98        |
| C27—C271     | 1.443 (2)   | C141—H14B | 0.98        |
| C271—N27     | 1.145 (2)   | C15—O15   | 1.3655 (17) |
| C17—C11      | 1.459 (2)   | C15—C16   | 1.389 (2)   |
| С17—Н17      | 0.95        | O15—C151  | 1.4299 (19) |
| C11—C12      | 1.399 (2)   | C151—H15A | 0.98        |
| C11—C16      | 1.402 (2)   | C151—H15B | 0.98        |
| C12—C13      | 1.390 (2)   | C151—H15C | 0.98        |
| С12—Н12      | 0.95        | C16—H16   | 0.95        |

| C13—O13          | 1.3658 (18)  |                  |              |
|------------------|--------------|------------------|--------------|
| C5—S1—C2         | 92.03 (8)    | O13—C131—H13A    | 109.5        |
| C2—C3—C4         | 112.32 (15)  | O13—C131—H13B    | 109.5        |
| С2—С3—Н3         | 123.8        | H13A—C131—H13B   | 109.5        |
| С4—С3—Н3         | 123.8        | O13—C131—H13C    | 109.5        |
| C5—C4—C3         | 113.16(15)   | H13A—C131—H13C   | 109.5        |
| С5—С4—Н4         | 123.4        | H13B—C131—H13C   | 109.5        |
| C3—C4—H4         | 123.4        | O14—C14—C13      | 120.47 (14)  |
| C4—C5—S1         | 111.79 (13)  | O14—C14—C15      | 119.86 (13)  |
| C4—C5—H5         | 124.1        | C15—C14—C13      | 119.60 (13)  |
| S1—C5—H5         | 124.1        | C14—O14—C141     | 112.76 (11)  |
| C3—C2—C27        | 126.95 (15)  | O14—C141—H14A    | 109.5        |
| C3—C2—S1         | 110.71 (12)  | O14—C141—H14C    | 109.5        |
| C27—C2—S1        | 122.31 (11)  | H14A—C141—H14C   | 109.5        |
| C17—C27—C271     | 122.75 (14)  | O14—C141—H14B    | 109.5        |
| C17—C27—C2       | 123.37 (15)  | H14A—C141—H14B   | 109.5        |
| C271—C27—C2      | 113.88 (13)  | H14C—C141—H14B   | 109.5        |
| N27—C271—C27     | 176.82 (17)  | O15-C15-C14      | 115.80 (12)  |
| C27—C17—C11      | 131.72 (15)  | O15—C15—C16      | 124.47 (14)  |
| С27—С17—Н17      | 114.1        | C16—C15—C14      | 119.72 (13)  |
| C11—C17—H17      | 114.1        | C15—O15—C151     | 116.76 (12)  |
| C12—C11—C16      | 119.31 (13)  | O15—C151—H15A    | 109.5        |
| C12—C11—C17      | 124.24 (14)  | O15—C151—H15B    | 109.5        |
| C16—C11—C17      | 116.41 (14)  | H15A—C151—H15B   | 109.5        |
| C13—C12—C11      | 119.90 (14)  | O15—C151—H15C    | 109.5        |
| C13—C12—H12      | 120.1        | H15A—C151—H15C   | 109.5        |
| C11—C12—H12      | 120.1        | H15B—C151—H15C   | 109.5        |
| O13—C13—C12      | 124.05 (14)  | C15—C16—C11      | 120.81 (15)  |
| O13—C13—C14      | 115.33 (13)  | C15—C16—H16      | 119.6        |
| C12—C13—C14      | 120.61 (15)  | C11—C16—H16      | 119.6        |
| C13—O13—C131     | 116.92 (12)  |                  |              |
|                  |              |                  |              |
| C2—C3—C4—C5      | 0.0 (2)      | C12-C13-O13-C131 | 7.9 (2)      |
| C3—C4—C5—S1      | -0.2 (2)     | C14—C13—O13—C131 | -173.66 (13) |
| C2—S1—C5—C4      | 0.32 (15)    | O13—C13—C14—O14  | 0.4 (2)      |
| C4—C3—C2—C27     | 178.10 (15)  | C12—C13—C14—O14  | 178.93 (13)  |
| C4—C3—C2—S1      | 0.26 (18)    | O13—C13—C14—C15  | -176.66 (13) |
| C5—S1—C2—C3      | -0.33 (13)   | C12-C13-C14-C15  | 1.8 (2)      |
| C5—S1—C2—C27     | -178.29 (14) | C15—C14—O14—C141 | -107.39 (16) |
| C3—C2—C27—C17    | 173.35 (16)  | C13-C14-O14-C141 | 75.54 (17)   |
| S1—C2—C27—C17    | -9.0 (2)     | O14—C14—C15—O15  | -0.3 (2)     |
| C3—C2—C27—C271   | -6.7 (2)     | C13—C14—C15—O15  | 176.77 (13)  |
| S1—C2—C27—C271   | 170.92 (12)  | O14—C14—C15—C16  | -179.56 (13) |
| C271—C27—C17—C11 | -5.2 (3)     | C13-C14-C15-C16  | -2.5 (2)     |
| C2—C27—C17—C11   | 174.72 (15)  | C16-C15-O15-C151 | 2.2 (2)      |
| C27—C17—C11—C12  | -5.5 (3)     | C14—C15—O15—C151 | -176.98 (13) |
| C27—C17—C11—C16  | 176.90 (16)  | O15-C15-C16-C11  | -177.93 (13) |

| C16—C11—C12—C13 | -1.3 (2)     | C14—C15—C16—C11 | 1.2 (2)     |
|-----------------|--------------|-----------------|-------------|
| C17—C11—C12—C13 | -178.78 (14) | C12-C11-C16-C15 | 0.6 (2)     |
| C11—C12—C13—O13 | 178.39 (14)  | C17—C11—C16—C15 | 178.35 (13) |
| C11—C12—C13—C14 | 0.0 (2)      |                 |             |

F(000) = 576

 $\theta = 2.4 - 27.5^{\circ}$ 

 $\mu = 3.71 \text{ mm}^{-1}$ 

Needle, colourless

 $0.38 \times 0.04 \times 0.03 \text{ mm}$ 

T = 120 K

 $D_{\rm x} = 1.669 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2598 reflections

#### (II) (E)-3-(4-bromophenyl)-2-(2-thienyl)acrylonitrile

#### Crystal data

C<sub>13</sub>H<sub>8</sub>BrNS  $M_r = 290.17$ MonoclinicP2<sub>1</sub>/n Hall symbol: -P 2yn a = 3.8557 (2) Å b = 24.0484 (7) Å c = 12.5466 (4) Å  $\beta = 96.877$  (2)° V = 1154.99 (8) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker Nonius KappaCCD area-detector               | $T_{\min} = 0.333, T_{\max} = 0.897$                                |
|----------------------------------------------------|---------------------------------------------------------------------|
| diffractometer                                     | 12766 measured reflections                                          |
| Radiation source: Bruker Nonius FR591              | 2598 independent reflections                                        |
| rotating anode                                     | 1983 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                             | $R_{\rm int} = 0.059$                                               |
| Detector resolution: 9.091 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$ |
| $\varphi$ and $\omega$ scans                       | $h = -4 \rightarrow 5$                                              |
| Absorption correction: multi-scan                  | $k = -31 \rightarrow 30$                                            |
| (SADABS; Sheldrick, 2003)                          | $l = -16 \rightarrow 16$                                            |

#### Refinement

| Hydrogen site l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neighbouring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| H-atom parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $w = 1/[\sigma^2(F_o^2) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| where $P = (F + F)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Delta \rho_{\min} = -0.76 \text{ e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Extinction correction correction for the second sec |
| Extinction coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Hydrogen site location: inferred from                          |
|----------------------------------------------------------------|
| neighbouring sites                                             |
| H-atom parameters constrained                                  |
| $w = 1/[\sigma^2(F_o^2) + (0.032P)^2 + 0.6935P]$               |
| where $P = (F_o^2 + 2F_c^2)/3$                                 |
| $(\Delta/\sigma)_{\rm max} = 0.001$                            |
| $\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$      |
| $\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$     |
| Extinction correction: SHELXL97 (Sheldrick,                    |
| 1997), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Extinction coefficient: 0.0211 (12)                            |
|                                                                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x           | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|----|-------------|--------------|-------------|-----------------------------|-----------|
| S1 | 0.2321 (3)  | 0.14823 (4)  | 0.54665 (9) | 0.0221 (3)                  | 0.798 (3) |
| C1 | 0.264 (6)   | 0.13968 (19) | 0.5189 (9)  | 0.025*                      | 0.202 (3) |
| C2 | 0.3661 (7)  | 0.16218 (11) | 0.4236 (2)  | 0.0207 (6)                  |           |
| C3 | 0.4157 (13) | 0.11210 (18) | 0.3703 (4)  | 0.0246 (6)                  | 0.798 (3) |
| S3 | 0.4109 (14) | 0.10914 (14) | 0.3378 (3)  | 0.025*                      | 0.202 (3) |
| C4 | 0.3362 (8)  | 0.06369 (12) | 0.4311 (2)  | 0.0246 (6)                  |           |
| C5 | 0.2416 (8)  | 0.07953 (13) | 0.5257 (3)  | 0.0287 (7)                  |           |

| C27  | 0.4262 (7)  | 0.21857 (12)  | 0.3872 (2)  | 0.0190 (6)   |           |
|------|-------------|---------------|-------------|--------------|-----------|
| C271 | 0.5318 (7)  | 0.22230 (12)  | 0.2807 (2)  | 0.0220 (7)   |           |
| N27  | 0.6257 (7)  | 0.22288 (11)  | 0.1977 (2)  | 0.0321 (7)   |           |
| C17  | 0.4092 (7)  | 0.26435 (12)  | 0.4483 (2)  | 0.0217 (6)   |           |
| C11  | 0.4573 (7)  | 0.32203 (12)  | 0.4150 (2)  | 0.0196 (6)   |           |
| C12  | 0.3298 (7)  | 0.34148 (12)  | 0.3129 (2)  | 0.0213 (6)   |           |
| C13  | 0.3837 (7)  | 0.39590 (12)  | 0.2839 (2)  | 0.0211 (6)   |           |
| C14  | 0.5699 (7)  | 0.43113 (12)  | 0.3564 (2)  | 0.0219 (7)   |           |
| Br14 | 0.66118 (7) | 0.504938 (12) | 0.31339 (3) | 0.02715 (14) |           |
| C15  | 0.6937 (7)  | 0.41383 (12)  | 0.4589 (3)  | 0.0251 (7)   |           |
| C16  | 0.6312 (8)  | 0.35932 (12)  | 0.4881 (2)  | 0.0249 (7)   |           |
| H1   | 0.2122      | 0.1629        | 0.5762      | 0.030*       | 0.202 (3) |
| Н3   | 0.4935      | 0.1102        | 0.3014      | 0.029*       | 0.798 (3) |
| H4   | 0.3491      | 0.0263        | 0.4076      | 0.029*       |           |
| Н5   | 0.1836      | 0.0535        | 0.5776      | 0.034*       |           |
| H17  | 0.3613      | 0.2587        | 0.5200      | 0.026*       |           |
| H12  | 0.2046      | 0.3170        | 0.2628      | 0.026*       |           |
| H13  | 0.2933      | 0.4090        | 0.2147      | 0.025*       |           |
| H15  | 0.8187      | 0.4387        | 0.5084      | 0.030*       |           |
| H16  | 0.7083      | 0.3472        | 0.5591      | 0.030*       |           |
|      |             |               |             |              |           |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|------|--------------|--------------|-------------|---------------|--------------|---------------|
| S1   | 0.0225 (5)   | 0.0252 (5)   | 0.0195 (6)  | 0.0007 (4)    | 0.0058 (4)   | 0.0004 (4)    |
| C2   | 0.0172 (14)  | 0.0268 (15)  | 0.0179 (16) | -0.0008 (11)  | 0.0013 (12)  | -0.0009 (13)  |
| C3   | 0.0257 (13)  | 0.0286 (13)  | 0.0185 (15) | 0.0005 (10)   | -0.0009 (11) | -0.0006 (11)  |
| C4   | 0.0257 (13)  | 0.0286 (13)  | 0.0185 (15) | 0.0005 (10)   | -0.0009 (11) | -0.0006 (11)  |
| C5   | 0.0211 (15)  | 0.0374 (18)  | 0.0268 (19) | -0.0053 (13)  | -0.0005 (13) | 0.0072 (15)   |
| C27  | 0.0148 (13)  | 0.0295 (15)  | 0.0126 (15) | -0.0007 (11)  | 0.0009 (11)  | 0.0026 (13)   |
| C271 | 0.0231 (15)  | 0.0223 (15)  | 0.0202 (18) | -0.0027 (12)  | 0.0012 (13)  | -0.0028 (13)  |
| N27  | 0.0411 (16)  | 0.0348 (15)  | 0.0222 (16) | -0.0014 (13)  | 0.0107 (13)  | -0.0009 (13)  |
| C17  | 0.0188 (14)  | 0.0299 (16)  | 0.0167 (16) | 0.0002 (12)   | 0.0035 (12)  | 0.0009 (13)   |
| C11  | 0.0168 (14)  | 0.0272 (15)  | 0.0157 (16) | 0.0003 (12)   | 0.0055 (12)  | -0.0010 (13)  |
| C12  | 0.0176 (14)  | 0.0268 (16)  | 0.0195 (17) | -0.0016 (12)  | 0.0024 (12)  | -0.0034 (13)  |
| C13  | 0.0167 (14)  | 0.0280 (15)  | 0.0188 (17) | 0.0019 (12)   | 0.0024 (12)  | -0.0012 (13)  |
| C14  | 0.0158 (14)  | 0.0244 (15)  | 0.0263 (18) | 0.0000 (11)   | 0.0068 (12)  | -0.0014 (14)  |
| Br14 | 0.02422 (18) | 0.02505 (19) | 0.0323 (2)  | -0.00274 (12) | 0.00387 (13) | -0.00046 (14) |
| C15  | 0.0217 (15)  | 0.0301 (16)  | 0.0232 (18) | -0.0013 (13)  | 0.0016 (13)  | -0.0073 (14)  |
| C16  | 0.0243 (15)  | 0.0325 (17)  | 0.0177 (17) | 0.0040 (13)   | 0.0014 (12)  | -0.0003 (14)  |

## Geometric parameters (Å, °)

| <u>S1—C5</u> | 1.674 (3) | C27—C271 | 1.446 (4) |  |
|--------------|-----------|----------|-----------|--|
| S1—C2        | 1.718 (3) | C271—N27 | 1.143 (4) |  |
| C1—C2        | 1.411 (3) | C17—C11  | 1.467 (4) |  |
| C1—C5        | 1.452 (3) | C17—H17  | 0.95      |  |
| C1—H1        | 0.95      | C11—C16  | 1.396 (4) |  |
|              |           |          |           |  |

| C2—C3<br>C2—C27<br>C2—S3<br>C3—C4<br>C3—H3<br>S3—C4<br>C4—C5<br>C4—H4<br>C5—H5   | 1.402 (5)<br>1.458 (4)<br>1.691 (3)<br>1.445 (5)<br>0.95<br>1.652 (3)<br>1.338 (4)<br>0.95<br>0.95                                                                                                                    | C11—C12<br>C12—C13<br>C12—H12<br>C13—C14<br>C13—H13<br>C14—C15<br>C14—Br14<br>C15—C16<br>C15—H15                                                                                                                                                                                                                         | 1.397 (4)<br>1.381 (4)<br>0.95<br>1.380 (4)<br>0.95<br>1.382 (4)<br>1.900 (3)<br>1.390 (4)<br>0.95                                                                                                                  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C27—C17                                                                          | 1.347 (4)                                                                                                                                                                                                             | C16—H16                                                                                                                                                                                                                                                                                                                  | 0.95                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                             | 92.13 (15)<br>117.2 (4)<br>121.4<br>121.4<br>98.2 (4)<br>127.9 (3)<br>133.9 (3)<br>108.1 (3)<br>118.0 (2)<br>109.5 (3)<br>122.6 (2)<br>119.3 (2)<br>113.0 (4)<br>123.5<br>123.5<br>90.5 (2)<br>109.7 (3)<br>122.0 (3) | $\begin{array}{c} C17-C27-C271\\ C17-C27-C2\\ C271-C27-C2\\ N27-C271-C27\\ C27-C17-C11\\ C27-C17-H17\\ C11-C17-H17\\ C11-C17-H17\\ C16-C11-C12\\ C16-C11-C12\\ C16-C11-C17\\ C12-C11-C17\\ C13-C12-C11\\ C13-C12-H12\\ C11-C12-H12\\ C14-C13-H13\\ C12-C13-H13\\ C12-C13-H13\\ C13-C14-C15\\ C13-C14-Br14\\ \end{array}$ | 120.9 (3)<br>124.2 (3)<br>114.8 (2)<br>176.5 (3)<br>126.5 (3)<br>116.7<br>116.7<br>118.4 (3)<br>119.2 (3)<br>122.4 (3)<br>120.8 (3)<br>119.6<br>119.6<br>119.4 (3)<br>120.3<br>120.3<br>120.3<br>120.3<br>121.5 (3) |
| C5—C4—H4                                                                         | 125.2                                                                                                                                                                                                                 | C15—C14—Br14<br>C15—C14—Br14                                                                                                                                                                                                                                                                                             | 119.1 (2)<br>119.4 (2)                                                                                                                                                                                              |
| C3-C4-H4<br>S3-C4-H4<br>C4-C5-C1<br>C4-C5-S1<br>C4-C5-H5<br>C1-C5-H5<br>S1-C5-H5 | 125.2<br>112.7<br>102.0 (3)<br>115.7 (2)<br>122.1<br>135.9<br>122.1                                                                                                                                                   | C14—C15—C16<br>C14—C15—H15<br>C16—C15—H15<br>C15—C16—C11<br>C15—C16—H16<br>C11—C16—H16                                                                                                                                                                                                                                   | 118.5 (3)<br>120.7<br>120.7<br>121.2 (3)<br>119.4<br>119.4                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                             | -1.3 (18)<br>-178.3 (7)<br>4 (2)<br>176 (7)<br>-0.3 (3)<br>-3 (5)<br>-178.2 (2)<br>5.0 (3)<br>1.6 (11)<br>178.9 (3)                                                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                     | -177 (6)<br>-0.6 (3)<br>2 (4)<br>-172.3 (4)<br>4.0 (15)<br>5.2 (4)<br>-178.0 (3)<br>3.6 (5)<br>179.8 (15)<br>-2.1 (4)                                                                                               |

| S3—C2—C3—C4  | -154(2)    | S1—C2—C27—C271   | -178.9(2)  |
|--------------|------------|------------------|------------|
| C3—C2—S3—C4  | 21.0 (16)  | C2               | -178.1 (3) |
| C1—C2—S3—C4  | -5.0 (11)  | C27—C17—C11—C16  | -142.4 (3) |
| C27—C2—S3—C4 | 176.5 (2)  | C27—C17—C11—C12  | 38.7 (4)   |
| S1—C2—S3—C4  | -6.6 (4)   | C16—C11—C12—C13  | 1.9 (4)    |
| C2—C3—C4—C5  | -1.5 (5)   | C17—C11—C12—C13  | -179.2 (2) |
| C2—C3—C4—S3  | 157.8 (18) | C11—C12—C13—C14  | 0.9 (4)    |
| C2—S3—C4—C5  | 6.4 (4)    | C12—C13—C14—C15  | -2.4 (4)   |
| C2—S3—C4—C3  | -16.7 (13) | C12-C13-C14-Br14 | 177.1 (2)  |
| C3—C4—C5—C1  | 0.6 (11)   | C13—C14—C15—C16  | 0.9 (4)    |
| S3—C4—C5—C1  | -4.9 (11)  | Br14—C14—C15—C16 | -178.5 (2) |
| C3—C4—C5—S1  | 1.2 (4)    | C14—C15—C16—C11  | 2.0 (4)    |
| S3—C4—C5—S1  | -4.2 (4)   | C12—C11—C16—C15  | -3.4 (4)   |
| C2-C1-C5-C4  | 0.5 (19)   | C17—C11—C16—C15  | 177.7 (3)  |

#### Hydrogen-bond geometry (Å, °)

| D—H···A                    | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|----------------------------|------|-------|-----------|-------------------------|
| C17—H17···N27 <sup>i</sup> | 0.95 | 2.55  | 3.450 (4) | 159                     |

Symmetry code: (i) *x*-1/2, -*y*+1/2, *z*+1/2.

#### (III) (E)-3-phenyl-2-(3-thienyl)acrylonitrile

Crystal data

C<sub>13</sub>H<sub>9</sub>NS  $M_r = 211.27$ Monoclinic $P2_1/c$ Hall symbol: -P 2ybc a = 9.6280 (11) Å b = 5.7190 (3) Å c = 19.247 (2) Å  $\beta = 103.129 (7)^{\circ}$   $V = 1032.09 (17) \text{ Å}^3$ Z = 4

#### Data collection

Bruker Nonius KappaCCD area-detector diffractometer Radiation source: Bruker Nonius FR591 rotating anode  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan [*SADABS* (Sheldrick, 2003) and *EVALCCD* (Duisenberg *et al.*, 2003)]  $T_{\min} = 0.878, T_{\max} = 0.947$  F(000) = 440  $D_x = 1.360 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2368 reflections  $\theta = 5.3-27.5^{\circ}$   $\mu = 0.27 \text{ mm}^{-1}$  T = 120 KBlock, yellow  $0.49 \times 0.31 \times 0.20 \text{ mm}$ 

24963 measured reflections 2368 independent reflections 1788 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.036$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 5.3^{\circ}$  $h = -12 \rightarrow 12$  $k = -7 \rightarrow 7$  $l = -24 \rightarrow 25$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier      |
|-------------------------------------------------|-------------------------------------------------------|
| Least-squares matrix: full                      | map                                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.067$                 | Hydrogen site location: inferred from                 |
| $wR(F^2) = 0.206$                               | neighbouring sites                                    |
| S = 1.07                                        | H-atom parameters constrained                         |
| 2368 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.1146P)^2 + 1.443P]$      |
| 136 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                        |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                   |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.57 \ { m e} \ { m \AA}^{-3}$ |
| direct methods                                  | $\Delta  ho_{ m min} = -0.67$ e Å <sup>-3</sup>       |
|                                                 |                                                       |

| ractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$ |
|----------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------|

|      | x           | У            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|--------------|--------------|-----------------------------|--|
| S1   | 0.18654 (8) | 0.46218 (15) | 0.47177 (4)  | 0.0376 (3)                  |  |
| C2   | 0.3419 (3)  | 0.3547 (5)   | 0.52137 (15) | 0.0319 (6)                  |  |
| C3   | 0.3987 (3)  | 0.4916 (5)   | 0.57933 (14) | 0.0269 (6)                  |  |
| C4   | 0.3108 (3)  | 0.6931 (5)   | 0.58268 (14) | 0.0283 (6)                  |  |
| C5   | 0.1886 (3)  | 0.7005 (5)   | 0.52663 (13) | 0.0285 (6)                  |  |
| C37  | 0.5316 (3)  | 0.4330 (5)   | 0.63047 (14) | 0.0259 (6)                  |  |
| C371 | 0.5959 (3)  | 0.2150 (5)   | 0.61653 (14) | 0.0302 (6)                  |  |
| N37  | 0.6417 (3)  | 0.0398 (4)   | 0.60331 (14) | 0.0381 (6)                  |  |
| C17  | 0.5907 (3)  | 0.5662 (5)   | 0.68726 (14) | 0.0270 (6)                  |  |
| C11  | 0.7234 (3)  | 0.5391 (4)   | 0.74236 (13) | 0.0243 (5)                  |  |
| C12  | 0.8195 (3)  | 0.3550 (5)   | 0.74831 (15) | 0.0302 (6)                  |  |
| C13  | 0.9417 (3)  | 0.3504 (5)   | 0.80161 (15) | 0.0314 (6)                  |  |
| C14  | 0.9721 (3)  | 0.5248 (5)   | 0.85060 (13) | 0.0278 (6)                  |  |
| C15  | 0.8791 (3)  | 0.7136 (5)   | 0.84729 (14) | 0.0279 (6)                  |  |
| C16  | 0.7549 (3)  | 0.7200 (5)   | 0.79274 (14) | 0.0271 (6)                  |  |
| H2   | 0.3849      | 0.2144       | 0.5102       | 0.038*                      |  |
| H4   | 0.3330      | 0.8087       | 0.6189       | 0.034*                      |  |
| H5   | 0.1177      | 0.8192       | 0.5200       | 0.034*                      |  |
| H17  | 0.5372      | 0.7018       | 0.6927       | 0.032*                      |  |
| H12  | 0.8004      | 0.2301       | 0.7150       | 0.036*                      |  |
| H13  | 1.0059      | 0.2230       | 0.8042       | 0.038*                      |  |
| H14  | 1.0569      | 0.5182       | 0.8872       | 0.033*                      |  |
| H15  | 0.8996      | 0.8359       | 0.8815       | 0.033*                      |  |
| H16  | 0.6912      | 0.8484       | 0.7898       | 0.032*                      |  |

| Atomic displacement parameters (Å | <sup>2</sup> ) |
|-----------------------------------|----------------|
|-----------------------------------|----------------|

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| S1  | 0.0342 (4)  | 0.0468 (5)  | 0.0295 (4)  | -0.0054 (3)  | 0.0021 (3)  | -0.0012 (3)  |
| C2  | 0.0313 (13) | 0.0355 (15) | 0.0304 (13) | -0.0022 (12) | 0.0101 (11) | -0.0026 (11) |
| C3  | 0.0229 (12) | 0.0362 (14) | 0.0229 (12) | -0.0037 (10) | 0.0078 (10) | 0.0043 (10)  |
| C4  | 0.0282 (13) | 0.0327 (14) | 0.0240 (12) | -0.0011 (10) | 0.0057 (10) | -0.0002 (10) |
| C5  | 0.0311 (13) | 0.0344 (14) | 0.0215 (12) | -0.0061 (11) | 0.0090 (10) | -0.0027 (10) |
| C37 | 0.0246 (12) | 0.0292 (13) | 0.0247 (12) | -0.0032 (10) | 0.0075 (10) | 0.0007 (10)  |

# supporting information

| C371 | 0.0295 (13) | 0.0306 (14) | 0.0304 (13) | -0.0038 (11) | 0.0068 (11) | -0.0034 (11) |
|------|-------------|-------------|-------------|--------------|-------------|--------------|
| N37  | 0.0415 (14) | 0.0319 (13) | 0.0397 (14) | -0.0010 (11) | 0.0065 (11) | -0.0073 (11) |
| C17  | 0.0254 (12) | 0.0290 (13) | 0.0283 (13) | -0.0003 (10) | 0.0098 (10) | -0.0022 (10) |
| C11  | 0.0243 (12) | 0.0283 (13) | 0.0212 (12) | -0.0050 (9)  | 0.0070 (9)  | -0.0007 (9)  |
| C12  | 0.0332 (14) | 0.0268 (13) | 0.0320 (13) | 0.0003 (11)  | 0.0103 (11) | -0.0051 (11) |
| C13  | 0.0295 (13) | 0.0318 (14) | 0.0352 (14) | 0.0048 (11)  | 0.0121 (11) | 0.0027 (11)  |
| C14  | 0.0192 (11) | 0.0433 (16) | 0.0195 (11) | -0.0022 (10) | 0.0016 (9)  | 0.0050 (10)  |
| C15  | 0.0304 (13) | 0.0304 (13) | 0.0231 (12) | -0.0042 (10) | 0.0067 (10) | -0.0059 (10) |
| C16  | 0.0245 (12) | 0.0298 (13) | 0.0273 (12) | 0.0005 (10)  | 0.0066 (10) | -0.0031 (10) |
|      |             |             |             |              |             |              |

Geometric parameters (Å, °)

| S1—C2        | 1.696 (3)  | C17—H17         | 0.95       |
|--------------|------------|-----------------|------------|
| S1—C5        | 1.722 (3)  | C11—C12         | 1.389 (4)  |
| C2—C3        | 1.371 (4)  | C11—C16         | 1.403 (4)  |
| C2—H2        | 0.95       | C12—C13         | 1.374 (4)  |
| C3—C4        | 1.440 (4)  | C12—H12         | 0.95       |
| C3—C37       | 1.464 (4)  | C13—C14         | 1.358 (4)  |
| C4—C5        | 1.405 (4)  | С13—Н13         | 0.95       |
| C4—H4        | 0.95       | C14—C15         | 1.395 (4)  |
| С5—Н5        | 0.95       | C14—H14         | 0.95       |
| C37—C17      | 1.348 (4)  | C15—C16         | 1.401 (4)  |
| C37—C371     | 1.444 (4)  | С15—Н15         | 0.95       |
| C371—N37     | 1.146 (4)  | C16—H16         | 0.95       |
| C17—C11      | 1.471 (4)  |                 |            |
|              |            |                 |            |
| C2—S1—C5     | 93.22 (14) | С11—С17—Н17     | 114.2      |
| C3—C2—S1     | 112.9 (2)  | C12—C11—C16     | 117.8 (2)  |
| C3—C2—H2     | 123.6      | C12—C11—C17     | 126.3 (2)  |
| S1—C2—H2     | 123.6      | C16—C11—C17     | 115.9 (2)  |
| C2—C3—C4     | 111.3 (2)  | C13—C12—C11     | 121.2 (2)  |
| C2—C3—C37    | 122.9 (3)  | C13—C12—H12     | 119.4      |
| C4—C3—C37    | 125.8 (2)  | C11—C12—H12     | 119.4      |
| C5—C4—C3     | 112.9 (2)  | C14—C13—C12     | 121.2 (3)  |
| C5—C4—H4     | 123.6      | C14—C13—H13     | 119.4      |
| C3—C4—H4     | 123.6      | С12—С13—Н13     | 119.4      |
| C4—C5—S1     | 109.7 (2)  | C13—C14—C15     | 120.1 (2)  |
| С4—С5—Н5     | 125.1      | C13—C14—H14     | 119.9      |
| S1—C5—H5     | 125.1      | C15—C14—H14     | 119.9      |
| C17—C37—C371 | 121.2 (3)  | C14—C15—C16     | 119.0 (2)  |
| C17—C37—C3   | 124.0 (3)  | C14—C15—H15     | 120.5      |
| С371—С37—С3  | 114.7 (2)  | C16—C15—H15     | 120.5      |
| N37—C371—C37 | 177.1 (3)  | C15—C16—C11     | 120.8 (2)  |
| C37—C17—C11  | 131.5 (3)  | С15—С16—Н16     | 119.6      |
| С37—С17—Н17  | 114.2      | C11—C16—H16     | 119.6      |
|              |            |                 |            |
| C5—S1—C2—C3  | 0.0 (2)    | C3—C37—C17—C11  | -178.1 (2) |
| S1—C2—C3—C4  | -0.2 (3)   | C37—C17—C11—C12 | -1.7 (5)   |

| S1—C2—C3—C37     | 179.25 (19) | C37—C17—C11—C16 | 177.4 (3)  |
|------------------|-------------|-----------------|------------|
| C2—C3—C4—C5      | 0.4 (3)     | C16—C11—C12—C13 | -0.2 (4)   |
| C37—C3—C4—C5     | -179.1 (2)  | C17—C11—C12—C13 | 178.9 (2)  |
| C3—C4—C5—S1      | -0.4 (3)    | C11—C12—C13—C14 | 0.5 (4)    |
| C2—S1—C5—C4      | 0.2 (2)     | C12-C13-C14-C15 | -0.3 (4)   |
| C2—C3—C37—C17    | 179.0 (3)   | C13—C14—C15—C16 | -0.2 (4)   |
| C4—C3—C37—C17    | -1.6 (4)    | C14-C15-C16-C11 | 0.5 (4)    |
| C2—C3—C37—C371   | -2.0 (4)    | C12-C11-C16-C15 | -0.3 (4)   |
| C4—C3—C37—C371   | 177.3 (2)   | C17—C11—C16—C15 | -179.5 (2) |
| C371—C37—C17—C11 | 2.9 (4)     |                 |            |
|                  |             |                 |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | H···A | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|----------------------------|-------------|-------|--------------|-------------------------|
| C2—H2···N37 <sup>i</sup>   | 0.95        | 2.59  | 3.324 (5)    | 135                     |
| C13—H13···Cg <sup>ii</sup> | 0.95        | 2.86  | 3.566 (4)    | 132                     |

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+2, *y*-1/2, -*z*+3/2.