organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Orthorhombic and monoclinic polymorphs of 1,3,5-triphenylperhydro-1,3,5-triazine-2,4,6-trione at 120 K: chains and sheets formed by C—H $\cdots \pi$ (arene) hydrogen bonds

M. Baby Mariyatra,^a Krishnaswamy Panchanatheswaran,^a John N. Low^b‡ and Christopher Glidewell^c*

^aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland Correspondence e-mail: cg@st-andrews.ac.uk

Received 13 July 2004 Accepted 15 July 2004 Online 21 August 2004

The title compound, $C_{21}H_{15}N_3O_3$, crystallizes in two polymorphic forms. In the orthorhombic polymorph, (I), in space group *Fdd2* with Z' = 1, the molecules lie in general positions, while in the monoclinic polymorph, (II), in space group C2/c with $Z' = \frac{1}{2}$, the molecules lie across twofold rotation axes. In each polymorph, the molecules are linked by a single $C-H\cdots$ π (arene) hydrogen bond, forming chains in polymorph (I) and sheets in (II).

Comment

We report here the molecular and supramolecular structures at 120 K of two polymorphic forms of 1,3,5-triphenyl-1,3,5perhydrotriazine-2,4,6-trione, the cyclic trimer of phenyl isocyanate, PhNCO. The orthorhombic polymorph, (I) (Fig. 1), crystallizes in space group *Fdd2* with Z' = 1, and the monoclinic polymorph, (II) (Fig. 2), crystallizes in space group *C2/c*, with $Z' = \frac{1}{2}$. The molecules in (II) lie across twofold rotation axes, with the reference molecule lying across the axis along $(\frac{1}{2}, y, \frac{1}{4})$. The structure of (II) was reported from ambienttemperature data some years ago (Usanmaz, 1979) and it is clear from the cell dimensions and space group that this earlier structure was of the same phase as (II), thus suggesting that the monoclinic phase does not undergo any temperaturedependent change, at least within the range 120–300 K.

The bond lengths and angles in (I) and (II) (Tables 1 and 3) are very similar, and the distances show evidence of strong bond fixation. Within the heterocyclic rings, the internal bond angles at the N atoms are consistently some 10° larger than the

internal angles at the C atoms. In polymorph (II), the heterocyclic ring is slightly puckered. The ring-puckering parameters (Cremer & Pople, 1975) for the atom sequence N1–C2– N3–C4–N3ⁱ–C2ⁱ [symmetry code: (i) 1 – x, y, $\frac{1}{2} - z$] of $\theta =$ 90.0 (7)° and $\varphi = 270.0$ (6)° indicate a twist-boat ring conformation (Boeyens, 1978), although the puckering amplitude Qis fairly small, at 0.104 (2) Å. The conformations defined by the phenyl rings (Figs. 1 and 2, and Tables 1 and 3) are very similar.

In the crystal structure of (I), there are no $C-H\cdots O$ or $C-H\cdots N$ hydrogen bonds and no aromatic $\pi-\pi$ stacking interactions. However, the molecules are linked into chains by a single $C-H\cdots\pi$ (arene) interaction (Table 2). Aromatic atom C14 in the molecule at (x, y, z) acts as hydrogen-bond donor to phenyl ring C31–C36 in the molecule at $(\frac{5}{4} - x, y - \frac{1}{4}, \frac{3}{4} + z)$, while atom C14 at $(\frac{5}{4} - x, y - \frac{1}{4}, \frac{3}{4} + z)$ in turn acts as donor to the C31–C36 ring at $(x, y - \frac{1}{2}, \frac{3}{2} + z)$, so producing a chain running parallel to the [013] direction and generated by the *d*glide plane at $x = \frac{5}{8}$ (Fig. 3). There are no direction-specific interactions between adjacent chains.

The original report (Usanmaz, 1979) on the monoclinic phase, (II), did not identify any direction-specific interactions between the molecules. However, the intermolecular interac-

Figure 1

The molecule in the orthorhombic polymorph, (I), showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

[‡] Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

tions present in (II) are, in fact, very similar to those in orthorhombic phase (I). While $C-H\cdots O$ and $C-H\cdots N$

The molecule in the monoclinic polymorph, (II), showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.]

Figure 3

Part of the crystal structure of polymorph (I), showing a hydrogenbonded chain running along the [013] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. *Cg*3 is the centroid of ring C31–C36. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions $(\frac{5}{4} - x, y - \frac{1}{4}, \frac{3}{4} + z)$ and $(\frac{5}{4} - x, \frac{1}{4} + y, z - \frac{3}{4})$, respectively.

A stereoview of part of the crystal structure of polymorph (II), showing a hydrogen-bonded ($\overline{2}01$) sheet. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

hydrogen bonds and aromatic $\pi - \pi$ stacking interactions are all absent, the molecules are linked by a single $C-H\cdots\pi(arene)$ hydrogen bond (Table 4), but now forming sheets as opposed to the simple chain in (I). The ring containing atom C11, which lies across a twofold rotation axis, acts as a double acceptor of $C-H\cdots\pi(arene)$ hydrogen bonds, one on each face. This ring in the reference molecule accepts such hydrogen bonds from atoms C33 at $(x - \frac{1}{2}, \frac{1}{2} + y, z - 1)$ and $(\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z)$, while atoms C33 at (x, y, z) and $(1 - x, y, \frac{1}{2} - z)$ in the reference molecule act as donors to the ring faces at $(\frac{3}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z)$ and $(x - \frac{1}{2}, y - \frac{1}{2}, z - 1)$, respectively. Thus, with the reference molecule lying across the axis along $(\frac{1}{2}, y, \frac{1}{4})$, the donor and acceptor molecules lie across the axes $(0, y, -\frac{3}{4})$ and $(1, y, \frac{5}{4})$, so that each molecule is linked to four others, forming a (201) sheet (Fig. 4).

We have not investigated the relative thermodynamic stability of the two polymorphs. Their densities are almost identical, so that no useful deductions concerning stability (Burger & Ramberger, 1979) can be made here.

Experimental

The orthorhombic polymorph, (I), was obtained as an adventitious product from the attempted preparation of the heterocumulene $Ph_3P=C=C=O$ via reaction of $Ph_3P=CHCOOCH_2CH_3$ with *n*-butyllithium and excess phenyl isocyanate (m.p. 544–545 K). The monoclinic polymorph, (II), was obtained from a methanol solution containing (I) and uranyl nitrate hexahydrate [m.p. > 550 K; literature m.p. for (II): 553–555 K (Usanmaz, 1979)]. However, similar crystallization from a methanol solution containing mercury(II) chloride gave polymorph (I) rather than polymorph (II).

Polymorph (I)

Crystal data

$C_{21}H_{15}N_3O_3$	Mo $K\alpha$ radiation
$M_r = 357.36$	Cell parameters from 2065
Orthorhombic, Fdd2	reflections
a = 23.3764 (8) Å	$\theta = 3.2-27.6^{\circ}$
b = 37.1079 (12) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 7.7091 (2) Å	T = 120 (2) K
$V = 6687.3 (4) \text{ Å}^3$	Block, yellow
Z = 16	$0.50 \times 0.24 \times 0.10 \text{ mm}$
$D_{\rm r} = 1.420 {\rm Mg m}^{-3}$	

organic compounds

Data collection

Nonius KappaCCD area-detector diffractometer	2065 independent reflections 1859 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.045$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.6^{\circ}$
(SADABS; Sheldrick, 2003)	$h = -30 \rightarrow 29$
$T_{\min} = 0.966, T_{\max} = 0.990$	$k = -48 \rightarrow 48$
22 356 measured reflections	$l = -9 \rightarrow 10$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0501P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 2.7798P]
$wR(F^2) = 0.082$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
2065 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

244 parameters

H-atom parameters constrained

Selected geometric parameters (Å, °) for orthorhombic polymorph (I).

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

N1-C2	1.389 (3)	N1 - C11 N3 - C31 N5 - C51 C2 - O2 C4 - O4 C6 - O6	1.448 (2)
C2-N3	1.388 (2)		1.448 (3)
N3-C4	1.395 (2)		1.452 (2)
C4-N5	1.395 (3)		1.208 (2)
N5-C6	1.394 (2)		1.204 (2)
C6-N1	1.389 (2)		1.210 (2)
C6-N1-C2	125.11 (16)	N1-C2-N3	115.05 (16)
C2-N3-C4	124.97 (17)	N3-C4-N5	115.01 (16)
C4-N5-C6	124.38 (16)	N5-C6-N1	115.19 (17)
C2-N1-C11-C12 C4-N3-C31-C32	103.9 (2) -101.5 (2)	C6-N5-C51-C52	-119.9 (2)

Table 2

Hydrogen-bonding geometry (Å, °) for orthorhombic polymorph (I).

Cg3 is the centroid of ring C31-C36.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C14-H14\cdots Cg3^{i}$	0.95	2.71	3.541 (2)	146

Symmetry code: (i) $\frac{5}{4} - x$, $y - \frac{1}{4}, \frac{3}{4} + z$.

13 735 measured reflections

Polymorph (II)

Crystal data

C ₂₁ H ₁₅ N ₃ O ₃	$D_x = 1.421 \text{ Mg m}^{-3}$
$M_r = 357.36$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 1927
a = 15.6526 (3) Å	reflections
b = 13.6819(3) Å	$\theta = 3.2-27.5^{\circ}$
c = 9.6454 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 126.035 \ (2)^{\circ}$	T = 120 (2) K
V = 1670.39 (7) Å ³	Block, yellow
Z = 4	$0.50 \times 0.40 \times 0.12 \text{ mm}$
Data collection	
Nonius KappaCCD area-detector	1927 independent reflections
diffractometer	1620 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.031$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Sheldrick, 2003)	$h = -20 \rightarrow 20$
$T_{\rm min} = 0.945, T_{\rm max} = 0.988$	$k = -17 \rightarrow 17$

Refinement

 $> 2\sigma(I)$

Refinement on F^2	
$R[F^2 > 2\sigma(F^2)] = 0.050$	
$wR(F^2) = 0.124$	
S = 1.17	
1927 reflections	
126 parameters	
H-atom parameters constrained	
$w = 1/[\sigma^2(F_o^2) + (0.073P)^2]$	
+ 0.412P]	
where $P = (F_{2}^{2} + 2F_{2}^{2})/3$	

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.034 (3)

Table 3

Selected geometric parameters (Å, °) for monoclinic polymorph (II).

N1-C2	1.3940 (13)	N3-C31	1.4516 (14)
C2-N3	1.3949 (16)	C2-O2	1.2035 (14)
N3-C4	1.3914 (13)	C4-O4	1.204 (2)
N1-C11	1.455 (2)		
$C2^{i}-N1-C2$	124.59 (14)	N1-C2-N3	114.92 (10)
C2-N3-C4	124.80 (10)	N3-C4-N3 ⁱ	114.86 (14)
C2-N1-C11-C12	69.56 (8)	C4-N3-C31-C32	-100.07 (12)

Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.

Table 4

Hydrogen-bonding geometry (Å, °) for monoclinic polymorph (II).

Cg2 is the centroid of ring C11-C14/C13ⁱ/C12ⁱ.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C33-H33\cdots Cg2^{ii}$	0.95	2.95	3.678 (2)	134
	1 (11)	1 1.		

Symmetry codes: (i) 1 - x, $y, \frac{1}{2} - z$; (ii) $\frac{1}{2} + x$, $y - \frac{1}{2}$, 1 + z.

For polymorph (I), the space group Fdd2 was uniquely assigned from the systematic absences. For polymorph (II), the systematic absences permitted C2/c or Cc as possible space groups; C2/c was selected and confirmed by the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C-H distances of 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. In the absence of significant anomalous scattering, the Flack (1983) parameter for (I) was indeterminate (Flack & Bernardinelli, 1999, 2000). Accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. It was thus not possible to establish the correct orientation of the structure of (I) relative to the polar-axis direction (Jones, 1986).

For both polymorphs, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

 $l = -11 \rightarrow 12$

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1750). Services for accessing these data are described at the back of the journal.

References

- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Burger, A. & Ramberger, R. (1979). *Mikrochim. Acta*, **2**, 259–271. Cremer, D. & Pople, J. A. (1975). *J. Am. Chem. Soc.* **97**, 1353–1359.

Ferguson, G. (1999). *PRPKAPPA*. University of Guelph, Canada.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.

Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.

- Jones, P. G. (1986). Acta Cryst. A42, 57.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 3-17.
- Usanmaz, A. (1979). Acta Cryst. B35, 1117-1119.

Acta Cryst. (2004). C60, o682-o685 [doi:10.1107/S0108270104017342]

Orthorhombic and monoclinic polymorphs of 1,3,5-triphenylperhydro-1,3,5-triazine-2,4,6-trione at 120 K: chains and sheets formed by C—H $\cdots\pi$ (arene) hydrogen bonds

M. Baby Mariyatra, Krishnaswamy Panchanatheswaran, John N. Low and Christopher Glidewell

Computing details

For both compounds, data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *COLLECT* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

(I) 1,3,5-triphenylperhydro-1,3,5-triazine-2,4,6-trione, orthorhombic polymorph

Crystal data $C_{21}H_{15}N_{3}O_{3}$ $M_{r} = 357.36$ Orthorhombic, *Fdd2* Hall symbol: F 2 -2d a = 23.3764 (8) Å b = 37.1079 (12) Å c = 7.7091 (2) Å V = 6687.3 (4) Å³ Z = 16

Data collection

Nonius KappaCCD area-detector diffractometer Radiation source: Bruker-Nonius FR591 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.082$ S = 1.082065 reflections F(000) = 2976 $D_x = 1.420 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2065 reflections $\theta = 3.2-27.6^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 120 KBlock, yellow $0.5 \times 0.24 \times 0.1 \text{ mm}$

 $T_{\min} = 0.966, T_{\max} = 0.990$ 22356 measured reflections
2065 independent reflections
1859 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 3.2^{\circ}$ $h = -30 \rightarrow 29$ $k = -48 \rightarrow 48$ $l = -9 \rightarrow 10$

244 parameters1 restraintPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0501P)^2 + 2.7798P] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ & (\Delta/\sigma)_{\text{max}} = 0.001 \\ & \Delta\rho_{\text{max}} = 0.17 \text{ e } \text{ Å}^{-3} \\ & \Delta\rho_{\text{min}} = -0.24 \text{ e } \text{ Å}^{-3} \end{split}$$

				TT 4/TT	
	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
O2	0.59934 (6)	0.46727 (4)	0.6011 (2)	0.0259 (3)	
O4	0.67073 (6)	0.58096 (4)	0.5631 (2)	0.0241 (3)	
O6	0.73397 (6)	0.50498 (4)	0.9884 (2)	0.0251 (3)	
N1	0.66767 (7)	0.48505 (4)	0.7945 (2)	0.0182 (3)	
N3	0.63468 (7)	0.52415 (4)	0.5780 (2)	0.0191 (4)	
N5	0.70165 (7)	0.54461 (4)	0.7836 (2)	0.0180 (3)	
C2	0.63165 (8)	0.49025 (5)	0.6535 (3)	0.0194 (4)	
C4	0.66991 (8)	0.55213 (5)	0.6347 (3)	0.0184 (4)	
C6	0.70397 (8)	0.51096 (5)	0.8638 (3)	0.0185 (4)	
C11	0.66554 (8)	0.44999 (5)	0.8767 (3)	0.0187 (4)	
C12	0.70869 (9)	0.42549 (5)	0.8476 (3)	0.0229 (4)	
C13	0.70482 (9)	0.39154 (5)	0.9220 (3)	0.0251 (4)	
C14	0.65788 (9)	0.38223 (5)	1.0203 (3)	0.0242 (4)	
C15	0.61465 (9)	0.40724 (5)	1.0501 (3)	0.0249 (4)	
C16	0.61874 (8)	0.44142 (5)	0.9796 (3)	0.0224 (4)	
C31	0.59919 (8)	0.53105 (5)	0.4277 (3)	0.0181 (4)	
C32	0.54180 (9)	0.53877 (5)	0.4513 (3)	0.0219 (4)	
C33	0.50794 (8)	0.54602 (6)	0.3077 (3)	0.0237 (4)	
C34	0.53164 (9)	0.54582 (5)	0.1436 (3)	0.0233 (4)	
C35	0.58931 (10)	0.53800 (5)	0.1218 (3)	0.0251 (4)	
C36	0.62337 (9)	0.53040 (5)	0.2642 (3)	0.0227 (4)	
C51	0.73447 (8)	0.57402 (5)	0.8579 (3)	0.0186 (4)	
C52	0.70574 (9)	0.60461 (5)	0.9137 (3)	0.0231 (4)	
C53	0.73669 (9)	0.63366 (6)	0.9758 (3)	0.0263 (5)	
C54	0.79557 (9)	0.63153 (6)	0.9865 (3)	0.0251 (5)	
C55	0.82382 (9)	0.60053 (6)	0.9361 (3)	0.0251 (4)	
C56	0.79332 (8)	0.57165 (5)	0.8687 (3)	0.0214 (4)	
H12	0.7407	0.4317	0.7777	0.027*	
H13	0.7348	0.3746	0.9050	0.030*	
H14	0.6550	0.3587	1.0679	0.029*	
H15	0.5824	0.4009	1.1186	0.030*	
H16	0.5898	0.4588	1.0013	0.027*	
H32	0.5258	0.5391	0.5645	0.026*	
H33	0.4684	0.5511	0.3222	0.028*	
H34	0.5085	0.5510	0.0456	0.028*	
H35	0.6055	0.5379	0.0087	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

0.6627

0.6652

0.7175

0.5248

0.6056

0.6550

H36

H52

H53

0.027*

0.028*

0.032*

0.2496 0.9094

1.0109

H54	0.8168	0.6515	1.0288	0.030*
H55	0.8642	0.5990	0.9476	0.030*
H56	0.8126	0.5506	0.8305	0.026*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
02	0.0284 (8)	0.0189 (7)	0.0305 (8)	-0.0030 (6)	-0.0088 (6)	0.0015 (6)
O4	0.0260 (7)	0.0194 (7)	0.0270 (8)	-0.0024 (6)	-0.0035 (6)	0.0052 (6)
06	0.0253 (8)	0.0241 (7)	0.0259 (8)	-0.0015 (6)	-0.0067 (6)	0.0030 (6)
N1	0.0187 (8)	0.0156 (8)	0.0203 (8)	0.0001 (6)	-0.0011 (7)	0.0020 (6)
N3	0.0190 (8)	0.0171 (8)	0.0211 (9)	-0.0009 (6)	-0.0041 (6)	0.0017 (6)
N5	0.0178 (8)	0.0168 (7)	0.0195 (8)	-0.0012 (6)	-0.0012 (7)	0.0005 (6)
C2	0.0181 (9)	0.0192 (9)	0.0210 (10)	0.0017 (8)	-0.0007 (8)	0.0004 (8)
C4	0.0156 (9)	0.0194 (9)	0.0203 (10)	-0.0002 (7)	0.0003 (8)	-0.0012 (8)
C6	0.0180 (9)	0.0176 (9)	0.0199 (9)	-0.0001 (7)	0.0019 (8)	0.0014 (8)
C11	0.0207 (9)	0.0156 (9)	0.0198 (10)	-0.0011 (7)	-0.0019 (8)	0.0012 (7)
C12	0.0221 (10)	0.0231 (10)	0.0235 (10)	0.0005 (8)	0.0016 (8)	0.0007 (8)
C13	0.0290 (11)	0.0197 (10)	0.0266 (10)	0.0051 (8)	0.0003 (9)	-0.0002 (8)
C14	0.0327 (11)	0.0183 (10)	0.0216 (10)	-0.0040 (8)	-0.0041 (9)	0.0026 (8)
C15	0.0236 (10)	0.0254 (10)	0.0257 (11)	-0.0045 (8)	0.0008 (9)	0.0026 (9)
C16	0.0186 (9)	0.0215 (10)	0.0272 (10)	0.0005 (8)	0.0005 (8)	0.0009 (8)
C31	0.0186 (9)	0.0139 (9)	0.0219 (10)	-0.0007 (7)	-0.0041 (8)	0.0007 (7)
C32	0.0225 (10)	0.0205 (9)	0.0227 (10)	-0.0006 (8)	0.0012 (8)	0.0009 (8)
C33	0.0176 (10)	0.0228 (10)	0.0308 (11)	-0.0005 (8)	-0.0023 (9)	0.0045 (8)
C34	0.0237 (10)	0.0217 (10)	0.0243 (11)	-0.0011 (8)	-0.0065 (8)	0.0021 (8)
C35	0.0302 (11)	0.0248 (10)	0.0204 (10)	-0.0002 (8)	0.0000 (9)	0.0004 (8)
C36	0.0202 (10)	0.0222 (10)	0.0256 (11)	0.0030 (8)	0.0017 (8)	-0.0013 (8)
C51	0.0207 (10)	0.0167 (9)	0.0184 (9)	-0.0049 (7)	-0.0017 (8)	0.0011 (7)
C52	0.0180 (9)	0.0234 (10)	0.0278 (11)	0.0002 (8)	-0.0010 (9)	0.0007 (8)
C53	0.0301 (11)	0.0193 (10)	0.0295 (11)	0.0006 (8)	-0.0005 (9)	-0.0028 (9)
C54	0.0294 (11)	0.0223 (10)	0.0235 (11)	-0.0072 (9)	-0.0016 (9)	-0.0016 (8)
C55	0.0201 (10)	0.0295 (11)	0.0256 (10)	-0.0043 (8)	-0.0017 (9)	0.0009 (9)
C56	0.0196 (10)	0.0224 (10)	0.0222 (10)	-0.0005 (8)	0.0009 (8)	0.0004 (8)

Geometric parameters (Å, °)

N1—C2	1.389 (3)	C31—C36	1.382 (3)	
C2—N3	1.388 (2)	C31—C32	1.384 (3)	
N3—C4	1.395 (2)	C32—C33	1.387 (3)	
C4—N5	1.395 (3)	C32—H32	0.95	
N5—C6	1.394 (2)	C33—C34	1.381 (3)	
C6—N1	1.389 (2)	С33—Н33	0.95	
N1-C11	1.448 (2)	C34—C35	1.389 (3)	
N3—C31	1.448 (3)	C34—H34	0.95	
N5-C51	1.452 (2)	C35—C36	1.385 (3)	
C2—O2	1.208 (2)	С35—Н35	0.95	
C4—O4	1.204 (2)	С36—Н36	0.95	

C6—O6	1.210 (2)	C51—C56	1.381 (3)
C11—C12	1.376 (3)	C51—C52	1.387 (3)
C11—C16	1.388 (3)	C52—C53	1.384 (3)
C12—C13	1.387 (3)	C52—H52	0.95
C12—H12	0.95	C53—C54	1.381 (3)
C13—C14	1.378 (3)	С53—Н53	0.95
C13—H13	0.95	C54—C55	1.382 (3)
C14—C15	1.391 (3)	С54—Н54	0.95
C14—H14	0.95	C55-C56	1 388 (3)
C15—C16	1.383 (3)	С55—Н55	0.95
C15—H15	0.95	C56—H56	0.95
C16—H16	0.95		0.95
	0.95		
C2—N1—C11	116.52 (15)	C34—C33—C32	120.06 (18)
C6-N1-C11	118.35 (16)	C34—C33—H33	120.0
C12-C11-C16	121.28 (17)	С32—С33—Н33	120.0
C12—C11—N1	119.82 (18)	C33—C34—C35	120.1 (2)
C16-C11-N1	118.88 (17)	C33—C34—H34	119.9
C11—C12—C13	119.01 (19)	C35—C34—H34	119.9
С11—С12—Н12	120.5	C36—C35—C34	120.3 (2)
С13—С12—Н12	120.5	C36—C35—H35	119.9
C14—C13—C12	120.5 (2)	C34—C35—H35	119.9
С14—С13—Н13	119.8	C31—C36—C35	118.96 (18)
С12—С13—Н13	119.8	C31—C36—H36	120.5
C13—C14—C15	120.13 (19)	C35—C36—H36	120.5
C13—C14—H14	119.9	04— $C4$ — $N5$	123.12 (17)
C15—C14—H14	119.9	04—C4—N3	121.80 (18)
C16-C15-C14	119.8 (2)	C6-N5-C51	118 56 (16)
C16—C15—H15	120.1	C4 - N5 - C51	117.07 (15)
C14—C15—H15	120.1	$C_{56} - C_{51} - C_{52}$	121.06 (18)
C15-C16-C11	119 29 (18)	$C_{56} - C_{51} - N_{5}$	121.00(10) 120.14(17)
C15—C16—H16	120.4	C52 - C51 - N5	120.11(17) 118.79(17)
C11—C16—H16	120.1	C_{53} C_{52} C_{51}	119 44 (19)
02-C2-N3	122.08 (18)	C53-C52-H52	120.3
02 - 02 - N1	122.00 (10)	C51-C52-H52	120.3
C6-N1-C2	125.11 (16)	$C_{54} - C_{53} - C_{52}$	119.82 (19)
$C_2 = N_3 = C_4$	123.11(10) 124.97(17)	C54—C53—H53	120.1
$C_2 = N_5 = C_6$	124.38 (16)	C52-C53-H53	120.1
N1 C2 N3	115.05 (16)	$C_{52} = C_{53} = 1155$	120.1
N1 - C2 - N5 N3 - C4 - N5	115.03 (10)	$C_{53} = C_{54} = C_{53}$	120.40 (19)
N5 C6 N1	115.01 (10)	C55 C54 H54	110.8
$C_2 N_3 C_{21}$	113.19(17) 117.82(15)	C54 C55 C56	119.0
$C_2 = 13 = 0.51$	117.02(13) 117.20(15)	C_{54} C_{55} H_{55}	120.10 (19)
C_{36} C_{31} C_{32}	117.20 (13)	$C_{56} C_{55} H_{55}$	119.9
$C_{36} = C_{31} = C_{32}$	121.37(10) 110 51 (17)	$C_{50} - C_{55} - 1155$	117.7
$C_{30} = C_{31} = N_3$	117.31(17) 110.11(19)	$C_{51} - C_{50} - C_{55}$	119.00 (19)
$C_{32} = C_{31} = N_3$	119.11 (10)	С51—С50—П50	120.5
$C_{31} = C_{32} = C_{33}$	119.22 (19)	$C_{33} - C_{30} - H_{30}$	120.3 122.17(17)
UJ1-UJ2-IJ2	120.4	00-00-NI	122.1/(1/)

С33—С32—Н32	120.4	O6—C6—N5	122.60 (17)
C2—N1—C11—C12	103.9 (2)	N3—C31—C36—C35	-178.28 (18)
C6—N1—C11—C12	-77.6 (2)	C34—C35—C36—C31	-0.6 (3)
C2-N1-C11-C16	-74.1 (2)	C2—N3—C4—O4	179.75 (19)
C6—N1—C11—C16	104.3 (2)	C31—N3—C4—O4	0.5 (3)
C16—C11—C12—C13	0.5 (3)	C2—N3—C4—N5	-3.1 (3)
N1-C11-C12-C13	-177.51 (18)	C31—N3—C4—N5	177.72 (16)
C11—C12—C13—C14	1.4 (3)	O4—C4—N5—C6	-176.37 (19)
C12—C13—C14—C15	-1.9 (3)	N3—C4—N5—C6	6.5 (3)
C13—C14—C15—C16	0.5 (3)	O4—C4—N5—C51	3.3 (3)
C14—C15—C16—C11	1.4 (3)	N3—C4—N5—C51	-173.89 (17)
C12-C11-C16-C15	-1.9 (3)	C6—N5—C51—C56	61.5 (2)
N1-C11-C16-C15	176.14 (19)	C4—N5—C51—C56	-118.2 (2)
C6—N1—C2—O2	-177.5 (2)	C6—N5—C51—C52	-119.9 (2)
C11—N1—C2—O2	0.9 (3)	C4—N5—C51—C52	60.5 (2)
C6—N1—C2—N3	1.5 (3)	C56—C51—C52—C53	2.2 (3)
C11—N1—C2—N3	179.90 (17)	N5-C51-C52-C53	-176.41 (19)
O2—C2—N3—C4	178.34 (19)	C51—C52—C53—C54	-2.0 (3)
N1-C2-N3-C4	-0.7 (3)	C52—C53—C54—C55	-0.2 (4)
O2—C2—N3—C31	-2.4 (3)	C53—C54—C55—C56	2.2 (3)
N1-C2-N3-C31	178.54 (16)	C52—C51—C56—C55	-0.2 (3)
C2—N3—C31—C36	-101.8 (2)	N5-C51-C56-C55	178.4 (2)
C4—N3—C31—C36	77.5 (2)	C54—C55—C56—C51	-1.9 (3)
C2—N3—C31—C32	79.2 (2)	C2—N1—C6—O6	179.14 (18)
C4—N3—C31—C32	-101.5 (2)	C11—N1—C6—O6	0.8 (3)
C36—C31—C32—C33	-0.1 (3)	C2—N1—C6—N5	1.5 (3)
N3—C31—C32—C33	178.87 (18)	C11—N1—C6—N5	-176.87 (16)
C31—C32—C33—C34	-0.6 (3)	C4—N5—C6—O6	176.58 (18)
C32—C33—C34—C35	0.6 (3)	C51—N5—C6—O6	-3.0 (3)
C33—C34—C35—C36	-0.1 (3)	C4—N5—C6—N1	-5.8 (3)
C32—C31—C36—C35	0.6 (3)	C51—N5—C6—N1	174.62 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C14—H14…Cg3 ⁱ	0.95	2.71	3.541 (2)	146

Symmetry code: (i) -x+5/4, y-1/4, z+3/4.

(II) 1,3,5-triphenylperhydro-1,3,5-triazine-2,4,6-trione, monoclinic polymorph

Crystal data	
$C_{21}H_{15}N_3O_3$	$\beta = 126.035 \ (2)^{\circ}$
$M_r = 357.36$	V = 1670.39 (7) Å ³
Monoclinic, C2/c	Z = 4
Hall symbol: -C 2yc	F(000) = 744
a = 15.6526 (3) Å	$D_{\rm x} = 1.421 {\rm ~Mg} {\rm ~m}^{-3}$
b = 13.6819 (3) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 9.6454 (2) Å	Cell parameters from 1927 reflections

 $\theta = 3.2-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 120 K

Data collection

Duiu conection	
Nonius KappaCCD area-detector diffractometer	$T_{\min} = 0.945, T_{\max} = 0.988$ 13735 measured reflections
Radiation source: Bruker-Nonius FR591 rotating anode	1927 independent reflections 1620 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.031$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$
φ and ω scans	$h = -20 \rightarrow 20$
Absorption correction: multi-scan	$k = -17 \rightarrow 17$
(SADABS; Sheldrick, 2003)	$l = -11 \rightarrow 12$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.073P)^2 + 0.412P]$
S = 1.17	where $P = (F_o^2 + 2F_c^2)/3$
1927 reflections	$(\Delta/\sigma)_{ m max} < 0.001$
126 parameters	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.034 (3)

Block, yellow

 $0.50 \times 0.40 \times 0.12 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
02	0.66010 (7)	0.63216 (7)	0.51159 (11)	0.0261 (3)	
O4	0.5000	0.34468 (9)	0.2500	0.0267 (3)	
N1	0.5000	0.63634 (10)	0.2500	0.0182 (3)	
N3	0.58646 (7)	0.48741 (7)	0.37623 (12)	0.0179 (3)	
C2	0.58763 (9)	0.58898 (9)	0.38977 (14)	0.0182 (3)	
C4	0.5000	0.43267 (12)	0.2500	0.0184 (4)	
C11	0.5000	0.74266 (12)	0.2500	0.0191 (4)	
C12	0.56906 (10)	0.79229 (9)	0.22977 (16)	0.0237 (3)	
C13	0.56885 (10)	0.89359 (10)	0.23030 (18)	0.0280 (3)	
C14	0.5000	0.94402 (14)	0.2500	0.0284 (4)	
C31	0.68035 (9)	0.43351 (8)	0.50611 (15)	0.0178 (3)	
C32	0.70066 (10)	0.41796 (9)	0.66448 (16)	0.0222 (3)	
C33	0.78925 (11)	0.36537 (10)	0.78823 (17)	0.0263 (3)	
C34	0.85598 (10)	0.32776 (10)	0.75138 (16)	0.0255 (3)	
C35	0.83488 (10)	0.34338 (9)	0.59244 (17)	0.0241 (3)	
C36	0.74678 (10)	0.39654 (9)	0.46805 (16)	0.0212 (3)	
H12	0.6160	0.7574	0.2157	0.028*	
H13	0.6161	0.9285	0.2171	0.034*	
H14	0.5000	1.0135	0.2500	0.034*	
H32	0.6541	0.4432	0.6884	0.027*	

H33	0.8042	0.3551	0.8979	0.032*	
H24	0.9164	0.2911	0.8356	0.031*	
H35	0.8811	0.3175	0.5682	0.029*	
H36	0.7322	0.4074	0.3588	0.025*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0234 (5)	0.0184 (5)	0.0238 (5)	-0.0009 (4)	0.0068 (4)	-0.0022 (3)
O4	0.0202 (7)	0.0154 (7)	0.0338 (7)	0.000	0.0099 (6)	0.000
N1	0.0178 (7)	0.0135 (7)	0.0200 (7)	0.000	0.0093 (6)	0.000
N3	0.0168 (5)	0.0139 (5)	0.0202 (5)	0.0007 (4)	0.0094 (5)	0.0003 (4)
C2	0.0191 (6)	0.0165 (6)	0.0200 (6)	-0.0001 (4)	0.0120 (5)	-0.0002 (4)
C4	0.0170 (8)	0.0166 (8)	0.0224 (8)	0.000	0.0120 (7)	0.000
C11	0.0182 (8)	0.0143 (8)	0.0178 (8)	0.000	0.0067 (7)	0.000
C12	0.0220 (6)	0.0203 (7)	0.0266 (6)	0.0008 (5)	0.0131 (5)	0.0006 (5)
C13	0.0238 (7)	0.0206 (7)	0.0328 (7)	-0.0034 (5)	0.0129 (6)	0.0031 (5)
C14	0.0229 (9)	0.0134 (8)	0.0314 (10)	0.000	0.0063 (8)	0.000
C31	0.0166 (6)	0.0124 (6)	0.0199 (6)	-0.0020 (4)	0.0082 (5)	0.0002 (4)
C32	0.0233 (6)	0.0206 (6)	0.0239 (6)	-0.0013 (5)	0.0146 (5)	-0.0008(5)
C33	0.0293 (7)	0.0247 (7)	0.0197 (6)	-0.0015 (5)	0.0115 (6)	0.0013 (5)
C34	0.0197 (6)	0.0193 (7)	0.0242 (7)	0.0006 (5)	0.0057 (5)	0.0021 (5)
C35	0.0196 (6)	0.0206 (7)	0.0307 (7)	0.0009 (5)	0.0140 (6)	-0.0006(5)
C36	0.0219 (6)	0.0190 (6)	0.0227 (6)	-0.0007 (5)	0.0131 (5)	0.0008 (5)

Geometric parameters (Å, °)

N1—C2	1.3940 (13)	C14—H14	0.95
C2—N3	1.3949 (16)	C31—C32	1.3815 (18)
N3—C4	1.3914 (13)	C31—C36	1.3859 (17)
N1-C11	1.455 (2)	C32—C33	1.3850 (18)
N3—C31	1.4516 (14)	С32—Н32	0.95
C2—O2	1.2035 (14)	C33—C34	1.3851 (19)
C4—O4	1.204 (2)	С33—Н33	0.95
C11—C12	1.3841 (15)	C34—C35	1.3818 (19)
C12—C13	1.3860 (18)	C34—H24	0.95
C12—H12	0.95	C35—C36	1.3869 (17)
C13—C14	1.3836 (17)	С35—Н35	0.95
C13—H13	0.95	С36—Н36	0.95
C2 ⁱ —N1—C2	124.59 (14)	C32—C31—C36	121.08 (11)
C2—N3—C4	124.80 (10)	C32—C31—N3	119.34 (10)
N1-C2-N3	114.92 (10)	C36—C31—N3	119.56 (10)
N3-C4-N3 ⁱ	114.86 (14)	C31—C32—C33	119.69 (12)
C2-N1-C11	117.70 (7)	C31—C32—H32	120.2
C12-C11-C12 ⁱ	121.24 (16)	C33—C32—H32	120.2
C12-C11-N1	119.38 (8)	C32—C33—C34	119.72 (12)
C11—C12—C13	119.10 (12)	С32—С33—Н33	120.1

C11—C12—H12	120.4	С34—С33—Н33	120.1
C13—C12—H12	120.4	C35—C34—C33	120.20 (12)
C14—C13—C12	120.19 (12)	C35—C34—H24	119.9
C14—C13—H13	119.9	С33—С34—Н24	119.9
С12—С13—Н13	119.9	C34—C35—C36	120.53 (12)
C13 ⁱ —C14—C13	120.18 (17)	С34—С35—Н35	119.7
C13—C14—H14	119.9	С36—С35—Н35	119.7
O2—C2—N1	122.83 (12)	C31—C36—C35	118.77 (11)
O2—C2—N3	122.24 (11)	С31—С36—Н36	120.6
C4—N3—C31	116.84 (10)	С35—С36—Н36	120.6
C2—N3—C31	118.32 (9)	O4—C4—N3	122.57 (7)
C2 ⁱ —N1—C11—C12	-110.44 (8)	C4—N3—C31—C36	78.41 (12)
C2—N1—C11—C12	69.56 (8)	C2—N3—C31—C36	-103.88 (13)
C12 ⁱ —C11—C12—C13	0.15 (8)	C36—C31—C32—C33	0.59 (19)
N1-C11-C12-C13	-179.85 (8)	N3—C31—C32—C33	179.05 (10)
C11—C12—C13—C14	-0.31 (16)	C31—C32—C33—C34	-0.83 (19)
C2 ⁱ —N1—C2—O2	-176.93 (12)	C32—C33—C34—C35	0.61 (19)
C11—N1—C2—O2	3.07 (12)	C33—C34—C35—C36	-0.2 (2)
C11—N1—C2—N3	-175.41 (6)	C32—C31—C36—C35	-0.13 (18)
O2—C2—N3—C4	171.57 (9)	N3—C31—C36—C35	-178.59 (10)
N1-C2-N3-C4	-9.94 (14)	C34—C35—C36—C31	-0.09 (19)
O2-C2-N3-C31	-5.94 (16)	C2—N3—C4—O4	-174.67 (7)
N1-C2-N3-C31	172.55 (8)	C31—N3—C4—O4	2.87 (10)
C4—N3—C31—C32	-100.07 (12)	C31—N3—C4—N3 ⁱ	-177.13 (10)
C2—N3—C31—C32	77.63 (14)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C33—H33··· <i>Cg</i> 2 ⁱⁱ	0.95	2.95	3.678 (2)	134

Symmetry code: (ii) x+1/2, y-1/2, z+1.