Acta Crystallographica Section C

Crystal Structure

 CommunicationsISSN 0108-2701

trans-Di- μ-bromo-bis[bromo(triethyl-phosphine- κ P)platinum(II)]

Stéphanie M. M. Cornet, Keith. B. Dillon, Andrés E. Goeta and Amber L. Thompson*

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
Correspondence e-mail: a.l.thompson@durham.ac.uk

Received 1 November 2004
Accepted 9 December 2004
Online 15 January 2005
The title compound, $\left[\mathrm{Pt}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$, is a centrosymmetric dinuclear platinum(II) complex consisting of two squareplanar platinum centres connected by two bridging Br atoms.

Comment

Bridged chloride complexes of the form $\left[\mathrm{PtCl}_{2}\left(\mathrm{P}_{3}\right)\right]_{2}$ have been used extensively as starting materials in the synthesis of mononuclear platinum-phosphine complexes, which are formed through cleavage of the bridging $\mathrm{Pt}-\mathrm{Cl}$ bond (Chatt \& Venanzi, 1955; Meidine \& Nixon, 1988; Dillon \& Goodwin, 1992, 1994). Similar synthetic methodology can also be applied to bromide analogues (Cornet, 2002). However, while the crystal structures of the chloro-bridged complexes $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)\right]_{2},\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2}$ and $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPr}_{3}\right)\right]_{2}$ are known (Boag \& Ravetz, 1996; Blake et al., 1989; Black et al., 1969), structures of complexes exhibiting the central heavy-atom skeleton $\left[\mathrm{PtCl}_{2} \mathrm{P}\right]_{2}$ are surprisingly rare, with only a handful known (Simms et al., 1987; Cobley et al., 2000).

The title complex, (I), was prepared by the CHCl_{2}-mediated reaction of equimolar quantities of PtBr_{2} and $\left[\mathrm{PtBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$. Given the rarity of crystal structures containing the $\left[\mathrm{PtCl}_{2} \mathrm{P}\right]_{2}$ fragment, it is unsurprising that (I) is the first structure to be reported containing the $\left[\mathrm{PtBr}_{2} \mathrm{P}\right]_{2}$ motif.

(I)

The chloride complexes $\left[\mathrm{PtCl}_{2}\left(\mathrm{P}_{3}\right)\right]_{2}$ (where $R=\mathrm{CH}_{3}$, $\mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{C}_{3} \mathrm{H}_{7}$) and the title compound are closely related, and all four complexes possess an inversion centre in the middle of the dimer, with the $\mathrm{P} R_{3}$ ligands in a trans geometry (Fig. 1). In addition, all four structures are asymmetric around the bridging halide ligands, but this asymmetry is reduced in (I) with respect to the chloride complexes (Table 1). This degree of asymmetry in (I) is presumably due to the relative positions of the Cl, Br and P atoms in the trans influence series and the increased ionic radius of the bromide ligand. These

Figure 1
A view of (I), with selected atoms labelled. Symmetry equivalents related by $\left(\frac{1}{2}-x, \frac{1}{2}-y, 1-z\right)$ are also shown and are indicated by primes. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.
factors also appear to reduce the effect bridging has on the bond lengths, since the bonds to the bridging Br atoms are only 0.023 and $0.122 \AA$ longer than those to the terminal Br atoms, compared with averages of 0.033 and $0.146 \AA$ in $\left[\mathrm{PtCl}_{2}\left(\mathrm{P} R_{3}\right)\right]_{2}$ (where $R=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{C}_{3} \mathrm{H}_{7}$; Boag \& Ravetz, 1996; Blake et al., 1989; Black et al., 1969, respectively).

Experimental

$\mathrm{PtBr}_{2}(1.48 \mathrm{~g}, 4.2 \mathrm{mmol})$ in $\mathrm{PhCN}(10 \mathrm{ml})$ was heated to 373 K to give a bright-orange solution and a yellow precipitate on cooling \{cis$\left[\mathrm{PtBr}_{2}(\mathrm{PhCN})_{2}\right]$, yield $\left.81 \%\right\} . \mathrm{PEt}_{3}(1.75 \mathrm{~g}, 2.18 \mathrm{ml}, 14.8 \mathrm{mmol})$ was then added to a solution of $\left[\mathrm{PtBr}_{2}(\mathrm{PhCN})_{2}\right](1.77 \mathrm{~g}, 3.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and the mixture stirred for 3 h . Evaporation of the solvent produced a white solid $\left\{\right.$ cis- $\left[\mathrm{PtBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$, yield $\left.83 \%\right\}$, some of which $(1.45 \mathrm{~g}, 2.45 \mathrm{mmol})$ was added to a solution of $\mathrm{PtBr}_{2}(1.03 \mathrm{~g}$, 2.9 mmol) in $\left(\mathrm{CHCl}_{2}\right)_{2}$ and heated to 423 K for 4 h . The yellow crystals of (I) obtained on cooling were recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (yield 79%). Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{Br}_{4} \mathrm{P}_{2} \mathrm{Pt}_{2}$: C $15.23, \mathrm{H}$ 3.20%; found: $\mathrm{C} 15.27, \mathrm{H} 3.23 \%$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.9$ (singlet with Pt satellites, $\left.{ }^{1} J_{\mathrm{P}-\mathrm{Pt}}=3701 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{Pt}}=24.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{P}-\mathrm{P}}=1.6 \mathrm{~Hz}\right)$. The AA'XX' part of the spectrum was insufficiently resolved for ${ }^{2} J_{\mathrm{Pt}-\mathrm{Pt}}$ to be evaluated (Kiffen et al., 1975).

Crystal data

$\left[\mathrm{Pt}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=946.12$
Monoclinic, $C 2 / c$
$a=26.522$ (6) \AA
$b=6.8720$ (13) \AA
$c=13.811(4) \AA$
$\beta=120.930$ (7) ${ }^{\circ}$
$V=2159.3(9) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD 1K areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\min }=0.058, T_{\max }=0.129$
10540 measured reflections

$$
D_{x}=2.910 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 7378
reflections
$\theta=1.9-30.6^{\circ}$
$\mu=20.48 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, clear intense orange
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

> 2355 independent reflections 2158 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.036$
> $\theta_{\max }=27.0^{\circ}$
> $h=-32 \rightarrow 33$
> $k=-8 \rightarrow 8$
> $l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.046$
$S=1.11$
2355 reflections
94 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0168 P)^{2}\right. \\
& +10.3265 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.85 \mathrm{e}^{-3} \\
& \Delta \rho_{\max }=0.85 \mathrm{e}_{\text {min }}=-1.75 \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I) and the related chloro complexes $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)\right]_{2},\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2}$ and $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPr}_{3}\right)\right]_{2}(\mathrm{Hal}=\mathrm{Cl}$ or Br).

	$\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)\right]_{2}$	$\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2}$	$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPr}_{3}\right)\right]_{2}$	(I)
$\mathrm{Pt}-\mathrm{P}$	$2.205(3)$	$2.212(3)$	$2.230(9)$	$2.2266(11)$
$\mathrm{Pt}-\mathrm{Hal}_{\text {terminal }}$	$2.281(3)$	$2.282(3)$	$2.279(9)$	$2.4229(7)$
$\mathrm{Pt}-\mathrm{Hal}_{\text {bridging }}$	$2.309(3)$	$2.318(3)$	$2.315(8)$	$2.4455(7)$
	$2.423(3)$	$2.431(3)$	$2.425(8)$	$2.5451(6)$
$\mathrm{Pt}-\mathrm{Hal}-\mathrm{Pt}$	$96.19(10)$	$96.48(10)$	$96.4(3)$	$96.17(2)$
$\mathrm{Hal}-\mathrm{Pt}-\mathrm{Hal}$	$83.81(10)$	$83.52(9)$	$83.6(2)$	$83.83(2)$

All H atoms were placed geometrically and refined using a riding $\operatorname{model}(\mathrm{C}-\mathrm{H}=0.98$ and $0.99 \AA)$, with their $U_{\text {iso }}(\mathrm{H})$ values fixed at 1.2 or 1.5 times $U_{\text {eq }}$ of the parent C atom. Although there are difference density holes larger than $1 \mathrm{e}^{\AA^{-3}}$, they are within $1 \AA$ of the Pt atom.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997a); molecular
graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the EPSRC for postgraduate studentships (SMMC and ALT) and Johnson-Matthey plc for the loan of platinum compounds.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ1034). Services for accessing these data are described at the back of the journal.

References

Black, M., Mais, R. H. B. \& Owston, P. G. (1969). Acta Cryst. B25, 1760-1766. Blake, A. J., Gould, R. O., Marr, A. M., Rankin, D. W. H. \& Schröder, M. (1989). Acta Cryst. C45, 1218-1219.

Boag, N. M. \& Ravetz, M. S. (1996). Acta Cryst. C52, 1942-1943.
Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chatt, J. \& Venanzi, L. M. (1955). J. Chem. Soc. pp. 2787-2793.
Cobley, C. J., Ellis, D. D., Orpen, A. G. \& Pringle, P. G. (2000). J. Chem. Soc. Dalton Trans. pp. 1101-1107.
Cornet, S. M. M. (2002). PhD thesis, University of Durham, England.
Dillon, K. B. \& Goodwin, H. P. (1992). J. Organomet. Chem. 428, 169-171.
Dillon, K. B. \& Goodwin, H. P. (1994). J. Organomet. Chem. 469, 125-128.
Kiffen, A. A., Masters, C. \& Visser, J. P. (1975). J. Chem. Soc. Dalton Trans. pp. 1311-1315.
Meidine, M. F. \& Nixon, J. F. (1988). Private communication to K. B. Dillon.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Simms, B. L., Shang, M., Lu, J., Youngs, W. J. \& Ibers, J. A. (1987). Organometallics, 6, 1118-1126.

