Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

2-Amino-2-thiazoline and its 1:1 organic salt with 2-naphthoxyacetic acid

Daniel E. Lynch

School of Science and the Environment, Coventry University, Coventry CV1 5FB, England

Correspondence e-mail: apx106@coventry.ac.uk

Received 15 June 2004 Accepted 25 June 2004 Online 21 August 2004

The crystal structures of 2-amino-2-thiazoline, C₃H₆N₂S, and 2-amino-2-thiazolinium 2-naphthoxyacetate, C₃H₇N₂S⁺.- $C_{12}H_9O_3^-$, are reported. The structure of 2-amino-2-thiazoline consists of two unique molecules that construct a convoluted hydrogen-bonded ribbon involving $R_2^2(8)$ graph-set association via both $N-H \cdots N$ and $N-H \cdots S$ interactions. The organic salt structure consists of the two molecules associated *via* an $R_2^2(8)$ graph-set dimer through N-H···O interactions, with the hydrogen-bonding network propagated via additional N-H···O three-centre interactions from the second 2-amine H atom.

Comment

2-Amino-2-thiazoline has been reported as a potential inducer of the reverse transformation of tumour cells, with the mechanism for anticancer action depending on strong metalligand binding via the N atoms (Brugarolas & Gosálvez, 1982). Alternatively, the placement of the N atoms in this molecule also makes it suitable for association with carboxylic acids, and four subsequent crystal structures have been reported (Lynch et al., 1998; Lynch, Cooper et al., 1999; Lynch, Nicholls et al., 1999). Such structures are part of a broader study of complexes of carboxylic acids with 2-aminothiazole derivatives that has thus far resulted in the characterization of 19 published crystal structures, with three others published recently (Lynch et al., 2004). Although the structure of 2-aminothiazole was published by Caranoni & Reboul (1982), the structure of 2-amino-2-thiazoline has not been reported; the structure of this compound, (I), is reported here. 2-Naphthoxyacetic acid is used as a plant hormone to promote growth of roots on clippings and to prevent fruit from falling prematurely, although stunted growth results if it is used in excess (The Merck Index, 2001). 2-Naphthoxyacetic acid is related in structure to phenoxyacetic acid, whose chloro derivatives have been used extensively by the author for complexing with carboxylic acids (Lynch, Cooper et al., 1999) and should thus have comparable structural properties.

Furthermore, the Cambridge Structural Database (Allen, 2002) contains only four previously reported crystal structures containing the compound, of which two are the parent structure (Howie et al., 2001), thus more structures containing 2-naphthoxyacetic acid are required. For these reasons, the structure of the 1:1 organic salt of (I) with 2-naphthoxyacetic acid is also reported here, viz. (II).

Compound (I) packs with two unique thiazoline molecules associated in a hydrogen-bonded $R_2^2(8)$ graph-set dimer (Etter, 1990) via N-H···N interactions (Fig. 1). The hydrogen-bonding network is then extended by N-H···S interactions, resulting in further $R_2^2(8)$ graph-set arrangements. Hydrogen-bonding associations for this compound are listed in Table 1. Together, these interactions create a convoluted

Figure 1

A view of the asymmetric unit and atom-numbering scheme of (I). Displacement ellipsoids are drawn at the 50% probability level. Broken lines indicate intramolecular hydrogen bonds.

Figure 2

A packing diagram for (I). [Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$ (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$

hydrogen-bonded ribbon that runs in the direction of the *ac* axis diagonal (Fig. 2). The incorporation of the S atoms into the hydrogen-bonding network is not observed in the structure of 2-aminothiazole but is seen in the structure of a related 2-aminothiazole derivative, *viz.* 2-amino-4-(4-bisphenyl)-1,3-thiazole (Lynch *et al.*, 2002). In (I), there is a single S...S close contact [3.520 (5) Å] between atom S1*B* and the symmetry-equivalent atom at (2 - x, 1 - y, -z).

The structure of (II) comprises the organic salt of a nonplanar acetate molecule and a protonated thiazoline molecule arranged in a packing mode commonly observed for these types of molecules. In contrast to its planar parent structure, the acetate chain of the naphthoxyacetate molecule in (II) adopts an anticlinical (or hooked) arrangement, as classified for phenoxyacetic acids (Smith & Kennard, 1979) and defined by the C2B-O11B-C12B-C13B torsion angle [92.8 (2) $^{\circ}$; Fig. 3]. Packing with the thiazoline molecule has an associated effect on (2,4,5-trichlorophenoxy)acetic acid, whose structure is planar in the parent compound but hooked in the salt complex (Lynch, Cooper et al., 1999). The components of (II), like those of the vast majority of adducts/organic salts comprising a 2-amino-heterocycle and a carboxylic acid molecule, associate via an unsymmetrical $R_2^2(8)$ graph-set dimer between the $N=C-NH_2$ site and the carboxylate group (Fig. 4). In general, this association is unsymmetrical in that the N3A···O14B distance, or equivalent, is (apart from a very few cases) shorter than the N21A···O15B distance, although the values listed in Table 2 indicate that the structure of (I) is one of the very few exceptions where the opposite has occurred. Another common feature of this association is the inconsistency of the C2A-N21A [1.302 (2) Å] and C2A-N3A [1.324(2)]Å bond lengths, as previously highlighted (Lynch et al., 2000). The propagation of the hydrogen-bonding network via the N21A – H22A···O14B(x, y – 1, z) interaction has also been observed previously for these types of systems

Figure 3

A view of the asymmetric unit and atom-numbering scheme of (II). Displacement ellipsoids are drawn at the 50% probability level. Broken lines indicate intramolecular hydrogen bonds.

Figure 4 A packing diagram for (II). [Symmetry code: (iii) x, y - 1, z.]

(Lynch, Nicholls *et al.*, 1999), although the additional interaction with atom O11B is not common amongst complexes of 2-aminothiazole derivatives and phenoxyacetic acids (Lynch, Cooper *et al.*, 1999).

The structure of (II) is actually the eighth known complex of a carboxylic acid with (I), with three others currently unpublished (Lynch et al., 2004). Elucidation of the structure of (I) is important because, as highlighted above, when collecting data on the inconsistencies in the bond distances across the $N=C-NH_2$ site for any type of complexed 2amino-heterocyclic compound, it is important to compare bond distances against those of the parent structure. For example, compare the C2A-N21A and C2A-N3A distances listed above with those for (I), viz. 1.348 (5)/1.267 (5) and 1.351(5)/1.276(5) Å for molecules A and B, respectively. The mean respective distances for the seven complex structures are 1.305 (5) and 1.314 (5) Å. Also of interest is the N3-C2-N21 (or equivalent) angle, which decreases upon association with a carboxylic acid. Compare, for (I), values of 124.8 (3) and 125.8 (3)° with that of 124.53 (17)° in (II) [the mean angle over the eight structures is $124.0 (5)^{\circ}$]. In one or two instances where N1A is a quaternary N atom, it might be suitable to suggest that the N1A - C2A double bond has moved to C2A -N21A, but this simple 'pushing of the double bond around' does not fit a significant portion of the available data. It is the intention of the author to publish such findings in a dedicated paper, but not without each of the parent structures and a supportive list of different complexes, which the structures in this paper add to.

Experimental

Crystals of (I) were grown from an ethanol solution. For (II), equimolar amounts of (I) and 2-naphthoxyacetic acid were refluxed in ethanol for 20 min. Crystals of (II) were grown by slow evaporation of the reaction solution.

 $D \cdot \cdot \cdot A$

2.754 (2)

2.787 (2)

2.965 (2)

2.871 (2)

 $D - H \cdot \cdot \cdot A$

171

166

109

170(2)

Compound (I)

Crystal data

C ₃ H ₆ N ₂ S $M_r = 102.17$ Monoclinic, $P2_1/n$ a = 5.8980 (5) Å b = 14.8324 (12) Å c = 10.7092 (8) Å $\beta = 101.974$ (4)° V = 916.47 (13) Å ³	$D_x = 1.481 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 8580 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.53 \text{ mm}^{-1}$ T = 120 (2) K Prism vellow
V = 910.47 (13) A Z = 8	$0.20 \times 0.20 \times 0.10 \text{ mm}$
Data collection Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.826, T_{max} = 0.948$ 10 396 measured reflections	2101 independent reflections 1149 reflections with $I > 2\sigma(I)$ $R_{int} = 0.112$ $\theta_{max} = 27.5^{\circ}$ $h = -7 \rightarrow 7$ $k = -19 \rightarrow 19$ $I = -13 \rightarrow 13$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained $w = 1/[\sigma^2(F_{\perp}^2) + (0.0802P)^2]$

Refinement on F ²	H-atom parameters constra
$R[F^2 > 2\sigma(F^2)] = 0.061$	$w = 1/[\sigma^2(F_o^2) + (0.0802P)^2]$
$wR(F^2) = 0.160$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
2101 reflections	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
109 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, $^\circ)$ for (I).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N21A - H21A \cdots N3B$	0.88	2.09	2.950 (5)	164
$N21A - H22A \cdot \cdot \cdot S1B^{i}$	0.88	2.75	3.575 (3)	156
$N21B - H21B \cdot \cdot \cdot N3A$	0.88	2.04	2.916 (5)	171
$N21B - H22B \cdot \cdot \cdot S1A^{ii}$	0.88	2.70	3.526 (3)	156

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Compound (II)

Crystal data

$C_{3}H_{7}N_{2}S^{+}C_{12}H_{9}O_{3}^{-}$	$D_x = 1.441 \text{ Mg m}^{-3}$
$M_r = 304.36$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 4067
a = 8.3669 (2) Å	reflections
b = 6.3707 (1) Å	$\theta = 2.9-27.5^{\circ}$
c = 26.3457(6) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 92.1992 (9)^{\circ}$	T = 120 (2) K
V = 1403.27 (5) Å ³	Plate, colourless
Z = 4	$0.32 \times 0.10 \times 0.04 \text{ mm}$
Data collection	
Nonius KappaCCD area-detector	3183 independent reflections
diffractometer	2546 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.091$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.4^{\circ}$
(SORTAV; Blessing, 1995)	$h = -10 \rightarrow 10$
$T_{\rm min} = 0.710, T_{\rm max} = 0.990$	$k = -7 \rightarrow 8$
15 534 measured reflections	$l = -34 \rightarrow 34$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0503P)^2]$
$R(F^{*} > 2\sigma(F^{*})) = 0.046$	$\pm 0.8055P$

 $wR(F^2) = 0.121$ S = 1.023183 reflections 194 parameters H atoms treated by a mixture of independent and constrained refinement

 $N21A - H21A \cdot \cdot \cdot O15B$ 0 $N21A - H22A \cdots O14B^{i}$ $N21A - H22A \cdots O11B^{iii}$ $N3A - H3A \cdots O14B$

Table 2

 $D - H \cdot \cdot \cdot A$

Symmetry code: (iii) x, y - 1, z.

Hydrogen-bonding geometry (Å, °) for (II).

D-H

0.88

0.88

0.88

0.87(2)

 $H \cdot \cdot \cdot A$

1.88

1.93

2.56

2.01 (2)

All H atoms, except for the H atom on the N⁺ ion in (II), were included in the refinement at calculated positions in the riding-model approximation, with N-H distances of 0.88 Å, and C-H distances of 0.95 (aromatic H atoms) and 0.99 Å (CH₂ H atoms). The $U_{iso}(H)$ values were set at $1.25U_{eq}$ of the carrier atom. The H atom on the N⁺ ion was located in a difference synthesis and both the positional and displacement parameters were refined. A high R_{int} value for (I) was the result of weak high-angle data.

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

The authors thank the EPSRC National Crystallography Service (Southampton, England).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1737). Services for accessing these data are described at the back of the journal.

References

 $2\sigma(I)$

where $P = (F_a^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
- Brugarolas, A. & Gosálvez, M. (1982). Recent Results Cancer Res. 80, 346-350.
- Caranoni, P. C. & Reboul, J. P. (1982). Acta Cryst. B38, 1255-1259.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Howie, R. A., Skakle, J. M. S. & Wardell, S. M. S. V. (2001). Acta Cryst. E57, 072-074.
- Lynch, D. E., Barfield, J., Frost, J., Antrobus, R. & Simmons, J. (2004). Cryst. Eng. 6, 109-122.
- Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695-703.
- Lynch, D. E., Daly, D. & Parsons, S. (2000). Acta Cryst. C56, 1478-1479.
- Lynch, D. E., McClenaghan, I., Light, M. E. & Coles, S. J. (2002). Cryst. Eng. 5, 123 - 136
- Lynch, D. E., Nicholls, L. J., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1999). Acta Cryst. B55, 758-766.
- Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587-592.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Smith, G. & Kennard, C. H. L. (1979). J. Agric. Food Chem. 27, 779-787. Spek, A. L. (1994). PLUTON94. University of Utrecht, The Netherlands. Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands. The Merck Index (2001). 13th ed. Whitehouse Station: Merck and Co. Inc.

supporting information

Acta Cryst. (2004). C60, o677-o679 [doi:10.1107/S0108270104015604]

2-Amino-2-thiazoline and its 1:1 organic salt with 2-naphthoxyacetic acid

Daniel E. Lynch

Computing details

For both compounds, data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO*, *SCALEPACK* (Otwinowski & Minor, 1997) and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLUTON94* (Spek, 1994) and *PLATON97* (Spek, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997).

(I) 2-Amino-2-thiazoline

Crystal data	
C ₃ H ₆ N ₂ S $M_r = 102.17$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.8980 (5) Å b = 14.8324 (12) Å c = 10.7092 (8) Å $\beta = 101.974$ (4)° V = 916.47 (13) Å ³ Z = 8	F(000) = 432 $D_x = 1.481 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8580 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.53 \text{ mm}^{-1}$ T = 120 K Prism, yellow $0.20 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Nonius KappaCCD area-detector diffractometer Radiation source: Nonius FR591 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SORTAV</i> ; Blessing, 1995) $T_{\min} = 0.826, T_{\max} = 0.948$	10396 measured reflections 2101 independent reflections 1149 reflections with $I > 2\sigma(I)$ $R_{int} = 0.112$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -19 \rightarrow 19$ $l = -13 \rightarrow 13$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.160$ S = 1.02 2101 reflections 109 parameters 0 restraints	 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0802P)^2]$	$\Delta ho_{ m max} = 0.49$ e Å ⁻³
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	-0.02730 (17)	0.06496 (7)	0.20321 (9)	0.0269 (3)	
C2A	0.1754 (6)	0.1438 (2)	0.1644 (4)	0.0219 (8)	
N21A	0.3725 (6)	0.1576 (2)	0.2517 (3)	0.0295 (8)	
H21A	0.4788	0.1946	0.2348	0.037*	
H22A	0.3949	0.1296	0.3257	0.037*	
N3A	0.1270 (5)	0.1808 (2)	0.0554 (3)	0.0263 (8)	
C4A	-0.0968 (7)	0.1525 (3)	-0.0198 (4)	0.0271 (9)	
H41A	-0.1959	0.2062	-0.0434	0.034*	
H42A	-0.0732	0.1238	-0.0996	0.034*	
C5A	-0.2206 (7)	0.0864 (3)	0.0520 (4)	0.0309 (10)	
H51A	-0.3679	0.1127	0.0655	0.039*	
H52A	-0.2554	0.0297	0.0031	0.039*	
S1B	0.77862 (17)	0.43581 (7)	0.04456 (9)	0.0246 (3)	
C2B	0.5938 (6)	0.3476 (2)	0.0781 (4)	0.0228 (8)	
N21B	0.4037 (5)	0.3289 (2)	-0.0124 (3)	0.0289 (8)	
H21B	0.3088	0.2856	0.0002	0.036*	
H22B	0.3747	0.3599	-0.0840	0.036*	
N3B	0.6540 (5)	0.3076 (2)	0.1853 (3)	0.0260 (8)	
C4B	0.8603 (6)	0.3461 (3)	0.2639 (4)	0.0270 (9)	
H41B	0.9621	0.2972	0.3062	0.034*	
H42B	0.8163	0.3841	0.3311	0.034*	
C5B	0.9918 (7)	0.4032 (3)	0.1840 (4)	0.0306 (10)	
H51B	1.1178	0.3678	0.1592	0.038*	
H52B	1.0599	0.4571	0.2322	0.038*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0240 (6)	0.0311 (6)	0.0266 (6)	-0.0060 (4)	0.0077 (4)	0.0016 (4)
C2A	0.020 (2)	0.0226 (19)	0.024 (2)	-0.0013 (15)	0.0066 (17)	-0.0004 (16)
N21A	0.0234 (18)	0.0421 (19)	0.0225 (18)	-0.0074 (16)	0.0039 (14)	0.0078 (15)
N3A	0.0228 (18)	0.0346 (18)	0.0217 (18)	-0.0079 (14)	0.0049 (14)	0.0011 (15)
C4A	0.024 (2)	0.031 (2)	0.026 (2)	-0.0034 (17)	0.0041 (17)	0.0014 (18)
C5A	0.020 (2)	0.043 (3)	0.030(2)	-0.0073 (18)	0.0067 (19)	0.0003 (19)
S1B	0.0229 (6)	0.0269 (5)	0.0253 (6)	0.0042 (4)	0.0079 (4)	-0.0014 (4)
C2B	0.019 (2)	0.0241 (19)	0.028 (2)	0.0016 (16)	0.0109 (17)	0.0035 (17)
N21B	0.0272 (19)	0.0346 (18)	0.0232 (18)	0.0097 (14)	0.0014 (15)	-0.0031 (15)
N3B	0.0213 (18)	0.0331 (18)	0.0229 (18)	0.0037 (14)	0.0034 (15)	-0.0018 (14)
C4B	0.020 (2)	0.032 (2)	0.028 (2)	0.0064 (17)	0.0043 (17)	-0.0013 (18)
C5B	0.024 (2)	0.040 (2)	0.027 (2)	0.0027 (18)	0.0037 (18)	-0.0074 (19)

Geometric parameters (Å, °)

S1A—C2A	1.782 (4)	S1B—C2B	1.786 (4)
S1A—C5A	1.805 (4)	S1B—C5B	1.807 (4)
C2A—N3A	1.267 (5)	C2B—N3B	1.276 (5)
C2A—N21A	1.348 (5)	C2B—N21B	1.351 (5)
N21A—H21A	0.88	N21B—H21B	0.88
N21A—H22A	0.88	N21B—H22B	0.88
N3A—C4A	1.458 (5)	N3B—C4B	1.446 (5)
C4A—C5A	1.522 (5)	C4B—C5B	1.525 (5)
C4A—H41A	0.99	C4B—H41B	0.99
C4A—H42A	0.99	C4B—H42B	0.99
C5A—H51A	0.99	C5B—H51B	0.99
С5А—Н52А	0.99	C5B—H52B	0.99
C2A—S1A—C5A	90 24 (18)	C2B—S1B—C5B	89 24 (18)
N3A - C2A - N21A	124 8 (3)	N3B-C2B-N21B	125 8 (3)
N3A - C2A - S1A	1177(3)	N3B-C2B-S1B	1171(3)
N21A—C2A—S1A	117.5 (3)	N21B-C2B-S1B	117.2 (3)
C2A—N21A—H21A	120.0	C2B—N21B—H21B	120.0
C2A— $N21A$ — $H22A$	120.0	C2B— $N21B$ — $H22B$	120.0
$H_{21}A = N_{21}A = H_{22}A$	120.0	H21B—N21B—H22B	120.0
C2A—N3A—C4A	112.9 (3)	C2B-N3B-C4B	112.5 (3)
N3A—C4A—C5A	112.4 (3)	N3B-C4B-C5B	110.9 (3)
N3A—C4A—H41A	109.1	N3B—C4B—H41B	109.5
C5A—C4A—H41A	109.1	C5B-C4B-H41B	109.5
N3A—C4A—H42A	109.1	N3B—C4B—H42B	109.5
C5A-C4A-H42A	109.1	C5B-C4B-H42B	109.5
H41A—C4A—H42A	107.9	H41B—C4B—H42B	108.0
C4A - C5A - S1A	106.7 (3)	C4B-C5B-S1B	105.3 (3)
C4A—C5A—H51A	110.4	C4B—C5B—H51B	110.7
SIA—C5A—H51A	110.4	S1B-C5B-H51B	110.7
C4A—C5A—H52A	110.4	C4B—C5B—H52B	110.7
SIA—C5A—H52A	110.4	S1B-C5B-H52B	110.7
H51A—C5A—H52A	108.6	H51B—C5B—H52B	108.8
C5A S1A C2A N3A	-27(3)	C5B S1B C2B N3B	96(3)
$C_{5A} = S_{1A} = C_{2A} = N_{5A}$	2.7(3)	C5B = S1B = C2B = N21B	-170.0(3)
$V_{2A} = V_{2A} = V_{2A} = V_{2A}$	179.3(3) 170.2(4)	$\frac{C_{3D}}{N_{21}} = \frac{C_{3D}}{C_{2D}} = \frac{C_{3D}}{N_{21}} = \frac{C_{4D}}{C_{4D}}$	-177.2 (1)
$\frac{1121A}{C2A} = \frac{113A}{C4A} = \frac{112A}{C4A}$	1/7.2(4) 1/4(A)	S1B C2B N3B C4B	1/1.2(4) 3.3(A)
$C_{A} = C_{A} = C_{A$	1.4(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-170(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-28(4)	$\begin{array}{c} C2D \\ \hline \\ N3D \\ \hline \\ C4D \\ \hline \\ C5D \\ \hline \\ S1D \\ \\ S1D \\ \hline \\ \\$	1/.9(3)
1NSA - C4A - CSA - SIA	-2.0(4)	100 - C4D - C3B - 31B	25.4 (4) -17.7 (2)
C_{A} J_{A} C_{A} C_{A} C_{A} C_{A}	2.9 (3)	U2D-SID-U3D-U4D	-1/./(3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N21 <i>A</i> —H21 <i>A</i> ···N3 <i>B</i>	0.88	2.09	2.950 (5)	164

				g information
N21 A —H22 A ···S1 B^{i}	0.88	2.75	3.575 (3)	156
N21 <i>B</i> —H21 <i>B</i> ···N3 <i>A</i>	0.88	2.04	2.916 (5)	171
$N21B$ — $H22B$ ···· $S1A^{ii}$	0.88	2.70	3.526 (3)	156

F(000) = 640

 $\theta = 2.9 - 27.5^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$

Plate, colourless

 $0.32 \times 0.10 \times 0.04$ mm

T = 120 K

 $D_{\rm x} = 1.441 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4067 reflections

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*+1/2; (ii) *x*+1/2, -*y*+1/2, *z*-1/2.

(II) 2-Amino-2-thiazolium 2-naphthoxyacetate

Crystal	data
---------	------

C₃H₇N₂S⁺·C₁₂H₉O₃⁻ $M_r = 304.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.3669 (2) Å b = 6.3707 (1) Å c = 26.3457 (6) Å $\beta = 92.1992$ (9)° V = 1403.27 (5) Å³ Z = 4

Data collection

Nonius KappaCCD area-detector	15534 measured reflections
diffractometer	3183 independent reflections
Radiation source: Nonius FR591 rotating anode	2546 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.091$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
φ and ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -7 \longrightarrow 8$
(SORTAV; Blessing, 1995)	$l = -34 \rightarrow 34$
$T_{\min} = 0.710, \ T_{\max} = 0.990$	
Refinement	
Refinement on F^2	Secondary atom site location: difference

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
3183 reflections	and constrained refinement
194 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0503P)^2 + 0.8055P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	-0.19892 (6)	-0.56175 (8)	0.06199 (19)	0.02416 (16)	
C2A	-0.0340 (2)	-0.3943 (3)	0.06063 (7)	0.0173 (4)	
N21A	0.11091 (18)	-0.4589 (3)	0.07144 (6)	0.0198 (4)	
H21A	0.1913	-0.3698	0.0712	0.025*	
H22A	0.1285	-0.5917	0.0790	0.025*	
N3A	-0.07266 (19)	-0.1983 (3)	0.04883 (6)	0.0188 (3)	
H3A	-0.005 (3)	-0.097 (4)	0.0543 (8)	0.023 (6)*	

C4A	-0.2446 (2)	-0.1539 (3)	0.04747 (7)	0.0218 (4)
H41A	-0.2715	-0.0441	0.0220	0.027*
H42A	-0.2781	-0.1050	0.0811	0.027*
C5A	-0.3271 (2)	-0.3597 (3)	0.03314 (8)	0.0228 (4)
H51A	-0.3356	-0.3768	-0.0042	0.029*
H52A	-0.4356	-0.3655	0.0468	0.029*
C1B	0.2758 (2)	0.3025 (3)	0.19187 (7)	0.0194 (4)
H1B	0.2442	0.1666	0.1805	0.024*
C2B	0.3684 (2)	0.4257 (3)	0.16244 (7)	0.0177 (4)
C3B	0.4200 (2)	0.6263 (3)	0.17909 (7)	0.0206 (4)
H3B	0.4866	0.7082	0.1584	0.026*
C4B	0.3745 (2)	0.7029 (3)	0.22471 (7)	0.0215 (4)
H4B	0.4095	0.8381	0.2355	0.027*
C5B	0.2202 (2)	0.6600 (3)	0.30307 (7)	0.0241 (4)
H5B	0.2536	0.7948	0.3147	0.030*
C6B	0.1201 (2)	0.5432 (3)	0.33145 (7)	0.0258 (5)
H6B	0.0818	0.5985	0.3622	0.032*
C7B	0.0730 (2)	0.3398 (3)	0.31514 (7)	0.0274 (5)
H7B	0.0042	0.2588	0.3353	0.034*
C8B	0.1256 (2)	0.2589 (3)	0.27081 (7)	0.0234 (4)
H8B	0.0945	0.1213	0.2607	0.029*
C9B	0.2266 (2)	0.3787 (3)	0.23966 (7)	0.0201 (4)
C10B	0.2751 (2)	0.5823 (3)	0.25623 (7)	0.0199 (4)
O11B	0.41670 (15)	0.3708 (2)	0.11458 (5)	0.0190 (3)
C12B	0.4426 (2)	0.1542 (3)	0.10439 (8)	0.0209 (4)
H12B	0.4765	0.0852	0.1367	0.026*
H13B	0.5329	0.1433	0.0813	0.026*
C13B	0.3018 (2)	0.0295 (3)	0.08086 (7)	0.0177 (4)
O14B	0.16423 (15)	0.1099 (2)	0.07750 (5)	0.0199 (3)
O15B	0.34007 (16)	-0.15009 (2)	0.06632 (5)	0.0239 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
S1A	0.0187 (3)	0.0224 (3)	0.0313 (3)	0.00326 (18)	-0.00004 (19)	-0.0037 (2)
C2A	0.0178 (9)	0.0186 (10)	0.0157 (8)	0.0009 (7)	0.0024 (7)	0.0017 (7)
N21A	0.0162 (8)	0.0173 (9)	0.0259 (8)	-0.0007 (6)	-0.0005 (6)	-0.0011 (6)
N3A	0.0152 (8)	0.0182 (9)	0.0229 (8)	-0.0009(7)	-0.0005 (6)	0.0009 (7)
C4A	0.0170 (9)	0.0251 (11)	0.0231 (10)	-0.0058 (8)	-0.0003 (7)	0.0008 (8)
C5A	0.0165 (9)	0.0267 (11)	0.0253 (10)	-0.0024 (8)	0.0003 (7)	0.0004 (8)
C1B	0.0177 (9)	0.0178 (10)	0.0225 (10)	0.0003 (7)	-0.0019 (7)	-0.0003 (7)
C2B	0.0149 (9)	0.0197 (10)	0.0185 (9)	-0.0031 (7)	-0.0014 (7)	0.0001 (7)
C3B	0.0183 (9)	0.0208 (10)	0.0226 (10)	0.0012 (7)	-0.0001 (7)	-0.0036 (8)
C4B	0.0213 (9)	0.0187 (10)	0.0241 (10)	0.0010 (8)	-0.0026 (7)	0.0015 (8)
C5B	0.0213 (10)	0.0300 (12)	0.0207 (10)	-0.0030 (8)	-0.0047 (8)	0.0022 (8)
C6B	0.0224 (10)	0.0369 (13)	0.0179 (10)	-0.0050 (8)	-0.0019 (8)	0.0009 (8)
C7B	0.0214 (10)	0.0394 (13)	0.0213 (10)	0.0020 (9)	-0.0005 (8)	-0.0064 (9)
C8B	0.0218 (10)	0.0263 (11)	0.0218 (10)	0.0042 (8)	-0.0034 (7)	-0.0044 (8)

supporting information

0.0150 (9)	0.0241 (10)	0.0208 (9)	-0.0002 (7)	-0.0040 (7)	-0.0028 (8)
0.0163 (9)	0.0216 (10)	0.0214 (9)	-0.0031 (7)	-0.0039 (7)	-0.0008 (8)
0.0194 (7)	0.0172 (7)	0.0206 (7)	-0.0004 (5)	0.0032 (5)	0.0014 (5)
0.0163 (9)	0.0188 (10)	0.0277 (10)	-0.0017 (7)	0.0019 (7)	0.0023 (8)
0.0175 (9)	0.0190 (10)	0.0167 (9)	-0.0012 (7)	0.0042 (7)	-0.0029 (7)
0.0152 (6)	0.0200 (7)	0.0245 (7)	-0.0006 (5)	0.0001 (5)	0.0008 (5)
0.0221 (7)	0.0189 (8)	0.0309 (8)	-0.0016 (5)	0.0018 (6)	0.0038 (6)
	0.0150 (9) 0.0163 (9) 0.0194 (7) 0.0163 (9) 0.0175 (9) 0.0152 (6) 0.0221 (7)	0.0150 (9)0.0241 (10)0.0163 (9)0.0216 (10)0.0194 (7)0.0172 (7)0.0163 (9)0.0188 (10)0.0175 (9)0.0190 (10)0.0152 (6)0.0200 (7)0.0221 (7)0.0189 (8)	0.0150 (9)0.0241 (10)0.0208 (9)0.0163 (9)0.0216 (10)0.0214 (9)0.0194 (7)0.0172 (7)0.0206 (7)0.0163 (9)0.0188 (10)0.0277 (10)0.0175 (9)0.0190 (10)0.0167 (9)0.0152 (6)0.0200 (7)0.0245 (7)0.0221 (7)0.0189 (8)0.0309 (8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

S1A—C2A	1.7455 (19)	СЗВ—НЗВ	0.95
S1A—C5A	1.823 (2)	C4B—C10B	1.423 (3)
C2A—N21A	1.302 (2)	C4B—H4B	0.95
C2A—N3A	1.324 (2)	C5B—C6B	1.365 (3)
N21A—H21A	0.88	C5B—C10B	1.422 (3)
N21A—H22A	0.88	С5В—Н5В	0.95
N3A—C4A	1.465 (2)	C6B—C7B	1.417 (3)
N3A—H3A	0.87 (2)	C6B—H6B	0.95
C4A—C5A	1.523 (3)	C7B—C8B	1.365 (3)
C4A—H41A	0.99	С7В—Н7В	0.95
C4A—H42A	0.99	C8B—C9B	1.422 (3)
C5A—H51A	0.99	C8B—H8B	0.95
C5A—H52A	0.99	C9B—C10B	1.423 (3)
C1B—C2B	1.365 (3)	O11B—C12B	1.424 (2)
C1B—C9B	1.425 (3)	C12B—C13B	1.532 (3)
C1B—H1B	0.95	C12B—H12B	0.99
C2B—O11B	1.384 (2)	C12B—H13B	0.99
C2B—C3B	1.413 (3)	C13B—O15B	1.252 (2)
C3B—C4B	1.365 (3)	C13B—O14B	1.260 (2)
C2A—S1A—C5A	90.73 (9)	C3B—C4B—C10B	120.65 (18)
N21A—C2A—N3A	124.53 (17)	C3B—C4B—H4B	119.7
N21A—C2A—S1A	122.19 (15)	C10B—C4B—H4B	119.7
N3A—C2A—S1A	113.27 (14)	C6B—C5B—C10B	120.7 (2)
C2A—N21A—H21A	120.0	C6B—C5B—H5B	119.6
C2A—N21A—H22A	120.0	C10B—C5B—H5B	119.6
H21A—N21A—H22A	120.0	C5B—C6B—C7B	120.13 (19)
C2A—N3A—C4A	114.77 (16)	C5B—C6B—H6B	119.9
C2A—N3A—H3A	120.5 (15)	C7B—C6B—H6B	119.9
C4A—N3A—H3A	120.0 (15)	C8B—C7B—C6B	120.66 (19)
N3A—C4A—C5A	105.96 (15)	C8B—C7B—H7B	119.7
N3A—C4A—H41A	110.5	C6B—C7B—H7B	119.7
C5A—C4A—H41A	110.5	C7B—C8B—C9B	120.64 (19)
N3A—C4A—H42A	110.5	C7B—C8B—H8B	119.7
C5A—C4A—H42A	110.5	C9B—C8B—H8B	119.7
H41A—C4A—H42A	108.7	C8B—C9B—C10B	118.74 (18)
C4A—C5A—S1A	104.53 (12)	C8B—C9B—C1B	121.69 (18)
C4A—C5A—H51A	110.8	C10B—C9B—C1B	119.54 (17)

S1A—C5A—H51A	110.8	C5B—C10B—C9B	119.08 (18)
C4A—C5A—H52A	110.8	C5B—C10B—C4B	122.26 (18)
S1A—C5A—H52A	110.8	C9B—C10B—C4B	118.65 (17)
H51A—C5A—H52A	108.9	C2B-011B-C12B	117.93 (14)
C2B—C1B—C9B	119.71 (18)	O11B—C12B—C13B	117.32 (15)
C2B—C1B—H1B	120.1	O11B—C12B—H12B	108.0
C9B—C1B—H1B	120.1	C13B—C12B—H12B	108.0
C1B—C2B—O11B	124.35 (17)	O11B-C12B-H13B	108.0
C1B—C2B—C3B	121.10 (17)	C13B—C12B—H13B	108.0
O11B—C2B—C3B	114.53 (16)	H12B—C12B—H13B	107.2
C4B—C3B—C2B	120.32 (18)	O15B—C13B—O14B	126.43 (17)
C4B—C3B—H3B	119.8	O15B—C13B—C12B	113.33 (15)
C2B—C3B—H3B	119.8	O14B—C13B—C12B	120.24 (16)
C5A—S1A—C2A—N21A	-171.09 (16)	C7B—C8B—C9B—C1B	-176.41 (17)
C5A—S1A—C2A—N3A	10.36 (15)	C2B—C1B—C9B—C8B	177.84 (17)
N21A—C2A—N3A—C4A	-169.07 (17)	C2B-C1B-C9B-C10B	-0.2 (3)
S1A—C2A—N3A—C4A	9.4 (2)	C6B—C5B—C10B—C9B	-1.2 (3)
C2A—N3A—C4A—C5A	-28.8 (2)	C6B—C5B—C10B—C4B	177.48 (17)
N3A—C4A—C5A—S1A	33.38 (17)	C8B—C9B—C10B—C5B	-0.5 (3)
C2A—S1A—C5A—C4A	-25.22 (14)	C1B—C9B—C10B—C5B	177.55 (16)
C9B—C1B—C2B—O11B	-177.00 (16)	C8B—C9B—C10B—C4B	-179.21 (17)
C9B—C1B—C2B—C3B	1.5 (3)	C1B—C9B—C10B—C4B	-1.1 (3)
C1B—C2B—C3B—C4B	-1.5 (3)	C3B—C4B—C10B—C5B	-177.51 (17)
O11B—C2B—C3B—C4B	177.12 (16)	C3B—C4B—C10B—C9B	1.1 (3)
C2B-C3B-C4B-C10B	0.2 (3)	C1B-C2B-O11B-C12B	-31.7 (2)
C10B—C5B—C6B—C7B	1.8 (3)	C3B—C2B—O11B—C12B	149.67 (16)
C5B—C6B—C7B—C8B	-0.6 (3)	C2B-011B-C12B-C13B	92.8 (2)
C6B—C7B—C8B—C9B	-1.1 (3)	O11B—C12B—C13B—O15B	170.22 (16)
C7B—C8B—C9B—C10B	1.6 (3)	O11B—C12B—C13B—O14B	-9.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N21A—H21A…O15B	0.88	1.88	2.754 (2)	171
N21 A —H22 A ···O14 B^{i}	0.88	1.93	2.787 (2)	166
N21 <i>A</i> —H22 <i>A</i> ···O11 <i>B</i> ⁱ	0.88	2.56	2.965 (2)	109
N3A—H3A…O14B	0.87 (2)	2.01 (2)	2.871 (2)	170 (2)

Symmetry code: (i) x, y-1, z.