organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Hydantoin and hydrogen-bonding patterns in hydantoin derivatives

Fang-Lei Yu,^a Carl H. Schwalbe^{a*} and David J. Watkin^b

^aAston Pharmacy School, Aston Triangle, Birmingham B4 7ET, England, and ^bChemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 3PD, England Correspondence e-mail: c.h.schwalbe@aston.ac.uk

Received 21 June 2004 Accepted 19 July 2004 Online 4 September 2004

The structure of hydantoin (imidazolidine-2,4-dione), C₃H₄- N_2O_2 , has been determined from a twinned crystal. The two carbonyl bond lengths are nearly equal, even though one of them adjoins electron-donating NH groups to either side while the other is adjacent to only one. Ab initio molecular-orbital calculations yield more negative Löwdin charge on the former than the latter. Hydantoin molecules form two chains linked by $N-H \cdots O$ hydrogen bonds, from which inversion centres create a 'chain of rings'. Out of 50 hydantoin moieties in 49 independent molecules of hydantoin derivatives in the Cambridge Structural Database [Version 5.25; Allen (2002). Acta Cryst. B58, 380–388], five show this arrangement, six are a variant using the same O atom twice, five form a chain of edge-fused 12-membered hydrogen-bonded rings, and all but three of the remainder have one eight-membered ring and/or one chain connecting their hydantoin rings.

Comment

Hydantoin, (I), is of interest as the parent compound of the anti-epileptic drug diphenylhydantoin and as a supramolecular synthon in its own right. Possessing equal numbers of hydrogen-bond donor (two ring NH) groups and acceptor (two carbonyl O) atoms, it can form intricate networks, but with a different presentation of these groups compared with the six-membered rings so often studied. Probably due to the difficulties with twinning described below, no structure of hydantoin has appeared in the literature to date.

A view of (I) with the atom-numbering scheme is shown in Fig. 1. Electron donation from the ring N atoms to the carbonyl groups, as in resonance structures (Ia)-(Ic), would be expected to lengthen the C=O bonds and shorten the ring C-N bonds, C2=O2 being affected from both sides. The

experimental bond distances (Table 1) show no significant differences between the two carbonyl bond lengths or between N1–C2 and N3–C4, but C2–N3 is longer than their average by 0.024 Å (6σ). Thus, resonance structure (Ib) appears to be of limited importance. Both carbonyl groups are bent towards atom N3; the angle O2–C2–N1 exceeds O2–C2–N3 by 3.8 (3)° and the angle O4–C4–C5 exceeds O4–C4–N3 by 2.6 (3)°.

A search group was defined, consisting of a hydantoin ring with both NH groups unsubstituted and sp^3 hybridization at C5. With disorder, errors or ions excluded and R < 0.1required, a search (Bruno et al., 2002) of the Cambridge Structural Database (CSD, Version 5.25; Allen, 2002) yielded 41 hits with 50 hydantoin rings in 49 independent molecules after removal of duplicate structure determinations. Mean values of the relevant bond distances, with standard error of the mean in parentheses, confirm the tendency in hydantoin: C2-O2 = 1.221(1) Å, C4-O4 = 1.211(1) Å, N1-C2 =1.342(2) Å, C2-N3 = 1.393(2) Å and N3-C4 = 1.362(1) Å. Bending of one carbonyl bond is common. The mean O2-C2-N1 angle is 127.9 (1)°, compared with 124.5 (1)° for O2-C2-N3, but the other C=O bond lies close to the exterior bisector, mean values being 126.8 (1)° for O4-C4-N3 and $126.3 (1)^{\circ}$ for O4–C4–C5.

Ab initio molecular-orbital optimization of hydantoin with GAMESS (Schmidt et al., 1990) in the 6-31G* basis set corroborates the near equality of C=O distances and yields N1-C2, C2-N3 and N3-C4 distances of 1.356, 1.391 and 1.367 Å, respectively. Atomic charges were calculated by the method of Löwdin (1950), chosen because it is based on orthogonalized orbitals and appears to be consistent with electronegativity. Values of -0.350 on atom N1, -0.382 on O2, -0.275 on N3 and -0.348 on O4 suggest that more negative charge is received by O2 than O4, and more given up by N3 than by N1.

As seen in Fig. 2, each molecule of (I) participates in N– H···O hydrogen bonds (Table 2), forming a chain of centrosymmetric rings with graph set $C_2^2(9)$ $[R_2^2(8)]$ $[R_2^2(8)]$ (Etter, 1990; Bernstein *et al.*, 1995). Of the 50 independent hydantoin rings found in the search of the CSD, this (pseudo-)centrosymmetric 'chain of rings' arrangement occurred in five (Table 3; the atom-numbering scheme has always been made to agree with the IUPAC system used in the present study),

Figure 1

A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

886 independent reflections

 $R_{\rm int}=0.02$

 $\theta_{\rm max} = 27.4^{\circ}$

 $h = -12 \rightarrow 12$

 $k = -14 \rightarrow 15$

 $w = 1/[\sigma^2(F^*) + 1.89P]$

 $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$

where $P = \frac{1}{3} \max(F_o^2, 0) + \frac{2}{3} F_c^2$

 $l = -9 \rightarrow 9$

886 reflections with $I > -10\sigma(I)$

Figure 2

A view of two chains of (I) extending through the unit cell, with atom N1 of four representative molecules bearing a label. The symmetry codes are: (ii) 1 - x, -y, 1 - z; (iii) $\frac{1}{2} + x$, $\frac{1}{2} + y$, z; (iv) $\frac{3}{2} - x$, $\frac{1}{2} - y$, 1 - z. Other molecules are generated from these by adding 1 to both x and z or subtracting 1 from both x and z. Hydrogen bonds are shown as dashed lines.

while another six exhibited a variant form in which the more electron-dense atom O2 simultaneously accepts N1-H1...O2 and N3-H3...O2 hydrogen bonds, while atom O4 accepts none (Table 4).

Chains are also possible. Hydantoins can create an infinite chain in graph set C(5) with atom N1 as donor and atom O4 as acceptor, simultaneously with another C(4) motif having atom N3 as donor and atom O2 as acceptor, thereby creating edgefused $R_3^3(12)$ rings. This network had five occurrences, always in a non-centrosymmetric space group (Table 5).

Many hydantoin derivatives carry polar substituents on the 5-position, which divert some or all of the hydrogen bonding away from the ring. Thus, 21 molecules participate in a single $R_2^2(8)$ motif, 11 involving atom N1 as donor and atom O2 as acceptor, seven with N3 and O2, two with N3 and O4, and one with heterogeneous involvement of N1 with O4 and N3 with O2 (Table 6). Single chains also occur frequently, two C(4)using atoms N1 and O2, five C(5) with N1 and O4, four C(4)with N3 and O2 but none with N3 and O4, and one with heterogeneous chains (Table 7). Finally, three rings only interact with side groups (Table 8). (The total exceeds 50 because two molecules forming one ring and one chain are double-counted.) Of the potential hydrogen-bond donors and acceptors, atom N1 is left unused only three times, O2 just once and N3 not at all, but the less highly charged and less

accessible atom O4 is unused 24 times. Thus, hydantoin is a versatile supramolecular synthon providing a challenge to attempts at a priori prediction.

Experimental

Crystals of (I), in habits ranging from stubby needles to tabular blocks, were grown by slowly cooling to room temperature a saturated aqueous solution prepared at 353 K. An attempt to obtain a more tractable crystal form by diffusing acetic acid vapour into a sample of hydantoin in 12.5% sodium hydroxide solution yielded a conglomerate of sticky needles showing the same unit cell, space group and propensity to form twins.

Crystal data

$C_3H_4N_2O_2$	Mo $K\alpha$ radiation
$M_r = 100.08$	Cell parameters from 730
Monoclinic, C2/c	reflections
a = 9.3538 (7) Å	$\theta = 5-27^{\circ}$
b = 12.1757 (11) Å	$\mu = 0.14 \text{ mm}^{-1}$
c = 7.2286 (6) Å	$T = 190 { m K}$
$\beta = 104.593 \ (4)^{\circ}$	Plate, colourless
$V = 796.70 (11) \text{ Å}^3$	$0.18 \times 0.10 \times 0.02 \text{ mm}$
Z = 8	
$D_x = 1.669 \text{ Mg m}^{-3}$	

Data collection

Nonius KappaCCD area-detector diffractometer ω scans Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.99, T_{\max} = 1.00$ 1593 measured reflections

Refinement

Refinement on F^2 R(F) = 0.061 $wR(F^2) = 0.131$ S = 1.13886 reflections 77 parameters Only coordinates of H atoms

refined

Table 1

Selected geometric parameters (Å, °).

C2-O2 C2-N1 C2-N2	1.222 (3) 1.371 (3)	C4-O4 C4-C5	1.225 (3) 1.460 (3)
C2-N3 N3-C4	1.367 (3)	C3-M	1.437 (3)
O2-C2-N1 O2-C2-N3	128.2 (2) 124.4 (2)	O4-C4-N3 C5-C4-N3	125.3 (2) 106.8 (2)
N3-C2-N1 C4-N3-C2 O4-C4-C5	107.4 (2) 111.67 (19) 127.9 (2)	N1-C5-C4 C2-N1-C5	104.7 (2) 109.4 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N1 {-} H1 {\cdots} O2^i \\ N3 {-} H3 {\cdots} O4^{ii} \end{array}$	0.95 (3)	2.01 (3)	2.913 (3)	158
	0.87 (4)	1.98 (4)	2.852 (3)	176

Symmetry codes: (i) 2 - x, -y, 2 - z; (ii) 1 - x, -y, 1 - z.

Table 3

Hydantoin derivatives in the CSD forming the same $C_2^2(9) [R_2^2(8)] [R_2^2(8)]$ network as hydantoin or a comparable network with a pseudo-centre of inversion.

Refcode	Space group	$D - H \cdots A$	Reference
BCOCHY	C2/m	$N1 - H \cdots O2$ $N3 - H \cdots O4$	Smith-Verdier et al. (1979a)
GRNSHY, mol 1	$P\overline{1}$	N1−H···O4″	Florencio et al. (1980)
GRNSHY, mol 2	$P\overline{1}$	$N3-H\cdots O4''$ $N1-H''\cdots O2$	
OCSHYD	C2/c	$N3 = H^2 \cdots O4$ $N1 = H \cdots O2$ N2 = H = O4	Miller & McPhail (1979)
VARBAR	$P2_{1}/c$	$N1 - H \cdot \cdot \cdot O2$ $N3 - H \cdot \cdot \cdot O4$	Rizzi et al. (1989)

Table 4

Hydantoin derivatives forming a $C_1^1(4)$ $C_1^1(4)$ $[R_2^2(8)]$ network based on N1-H···O2 and N3-H···O2 hydrogen bonds with O4 not used.

Refcode	Space group	$D - \mathbf{H} \cdots A$	Reference
ADUQOF	P2 ₁ 2 ₁ 2 ₁	$N1 - H \cdot \cdot \cdot O2$	Beilles et al. (2001)
BEPNIT	P2 ₁ 2 ₁ 2 ₁	$N3-H\cdots O2$ $N1-H\cdots O2$	Cassady & Hawkinson (1982)
HPHCMS	<i>P</i> 2 ₁	$N3 - H \cdots O2$ $N1 - H \cdots O2$	Koch et al. (1975)
OGUVIV	P2 ₁	$N3 - H \cdots O4$ $N1 - H \cdots O2$	Stalker et al. (2002)
XERTUJ, mol 1	<i>P</i> 2 ₁	$N3 - H \cdot \cdot \cdot O4$ $N1 - H \cdot \cdot \cdot O2''$ N2 + O2''	Koos et al. (2000)
XERTUJ, mol 2	<i>P</i> 2 ₁	$N3-H'' \cdots O2$ $N3-H'' \cdots O2$ $N3-H'' \cdots O2$	

Table 5

Hydantoin derivatives forming a chain of edge-fused $R_3^3(12)$ rings.

Refcode	Space group	$D - \mathbf{H} \cdots A$	Reference
DAFFIZ01	P212121	$N1 - H \cdots O4$ $N3 - H \cdots O2$	Sarges et al. (1985)
LABTIR	P212121	$N1 - H \cdots O4$ $N3 - H \cdots O2$	Coquerel et al. (1993)
PHYDAN	$Pn2_1a$	$N1 - H \cdots O4$ $N3 - H \cdots O2$	Camerman & Camerman (1971)
PIPVAL	<i>P</i> 2 ₁	$N1 - H \cdot \cdot \cdot O4$ $N3 - H \cdot \cdot \cdot O2$	Modric et al. (1993)
YECDOZ	<i>P</i> 2 ₁ 2 ₁ 2 ₁	$N1 - H \cdots O4$ $N3 - H \cdots O2$	Park et al. (1994)

H-atom positions were refined freely, and $U_{\rm iso}({\rm H})$ values were set initially to $1.2U_{\rm eq}({\rm C,N})$ and not refined further. The data were refined as a two-component twin, $(1\ 0\ 0,\ 0\ 1\ 0,\ 0\ 0\ 1)$ and $(1\ 0\ 0.652,\ 0\ \overline{1}\ 0,\ 0\ 0\ \overline{1})$, with twin element scale factors of 0.869 (6) and 0.131 (6).

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994) and *SHELXL*97 (Sheldrick, 1997); program(s) used to refine structure: *CRYSTALS* (Watkin *et al.*, 1999); molecular graphics: *CAMERON* (Watkin *et al.*, 1996) and *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *CRYSTALS*.

The authors thank the Cambridge Crystallographic Data Centre for providing the CSD at Aston University. Hydantoin derivatives forming a single $R_2^2(8)$ motif.

BICSIP CECKUQ DPHEAD20, mol 1 EZOSHY MANHDT10 MESYIS, mol 1 MESYIS, mol 2 MGSHYD10, mol 2 MGSHYD10, mol 2 MZBSHY TRSHYD10 ALATIN01 DPHEAD20, mol 2 DPHPZL HEGRAH VAPZUH XERTOD, mol 1 XERTOD, mol 1 XERTOD, mol 2 AHINEK NIVZOH	$\begin{array}{c} P2_{1}/n \\ P\overline{1} \\ P\overline{1} \\ P2_{1}/c \\ P2_{1}/n \\ P1 \\ P1 \\ P2_{1} \\ P2_{1} \\ P2_{1} \\ P2_{1}/c \\ P\overline{1} \\ P2_{1}/c \\ P4_{3} \\ P4_{3} \\ P4_{3} \\ P4_{3} \\ P2_{1}/c \\ P2_{1$	$\begin{array}{c} N1-H\cdots O2 \\ N1-H\cdots O2 \\ N1-H\cdots O2 \\ N1-H\cdots O2 \\ N1-H\cdots O2'' \\ N1-H\cdots O2'' \\ N1-H''\cdots O2 \\ N1-H''\cdots O2 \\ N1-H''\cdots O2 \\ N1-H''\cdots O2 \\ N1-H\cdots O2 \\ N3-H\cdots O4 \\ N3-H\cdots O4 \\ N1-H \\ O4'' \\ \end{array}$	Florencio et al. (1982) Galvez et al. (1983) Mastropaolo et al. (1983) Smith-Verdier et al. (1978) Vilches et al. (1981) Koos et al. (2001) Florencio et al. (1978a) Florencio et al. (1979) Smith-Verdier et al. (1977) Zhang et al. (1992) Mastropaolo et al. (1978) Florencio et al. (1978b) Rizzi et al. (1989) Koos et al. (2000) SethuSankar et al. (2002) Benedetti et al. (1997) Mullico et al. (1997)

† Although Z' = 1, the molecule has an independent hydantoin ring at each end.

Table 7 Hydantoin derivatives forming a single chain motif.

Refcode	Space group	$D - H \cdots A$	Reference
NIVZOH	$P2_{1}/c$	$N1-H\cdots O2$	Benedetti et al. (1997)
TOTPIB	$P2_1$	$N1 - H \cdot \cdot \cdot O2$	Bravo et al. (1996)
BAGXOW	$P2_1/c$	$N1-H \cdots O4$	Terzis et al. (1981)
HOIMCU, mol 1	$P2_1/n$	$N1 - H \cdot \cdot \cdot O4$	Poje et al. (1980)
ROKSOZ	$Pna2_1$	$N1 - H \cdot \cdot \cdot O4$	Gauthier et al. (1997)
SINZEU	$P2_{1}2_{1}2_{1}$	$N1-H \cdots O4$	Galdecki & Karolak-
			Wojciechowska (1986)
VAPZUH	$P2_{1}/c$	$N1 - H \cdot \cdot \cdot O4$	Rizzi et al. (1989)
GODRAS	$P2_{1}2_{1}2_{1}$	$N3-H \cdot \cdot \cdot O2$	Eknoian et al. (1999)
GOPZIU, mol 1	$P2_1$	$N3-H \cdot \cdot \cdot O2''$	Agasimundin et al. (1998)
GOPZIU, mol 2	$P2_1$	$N3-H'' \cdots O2$	
ROKSUF	$P2_{1}/c$	$N3-H \cdot \cdot \cdot O2$	Gauthier et al. (1997)
COQQEE†	$P2_1$	$N3-H\cdots O2''$	Mullica et al. (1998)
		$N1-H''\cdots O4$	

† Although Z' = 1, the molecule has an independent hydantoin ring at each end.

Table 8

Hydantoin derivatives without ring-to-ring hydrogen bonding.

Refcode	Space group	$D - \mathbf{H} \cdots A$	Reference
HOIMCU, mol 2	$\begin{array}{c} P2_1/n\\ P2_1\\ P2_1/c \end{array}$	None	Poje <i>et al.</i> (1980)
JOPPAF		None	Yamagishi <i>et al.</i> (1992)
QIBNIY		None	SethuSankar <i>et al.</i> (2001)

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1332). Services for accessing these data are described at the back of the journal.

References

- Agasimundin, Y. S., Mumper, M. W. & Hosmane, R. S. (1998). *Bioorg. Med. Chem.* 6, 911–923.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Beilles, S., Cardinael, P., Ndzie, E., Petit, S. & Coquerel, G. (2001). *Chem. Eng. Sci.* 56, 2281–2294.

- Benedetti, E., DiBlasio, B., Iacovino, R., Menchize, V., Saviano, M., Pedone, C., Bonora, G. M., Ettorre, A., Graci, L., Formaggio, F., Crisma, M., Valle, G. & Toniolo, C. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 2023–2032.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bravo, P., Capelli, S., Meille, S. V., Seresini, P., Volonterio, A. & Zanda, M. (1996). *Tetrahedron: Asymmetry*, **7**, 2321–2332.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.
- Camerman, A. & Camerman, N. (1971). Acta Cryst. B27, 2205-2211.
- Cassady, R. E. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1646-1647.
- Coquerel, G., Petit, M. N. & Robert, F. (1993). Acta Cryst. C49, 824-825.
- Eknoian, M. W., Webb, T. R., Worley, S. D., Braswell, A. & Hadley, J. (1999). Acta Cryst. C55, 405–407.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Florencio, F., Smith-Verdier, P. & García-Blanco, S. (1978a). Acta Cryst. B34, 1317–1321.
- Florencio, F., Smith-Verdier, P. & García-Blanco, S. (1978b). Acta Cryst. B34, 2220–2223.
- Florencio, F., Smith-Verdier, P. & García-Blanco, S. (1979). Acta Cryst. B35, 2422–2424.
- Florencio, F., Smith-Verdier, P. & García-Blanco, S. (1980). Cryst. Struct. Commun. 9, 687–692.
- Florencio, F., Smith-Verdier, P. & García-Blanco, S. (1982). Acta Cryst. B38, 2089–2091.
- Galdecki, Z. & Karolak-Wojciechowska, J. (1986). J. Crystallogr. Spectrosc. Res. 16, 467–474.
- Galvez, E., Martinez, M., Gonzalez, J., Trigo, G. G., Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). J. Pharm. Sci. 72, 881–886.
- Gauthier, T. J., Yokum, T. S., Morales, G. A., McLaughlin, M. L., Liu, Y.-H. & Fronczek, F. R. (1997). Acta Cryst. C53, 1659–1661.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Koch, M. H. J., Germain, G., Declercq, J. P. & Dusausoy, Y. (1975). Acta Cryst. B31, 2547–2549.
- Koos, M., Steiner, B., Langer, V., Gyepesova, D. & Durik, M. (2000). Carbohydr. Res. 328, 115–126.
- Koos, M., Steiner, B., Micova, J., Langer, V., Durik, M. & Gyepesova, D. (2001). Carbohydr. Res. 332, 351–361.
- Löwdin, P. O. (1950). J. Chem. Phys. 18, 365-370.
- Mastropaolo, D., Camerman, A. & Camerman, N. (1983). Mol. Pharmacol. 23, 273–277.
- Miller, R. W. & McPhail, A. T. (1979). J. Chem. Res. pp. 330-331.

- Modric, N., Poje, M., Watkin, D. J. & Edwards, A. J. (1993). *Tetrahedron Lett.* **34**, 4679–4682.
- Mullica, D. F., Trawick, M. L., Wu, P. W. N. & Sappenfield, E. L. (1998). J. Chem. Crystallogr. 28, 761–765.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Park, H.-G., Vela, M. A. & Kohn, H. (1994). J. Am. Chem. Soc. 116, 471-478.
- Poje, M., Paulus, E. F. & Rocic, B. (1980). J. Org. Chem. 45, 65-68.
- Rizzi, J. P., Schnur, R. C., Hutson, N. J., Kraus, K. G. & Kelbaugh, P. R. (1989). J. Med. Chem. 32, 1208–1213.
- Sarges, R., Bordner, J., Dominy, B. W., Peterson, M. J. & Whipple, E. B. (1985). J. Med. Chem. 28, 1716–1720.
- Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Jensen, J. H., Koseki, S., Gordon, M. S., Nguyen, K. A., Windus, T. L. & Elbert, S. T. (1990). *QCPE Bull.* 10, 52–54.
- SethuSankar, K., Thennarasu, S., Velmurugan, D. & Kim, M. J. (2002). Acta Cryst. C58, 0715–0717.
- SethuSankar, K., Thennarasu, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Perumal, P. T. (2001). Acta Cryst. E57, o377–o379.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1977). Acta Cryst. B33,
- 3381–3385.
 Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1979a). Acta Cryst. B35, 216–217.
- Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1979b). Acta Cryst. B35, 1911–1913.
- Stalker, R. A., Munsch,, T. E., Tran, J. D., Nie, X., Warmuth, R., Beatty, A. & Aakeroy, C. B. (2002). *Tetrahedron*, 58, 4837–4849.
- Terzis, A., Filippakis, S. E. & Mentzafos, D. (1981). Cryst. Struct. Commun. 10, 803–806.
- Uno, T. & Shimizu, N. (1980). Acta Cryst. B36, 2794-2796.
- Vilches, J., Florencio, F., Smith-Verdier, P. & García-Blanco, S. (1981). Acta Cryst. B37, 201–204.
- Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1999). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
- Yamagishi, M., Yamada, Y., Ozaki, K., Da-te, T., Okamura, K., Suzuki, M. & Matsumoto, K. (1992). J. Org. Chem. 57, 1568–1571.
- Zhang, J., Zhang, Z., You, K. & Fan, Y. (1992). Jilin Daxue Ziran Kexue Xuebao (Acta Sci. Nat. Univ. Jilin), pp. 87–89. (In Chinese.)

supporting information

Acta Cryst. (2004). C60, o714-o717 [doi:10.1107/S0108270104017706]

Hydantoin and hydrogen-bonding patterns in hydantoin derivatives

Fang-Lei Yu, Carl H. Schwalbe and David J. Watkin

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK*; data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994) and *SHELXL97* (Sheldrick, 1997); program(s) used to refine structure: *CRYSTALS* (Watkin *et al.*, 1999); molecular graphics: *CAMERON* (Watkin *et al.*, 1996) and *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *CRYSTALS*.

imidazolidine-2,4-dione

Crystal data	
C ₃ H ₄ N ₂ O ₂ $M_r = 100.08$ Monoclinic, C2/c Hall symbol: -C 2yc a = 9.3538 (7) Å b = 12.1757 (11) Å c = 7.2286 (6) Å $\beta = 104.593$ (4)° V = 796.70 (11) Å ³ Z = 8	F(000) = 416.000 $D_x = 1.669 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 730 reflections $\theta = 5-27^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 190 K Plate, colourless $0.18 \times 0.10 \times 0.02 \text{ mm}$
Data collection	
Nonius KappaCCD area-detector diffractometer Graphite monochromator ω scans Absorption correction: multi-scan <i>DENZO</i> and <i>SCALEPACK</i> (Otwinowski & Minor, 1997) $T_{\min} = 0.99, T_{\max} = 1.00$	1593 measured reflections 886 independent reflections 886 reflections with $I > -10\sigma(I)$ $R_{int} = 0.02$ $\theta_{max} = 27.4^\circ, \ \theta_{min} = 5.5^\circ$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 15$ $l = -9 \rightarrow 9$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.131$ S = 1.13 886 reflections 77 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites Only H-atom coordinates refined $w = 1/[\sigma^2(F^*) + 1.89P]$ where $P = 0.333^* \text{max}(F_o^2, 0) + (1-0.333)F_o^2$ $(\Delta/\sigma)_{\text{max}} = 0.000095$ $\Delta\rho_{\text{max}} = 0.27 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.25 \text{ e } \text{Å}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.8510 (3)	0.10869 (19)	0.8685 (3)	0.0374
C2	0.7974 (3)	0.00484 (19)	0.8218 (3)	0.0271
N3	0.6630 (2)	0.01532 (16)	0.6856 (3)	0.0271
C4	0.6326 (3)	0.12247 (19)	0.6338 (3)	0.0280
C5	0.7522 (3)	0.1883 (2)	0.7508 (4)	0.0326
O4	0.5237 (2)	0.15458 (14)	0.5136 (3)	0.0376
02	0.8518 (2)	-0.08264 (14)	0.8866 (3)	0.0366
H51	0.802 (3)	0.224 (3)	0.685 (5)	0.0388*
H52	0.723 (3)	0.236 (3)	0.815 (5)	0.0388*
H1	0.943 (3)	0.119 (2)	0.959 (4)	0.0309*
Н3	0.610 (4)	-0.038 (3)	0.623 (5)	0.0500*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0327 (12)	0.0373 (12)	0.0362 (13)	-0.004 (1)	-0.003 (1)	-0.0052 (9)
C2	0.0268 (12)	0.0249 (11)	0.0285 (11)	-0.0012 (9)	0.0050 (9)	0.0002 (9)
N3	0.027(1)	0.0198 (9)	0.0303 (11)	-0.0027 (7)	-0.0006 (8)	-0.0005 (7)
C4	0.0328 (12)	0.0236 (11)	0.0255 (12)	-0.0033 (9)	0.0035 (9)	0.0005 (8)
C5	0.0474 (15)	0.0179 (11)	0.0314 (13)	-0.003 (1)	0.0077 (11)	0.0001 (9)
O4	0.0437 (11)	0.0257 (9)	0.035 (1)	0.0016 (7)	-0.0063 (8)	0.0020 (7)
O2	0.036 (1)	0.0262 (9)	0.0417 (11)	0.0036 (7)	-0.0009 (8)	0.0020 (7)

Geometric parameters (Å, °)

C2—O2	1.222 (3)	C4—C5	1.460 (3)
C2—N1	1.371 (3)	С5—Н52	0.83 (3)
C2—N3	1.393 (3)	C5—H51	0.86 (3)
N3—H3	0.87 (4)	C5—N1	1.457 (3)
N3—C4	1.367 (3)	N1—H1	0.95 (3)
C4—O4	1.225 (3)		
02 C2 N1	129.2 (2)		105 (2)
02 - C2 - NI	128.2 (2)	H52—C5—H51	105 (3)
O2—C2—N3	124.4 (2)	H52—C5—N1	113 (2)
N3—C2—N1	107.4 (2)	H51—C5—N1	108 (2)
H3—N3—C4	121 (2)	H52—C5—C4	114 (2)
H3—N3—C2	127 (2)	H51—C5—C4	114 (2)
C4—N3—C2	111.67 (19)	N1—C5—C4	104.7 (2)
O4—C4—C5	127.9 (2)	H1—N1—C2	120.5 (17)
O4—C4—N3	125.3 (2)	H1—N1—C5	130.0 (17)
C5—C4—N3	106.8 (2)	C2—N1—C5	109.4 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —Н··· <i>A</i>
N1—H1···O2 ⁱ	0.95 (3)	2.01 (3)	2.913 (3)	158
N3—H3····O4 ⁱⁱ	0.87 (4)	1.98 (4)	2.852 (3)	176

Symmetry codes: (i) -*x*+2, -*y*, -*z*+2; (ii) -*x*+1, -*y*, -*z*+1.