organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

1,2-Bis(diphenylphosphino)benzene and two related mono-methiodides, [o-C₆H₄(PR₂)(PR₂Me)]I (R = Ph or Me)

William Levason, Gillian Reid and Michael Webster*

School of Chemistry, University of Southampton, Southampton SO17 1BJ, England Correspondence e-mail: m.webster@soton.ac.uk

Received 25 March 2006 Accepted 30 April 2006 Online 30 June 2006

The structures of the compounds 1,2-bis(diphenylphosphino)benzene, $C_{30}H_{24}P_2$, [2-(diphenylphosphino)phenyl]methyldiphenylphosphonium iodide, $C_{31}H_{27}P_2^{+}\cdot I^{-}$, and [2-(dimethylphosphino)phenyl]trimethylphosphonium iodide, $C_{11}H_{19}P_2^{+}\cdot I^{-}$, show that quaternization only occurs at one P centre and results in significantly shorter P–C bonds and larger C–P– C angles, consistent with the formal oxidation from P^{III} to P^V.

Comment

Diphosphines, $o-C_6H_4(PR_2)_2$ (R = Ph, Me, etc.), are widely used in coordination and organometallic chemistry. The rigid o-phenylene backbone pre-organizes the ligands for chelation and its rigidity resists dissociation from metal centres (the 'ophenylene backbone' effect; Levason, 1990). A combination of these effects, especially when combined as in the case of R =Me with small steric requirements and exceptionally strong σ donation, produces ligands that can form robust complexes with most transition metals, even hard 3d-metal centres, such as Mn^{II}, Fe^{IV} or Ni^{IV}, or oxophilic early metals including Zr^{IV} and Hf^{IV} (Warren & Bennett, 1976; Levason, 1990; Levason et al., 2004). Complexes with p-block Lewis acids, including the halides of Ga, Sb and As, are also readily prepared (Hill et al., 2002; Genge et al., 2001; Sigl et al., 1998a). A further consequence of the o-phenylene backbone is that, in contrast to diphosphinoalkanes, quaternization of $o-C_6H_4(PR_2)_2$ with MeI in acetone or alcohols affords exclusively the monophosphonium salts $[o-C_6H_4(PR_2)(PR_2Me)]I$, since the nucleophilicity of the second P atom is markedly reduced by the positive charge on the neighbouring phosphonium centre. Phosphonium salts, $[PR_4]^+$, are widely used as large cations to stabilize a variety of anionic species and to phase-transfer anions into low polarity organic media. The (2-di-Rphosphinophenyl)phosphonium species behave similarly but also have the potential to function as positively charged ligands, binding through the phosphane function to metals leading to zwitterionic products. A related example involving mono-quaternized Ph₂PCH₂PPh₂H⁺ has been structurally characterized in [TiCl₅(Ph₂PCH₂PPh₂H)] (Hart et al., 2001). During the course of studies on the coordination chemistry of $o-C_6H_4(PR_2)_2$ (R = Ph or Me), we obtained crystals of the three title materials and report their structures here.

o-C₆H₄(PPh₂)₂, (I) (Fig. 1 and Table 1), has P-C distances of 1.836 (3)-1.851 (3) Å; addition of the Me group in the phosphonium salt (II) results in shortening of the P1-C distances to 1.787 (2)-1.814 (2) Å, consistent with formal oxidation from P^{III} to P^V , leaving the P2-C distances essentially unchanged (Fig. 2 and Table 2). Although even with excess MeI quaternization only occurs at one P centre (evidence of transmitted electronic effects), there are no significant differences in the P–C bond lengths and the C– P-C angles at P2 in (II) [the average of the three angles is $102.2 (19)^{\circ}$ compared with those in (I) [the average of the six angles is 101.8 (16)°]. The $P \cdot \cdot P$ distance of the neutral ligand [3.166 (1) Å] increases in the methiodide to 3.300 (1) Å, and the C–P–C angles increase by about 7° at the phosphonium P atom. The observed structural changes on quaternization generally parallel those observed by Dunne et al. (1991) in PPh_3 derivatives, although the presence of P^{III} and P^V within the same molecule in $[o-C_6H_4(PPh_2)(PPh_2Me)]I$ provides a particularly clear example. Comparison of (I) with the crystal structure of o-C₆H₄[P(O)Ph₂]₂ (Davis et al., 2006) reveals similar changes in the geometry at both P atoms.

o-C₆H₄(PMe₂)₂ is a liquid at ambient temperatures and has not been obtained in crystalline form; thus, comparisons with the mono-methiodide [o-C₆H₄(PMe₂)(PMe₃)]I, (III), are not possible. However, the same trends as observed in (II) are

Figure 1

The discrete molecule of $o-C_6H_4(PPh_2)_2$, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

15781 measured reflections

 $R_{\rm int}=0.132$ $\theta_{\rm max} = 27.5^\circ$

5122 independent reflections

2565 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0398P)^2]$

20101 measured reflections

 $R_{\rm int} = 0.053$ $\theta_{\rm max} = 27.5^{\circ}$

5956 independent reflections

5063 reflections with $I > 2\sigma(I)$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

apparent in the cation, with the P1-C distances shorter by *ca* 0.04 Å than the P2-C distances and with the C-P-C angles at P1 some 8° larger than those at P2 (Fig. 3 and Table 3). While o-C₆H₄(PMe₂)₂ very readily oxidizes in air, the P^{III} centre in the mono-methiodide appears to be stable to air oxidation. The shortest anion-cation distance in the methiodides is 3.04 Å (I \cdots H), indicating no unusual interactions. Related compounds in the literature include $o-C_6H_4(PMePh)_2$ (Roberts et al., 1980) and $[o-C_6H_4(PPh_2)(PPh_2H)]^+$ (Sigl et al., 1998b)

Figure 2

The structure of [o-C₆H₄(PPh₂)(PPh₂Me)]I, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 3

The structure of [o-C₆H₄(PMe₂)(PMe₃)]I, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Experimental

 $o-C_6H_4(PR_2)_2$ (R = Ph or Me) were prepared according to published procedures (McFarlane & McFarlane, 1983; Kyba et al., 1983). $[o-C_6H_4(PR_2)(PR_2Me)]I(R = Me \text{ or }Ph)$ were prepared by reaction of the diphosphanes with excess MeI in gently refluxing acetone. White microcrystalline products separated on cooling. o-C₆H₄(PPh₂)₂: m.p. 458 K; ${}^{31}P{}^{1}H{}$ NMR (CH₂Cl₂ relative 85% H₃PO₄): δ -13.0; EI-MS (m/z) = 446 a.m.u. (M^+) . $[o-C_6H_4(PPh_2)(PPh_2Me)]I$: ³¹P{¹H} NMR $(CH_2Cl_2): \delta - 14.8 \ (d, {}^{3}J_{PP} = 26 \text{ Hz}), 22.6 \ (d, {}^{3}J_{PP} = 26 \text{ Hz}); \text{ ES-MS}$ (m/z) = 461 a.m.u. (M^+) . $[o-C_6H_4(PMe_2)(PMe_3)]I$: ³¹P{¹H} NMR $(CH_2Cl_2): \delta -53.4 (d, {}^{3}J_{PP} = 22 Hz), 22.0 (d, {}^{3}J_{PP} = 22 Hz); ES-MS$ (m/z) = 213 a.m.u. (M^+) . Crystals of $o-C_6H_4(PPh_2)_2$ were obtained by slow evaporation from a CH₂Cl₂ solution in an inert atmosphere. Crystals of the other two compounds were obtained directly from the preparations.

Compound (I)

Crystal data

$C_{30}H_{24}P_2$	V = 1159.6 (4) Å ³
$M_r = 446.43$	Z = 2
Triclinic, P1	$D_x = 1.279 \text{ Mg m}^{-3}$
a = 8.1930 (15) Å	Mo $K\alpha$ radiation
b = 12.442 (2) Å	$\mu = 0.20 \text{ mm}^{-1}$
c = 12.584 (3) Å	T = 120 (2) K
$\alpha = 109.846 \ (5)^{\circ}$	Block, colourless
$\beta = 99.918 \ (5)^{\circ}$	$0.12 \times 0.10 \times 0.06 \text{ mm}$
$\gamma = 98.330 \ (15)^{\circ}$	

Data collection

Nonius KappaCCD area-detector diffractometer φ and φ scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\rm min}=0.892,\;T_{\rm max}=0.985$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.132$ S = 0.935122 reflections 290 parameters

Table 1

Selected geometric parameters (Å, $^{\circ}$) for (I).

P1-C1	1.851 (3)	P2-C19	1.846 (3)
P1-C7	1.839 (3)	P2-C25	1.838 (3)
P1-C13	1.836 (3)	C1-C2	1.420 (4)
P2-C2	1.849 (3)		
C13-P1-C7	104.17 (13)	C25-P2-C2	101.79 (13)
C13-P1-C1	102.65 (13)	C19-P2-C2	101.67 (13)
C7-P1-C1	100.67 (13)	C2-C1-P1	117.8 (2)
C25-P2-C19	99.70 (14)	C1-C2-P2	118.4 (2)

Compound (II)

Crvstal data

$C_{31}H_{27}P_2^+ \cdot I^-$	$V = 1317.22 (16) \text{ Å}^3$
$M_r = 588.37$	Z = 2
Friclinic, $P\overline{1}$	$D_x = 1.483 \text{ Mg m}^{-3}$
a = 10.3323 (5) Å	Mo $K\alpha$ radiation
p = 11.8412 (10) Å	$\mu = 1.36 \text{ mm}^{-1}$
r = 12.7828 (10) Å	T = 120 (2) K
$\alpha = 69.536 \ (3)^{\circ}$	Needle, colourless
$B = 67.260 \ (3)^{\circ}$	$0.20 \times 0.08 \times 0.04 \text{ mm}$
$\nu = 70.847 \ (4)^{\circ}$	

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\min} = 0.855, T_{\max} = 0.945$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.036P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.031$	+ 0.2511P]
$wR(F^2) = 0.074$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
5956 reflections	$\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
308 parameters	$\Delta \rho_{\rm min} = -1.08 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 2

Selected geometric parameters (A, °) for (II)				0			
Selected geometric parameters (A. ⁻) for (II)	C - 1 +			(A O') f	$(\mathbf{T}\mathbf{T})$	
	Selected	geometric	parameters (A, ') IOF (11)	•

P1-C1	1.814 (2)	P2-C2	1.858 (2)
P1-C7	1.801 (2)	P2-C19	1.838 (2)
P1-C13	1.789 (2)	P2-C25	1.834 (2)
P1-C31	1.787 (2)	C1-C2	1.406 (3)
C31-P1-C13	111.96 (11)	C25-P2-C19	104.26 (10)
C31-P1-C7	106.12 (11)	C25-P2-C2	100.67 (10)
C13-P1-C7	109.57 (10)	C19-P2-C2	101.50 (10)
C31-P1-C1	111.19 (11)	C2-C1-P1	120.79 (16)
C13-P1-C1	107.57 (10)	C1-C2-P2	121.29 (17)
C7-P1-C1	110.46 (10)		

Z = 4

 $D_x = 1.532 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 2.36 \text{ mm}^{-1}$

Rhomb, colourless

 $0.2 \times 0.2 \times 0.05 \text{ mm}$

3 standard reflections

every 150 reflections

intensity decay: none

H-atom parameters constrained

 $w = 1/[\sigma^2 (F_o^2) + (0.0668P)^2]$

where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max}$ = 2.21 e Å⁻³

 $\Delta \rho_{\rm min} = -2.89 \text{ e} \text{ Å}^{-3}$

1772 reflections with $I > 2\sigma(I)$

T = 150 (2) K

 $R_{\rm int}=0.120$

 $\theta_{\rm max} = 25.0^{\circ}$

Compound (III)

Crystal data

 $\begin{array}{l} C_{11}H_{19}P_2^{+}\cdot I^-\\ M_r = 340.10\\ \text{Monoclinic, } P2_1/c\\ a = 9.2002 \ (16) \text{ Å}\\ b = 11.846 \ (3) \text{ Å}\\ c = 13.566 \ (2) \text{ Å}\\ \beta = 94.312 \ (14)^\circ\\ V = 1474.3 \ (5) \text{ Å}^3 \end{array}$

Data collection

Rigaku AFC-7S diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.596$, $T_{max} = 0.890$ 5375 measured reflections 2587 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.121$ S = 0.972587 reflections 128 parameters

Table 3

Selected geometric parameters (Å, °) for (III).

P1-C1	1.820 (5)	P2-C2	1.858 (5)
P1-C7	1.794 (6)	P2-C10	1.832 (6)
P1-C8	1.795 (6)	P2-C11	1.843 (7)
P1-C9	1.792 (5)	C1-C2	1.390 (8)
$C_{9} = P_{1} = C_{8}$	110.4(3)	$C_{10} = P_{2} = C_{11}$	100.4 (3)
C9-P1-C7	106.4 (3)	C10 - P2 - C2	101.3 (3)
C8-P1-C7	106.5 (3)	C11-P2-C2	100.5 (3)
C9-P1-C1	111.4 (3)	C2-C1-P1	123.3 (4)
C8-P1-C1	112.2 (3)	C1-C2-P2	121.4 (4)
C7-P1-C1	109.6 (3)		

H atoms were placed in calculated positions [C-H = 0.95 (aromatic) and 0.98 Å (methyl)]. For (I) and (II), a common refined $U_{iso}(H)$ value was used for all the H atoms. For (III), $U_{iso}(H)$ values

for phenyl H atoms were set at $1.2U_{eq}(C)$ of the bonded C atoms, whilst the methyl H atoms were given a common refined $U_{iso}(H)$ value. The largest peak and trough in the difference electron-density map for $[o-C_6H_4(PMe_2)(PMe_3)]I$ were less than 1 Å from the I atom.

For compounds (I) and (II), data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *COLLECT* and *DENZO*; data reduction: *COLLECT* and *DENZO*. For compound (III), data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1988); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1995). For all compounds, program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the EPSRC for access to the Chemical Database Service at Daresbury and Dr N. J. Hill for data collections.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3012). Services for accessing these data are described at the back of the journal.

References

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Davis, M. F., Levason, W., Reid, G. & Webster, M. (2006). Polyhedron, 25, 930– 936.
- Dunne, B. J., Morris, R. B. & Orpen, A. G. (1991). J. Chem. Soc. Dalton Trans. pp. 653–661.
- Genge, A. R. J., Hill, N. J., Levason, W. & Reid, G. (2001). J. Chem. Soc. Dalton Trans. pp. 1007–1012.
- Hart, R., Levason, W., Patel, B. & Reid, G. (2001). Eur. J. Inorg. Chem. pp. 2927–2933.
- Hill, N. J., Levason, W. & Reid, G. (2002). J. Chem. Soc. Dalton Trans. pp. 1188–1192.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kyba, E. P., Liu, S. T. & Harris, R. L. (1983). Organometallics, 2, 1877-1879.
- Levason, W. (1990). Comments Inorg. Chem. 9, 331-361.
- Levason, W., Matthews, M. L., Patel, B., Reid, G. & Webster, M. (2004). *Dalton Trans.* pp. 3305–3312.
- McFarlane, H. C. E. & McFarlane, W. (1983). Polyhedron, 2, 303-304.
- Molecular Structure Corporation (1988). *MSC/AFC Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1995). *TEXSAN*. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Roberts, N. K., Skelton, B. W. & White, A. H. (1980). J. Chem. Soc. Dalton Trans. pp. 1567–1571.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sigl, M., Schier, A. & Schmidbaur, H. (1998a). Eur. J. Inorg. Chem. pp. 203–210.
- Sigl, M., Schier, A. & Schmidbaur, H. (1998b). Z. Naturforsch. Teil B, 53, 1313–1315.
- Warren, L. F. & Bennett, M. A. (1976). Inorg. Chem. 15, 3126-3140.