Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Partially oxidized {2-[(benzoylmethylene)diphenyl- λ^5 -phosphino]ethyl}diphenylphosphine as a monohydrate

E. Mothi Mohamed,^a Krishnaswamy Panchanatheswaran,^a John N. Low^b‡ and Christopher Glidewell^c*

^aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland Correspondence e-mail: cg@st-andrews.ac.uk

Received 18 May 2004 Accepted 19 May 2004 Online 22 June 2004

The title compound is a co-crystal of {2-[(benzoylmethylene)diphenyl- λ^5 -phosphino]ethyl}diphenylphosphine oxide, {2-[(benzoylmethylene)diphenyl- λ^5 -phosphino]ethyl}diphenylphosphine and water in an approximate 2:1:3 ratio, with an overall composition of C₃₄H₃₀O_{1.678}P₂·H₂O. The ylidic portion shows the expected electronic polarization, and the organic components are linked by a combination of C-H···O and C-H··· π (arene) hydrogen bonds.

Comment

The title compound, (I), is a co-crystallized mixture of the phosphine oxide (II) and the phosphine (III) obtained as an unexpected product during the attempted crystallization of (III). Form (II), as the monohydrate, was taken as the basis of the refinement model, and the occupancy of atom site O2, bonded to P2 (Fig. 1), refined to 0.678 (7). Since the overall molecular size and shape is dominated by the disposition of the phenyl groups, the phosphine and its oxide readily occupy similar spaces in the crystal, leading to co-crystallization. It is possible that the occupancy of the O2 site may vary slightly from one crystal to another.

The central C21-P1-C1-C2-P2-C41 fragment of (I) is nearly planar, with an extended chain conformation, as shown by the key torsion angles (Table 1), and bonds P1-C17 and P2-O2 are both synclinal bond C1-C2. The locations of atoms C17 and O2, as well as the torsion angles of the phenyl rings about the P-C bonds, preclude the possibility of any internal molecular symmetry. The P1-C17-C19(-O18)-C11 fragment is effectively planar.

The inter-bond angles at both P1 and P2 show considerable variation from the ideal tetrahedral values (Table 1). That the

two angles O2-P2-C41 and O2-P2-C51, involving the *ipso*-C atoms of the phenyl rings, are almost identical, while the angles C17-P1-C21 and C17-P1-C31, also involving *ipso*-C atoms, differ by almost 10°, points to some subtle intraor intermolecular factors which are not immediately apparent. The angles P1-C17-C18 and C17-C18-O18 in the ylidic portion are both significantly greater than 120° .

The bond distances involving the P atoms, other than P1– C17, are typical of their types (Allen *et al.*, 1987). The bondlength compilation of Allen *et al.* (1987) does not include any data derived from phosphorus ylides. However, Aitken *et al.* (2000) have recently surveyed and tabulated the structural

Figure 1

A view of the independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Atom site O2 has an occupancy of 0.678 (7) (see text).

[‡] Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

properties of oxo-stabilized phosphorus ylides using data retrieved from the Cambridge Structural Database (Allen, 2002). For neutral ylides of the type Ph₃P=C_{α}R(C_{β}OR'), the ranges of the P-C_{α}, C_{α}-C_{β} and C_{β}-O distances were found to be 1.708–1.773, 1.333–1.435 and 1.226–1.301 Å, respectively. These ranges may be compared and contrasted with the P-CH₂ distances of 1.674 (2) and 1.666 (2) Å found for the two independent molecules in Ph₃P=CH₂ (Schmidbaur *et al.*, 1989), and with the average C-C and C-O distances of 1.465 and 1.222 Å in the conjugated fragment =C-C=O (Allen *et al.*, 1987). The corresponding values

Figure 2

A stereoview of part of the crystal structure of (I), showing the formation of a [100] chain of rings generated by $C-H\cdots\pi(arene)$ hydrogen bonds. For the sake of clarity, the water molecule and the H atoms not involved in the motif shown have been omitted.

Figure 3

Part of the crystal structure of (I), showing the formation of a C– H··· π (arene) hydrogen-bonded dimer centred at $(0, \frac{1}{2}, 0)$. For the sake of clarity, the water molecule and the H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x, 1 - y, -z). observed in compound (I) (Table 1) are all thus comfortably within the ranges recently reported (Aitken *et al.*, 2000) and indicate that the charge-separated form (II*a*) is an important contributor to the overall molecular–electronic structure, alongside the classically localized form (II) (see scheme).

Compound (I) crystallizes as the monohydrate and the water molecule is linked to the negatively polarized atom O18 *via* an $O-H\cdots O$ hydrogen bond (Table 2). The water molecule plays no other role in the intermolecular aggregation, as there are no potential donors or acceptors of hydrogen bonds within a suitable distance of atom O1.

The organic molecules in (I) are, however, linked by a combination of C-H···O and C-H··· π (arene) hydrogen bonds (Table 2). Atoms C26 and C45 in the molecule at (x, y, z) act as hydrogen-bond donors to, respectively, ring C41-C46 in the molecule at (x - 1, y, z) and ring C11-C16 in the molecule at (1 + x, y, z), so generating by translation a chain of rings running parallel to the [100] direction (Fig. 2). In addition, atom C12 in the molecule at (x, y, z) acts as donor to ring C31-C36 in the molecule at (-x, 1 - y, -z), so forming a

Figure 4

Part of the crystal structure of (I), showing the formation of a $C-H \cdots O$ hydrogen-bonded dimer centred at $(\frac{1}{2}, 1, 0)$. For the sake of clarity, the water molecule and the H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 2 - y, -z). Atom site O2 has an occupancy of 0.678 (7) (see text).

cyclic centrosymmetric dimer centred at $(0, \frac{1}{2}, 0)$ (Fig. 3), and this motif serves to link the molecular ladders in pairs.

The C-H···O hydrogen bonds in (I) both involve atom O2 as the acceptor and their overall effect is thus complicated somewhat by the partial occupancy of the O2 site. We consider first the outcome of these interactions assuming full occupancy of the O2 site, followed by the effects of partial occupancy. Atoms C1, adjacent to positively polarized atom P1, and C32 in the molecule at (x, y, z) both act as hydrogen-bond donors to atom O2 in the molecule at (1 - x, 2 - y, -z). With full occupancy at O2, these interactions would generate a cyclic centrosymmetric dimer, centred at $(\frac{1}{2}, 1, 0)$, in which an $R_2^2(16)$ ring (Bernstein et al., 1995) containing atom C32 is divided into one $R_2^2(10)$ segment (Fig. 4) and two $R_2^1(7)$ segments (Fig. 4). With an occupancy of the O2 site of 0.678 (7), ca 46% of these molecular pairs will contain two atoms of type O2, ca 44% will contain just one atom of type O2 and *ca* 10% will contain no O2 atoms. Hence, ca 90% of these molecular pairs are internally linked by hydrogen bonds. In the event of full occupancy of the O2 site, this motif (Fig. 4) would serve to link the paired [100] ladders into an (001) sheet. Despite the presence of five independent phenyl rings, aromatic π - π stacking interactions are absent from the crystal structure of (I).

Experimental

The ylide (III) (see scheme) was prepared by the action of triethylamine on the corresponding phosphonium salt (Oosawa *et al.*, 1976); IR (ν , cm⁻¹): 1526 (C=O). The title compound, (I), was formed as crystals suitable for single-crystal X-ray diffraction by the vapour diffusion of light petroleum into a benzene solution of ylide (III) under aerobic conditions; IR (ν , cm⁻¹): 1514 (C=O), 1193 (P=O).

Crystal data

$C_{34}H_{30}O_{1.68}P_2 \cdot H_2O$	Z = 2
$M_r = 545.38$	$D_x = 1.308 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
$a = 9.1392 (4) \text{ Å}_{1}$	Cell parameters from 6257
b = 11.8931 (3) Å	reflections
c = 13.6025 (5) Å	$\theta = 3.1–27.5^{\circ}$
$\alpha = 105.725 \ (2)^{\circ}$	$\mu = 0.19 \text{ mm}^{-1}$
$\beta = 92.472 \ (2)^{\circ}$	T = 120 (2) K
$\gamma = 101.934 \ (2)^{\circ}$	Plate, colourless
$V = 1384.67 (9) \text{ Å}^3$	$0.16 \times 0.12 \times 0.05 \text{ mm}$

 $w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$

+ 1.1826*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.70 \ {\rm e} \ {\rm \AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

Data collection

Nonius KappaCCD diffractometer
 φ scans, and ω scans with κ offsets4739 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.137$ Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997) $\theta_{max} = 27.5^{\circ}$
 $h = -11 \rightarrow 11$
 $k = -15 \rightarrow 15$ 21 189 measured reflections $l = -17 \rightarrow 17$ 6257 independent reflections $l = -17 \rightarrow 17$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.143$ S = 1.066257 reflections 353 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

P1-C1	1.817 (2)	P1-C17	1.722 (2)
P1-C21	1.807 (2)	C17-C18	1.393 (3)
P1-C31	1.801 (2)	C18-O18	1.277 (3)
P2-C2	1.808 (2)	C18-C11	1.503 (3)
P2-C41	1.809 (2)	P2-O2	1.415 (2)
P2-C51	1.819 (2)		
C1-P1-C17	114.73 (11)	C2-P2-O2	117.61 (13)
C1-P1-C21	105.51 (10)	C2 - P2 - C41	104.48 (11)
C1-P1-C31	106.67 (10)	C2-P2-C51	105.72 (11)
C17-P1-C21	105.46 (10)	O2-P2-C41	112.58 (13)
C17-P1-C31	115.03 (11)	O2-P2-C51	111.94 (13)
C21-P1-C31	108.95 (10)	C41-P2-C51	103.22 (10)
P1-C17-C18	125.76 (18)	C11-C18-O18	117.7 (2)
C17-C18-O18	124.6 (2)	C11-C18-C17	117.6 (2)
$P_1 = C_1 = C_2 = P_2$	-169 97 (12)	C1 - P1 - C17 - C18	-591(2)
$C_{17}^{17} = P_{1}^{1} = C_{1}^{1} = C_{2}^{2}$	77 30 (18)	$P_1 - C_{17} - C_{18} - C_{11}$	175 31 (17)
$C_{21}^{-P1} - C_{1}^{-C2}$	-167.09(16)	$C_{17} - C_{18} - C_{11} - C_{12}$	347(3)
$C_{31} - P_{1} - C_{1} - C_{2}$	-51.31(18)	C1 - P1 - C21 - C22	12345(19)
02 - P2 - C2 - C1	-59.4(2)	C1 - P1 - C31 - C32	-42.2(2)
C41 - P2 - C2 - C1	174.93 (16)	$C_2 - P_2 - C_{41} - C_{42}$	148.40 (18)
C51 - P2 - C2 - C1	66.39 (18)	$C_2 - P_2 - C_{51} - C_{52}$	-142.77 (18)
-			

Table 2

Hydrogen-bonding geometry (Å, °).

Cg1, Cg3 and Cg4 are the centroids of rings C11–C16, C31–C36 and C41–C46, respectively.

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - H \cdots A$
O1−H1 <i>C</i> ···O18	0.95	1.83	2.783 (3)	175
$C1-H1A\cdots O2^{i}$	0.99	2.18	3.147 (4)	166
$C32-H32\cdots O2^{i}$	0.95	2.36	3.298 (4)	168
$C12 - H12 \cdots Cg3^{ii}$	0.95	2.87	3.777 (3)	159
$C26 - H26 \cdots Cg4^{iii}$	0.95	2.97	3.757 (3)	141
$C45 - H45 \cdots Cg1^{iv}$	0.95	2.77	3.589 (3)	145

Symmetry codes: (i) 1 - x, 2 - y, -z; (ii) -x, 1 - y, -z; (iii) x - 1, y, z; (iv) 1 + x, y, z.

Crystals of (I) are triclinic; space group $P\overline{1}$ was selected and confirmed by the subsequent analysis. All H atoms were located from difference maps and then treated as riding atoms, with C–H distances of 0.95 (CH) or 0.99 Å (CH₂) and O–H distances of 0.95 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$. It was apparent from an early stage that the occupancy of the O2 site was less than unity; the refined value of the site-occupancy factor was 0.678 (7).

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97 and *PRPKAPPA* (Ferguson, 1999).

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1734). Services for accessing these data are described at the back of the journal.

References

- Aitken, R. A., Karodia, N. & Lightfoot, P. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 333–340.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.

- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Oosawa, Y., Urabe, H., Saito, T. & Sasaki, Y. (1976). J. Organomet. Chem. 122, 113–121.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Schmidbaur, H., Jeong, J., Schier, A., Graf, W., Wilkinson, D. L., Muller, G. & Kruger, C. (1989). New J. Chem. 13, 3441–352.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2004). C60, o475-o478 [doi:10.1107/S0108270104012211]

Partially oxidized {2-[(benzoylmethylene)diphenyl- λ^5 -phosphino]ethyl}diphenyl-phosphine as a monohydrate

E. Mothi Mohamed, Krishnaswamy Panchanatheswaran, John N. Low and Christopher Glidewell

Computing details

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

${2-[(benzoylmethylene)diphenyl-\lambda^5-phosphino]ethyl}diphenylphosphine monohydrate}$

Crystal data C₃₄H₃₀O_{1.68}P₂·H₂O $M_r = 545.38$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.1392 (4) Å b = 11.8931 (3) Å c = 13.6025 (5) Å a = 105.725 (2)° $\beta = 92.472$ (2)° $\gamma = 101.934$ (2)° V = 1384.67 (9) Å³

Data collection

Nonius KappaCCD diffractometer Radiation source: rotating anode Graphite monochromator φ scans, and ω scans with κ offsets Absorption correction: multi-scan (*SORTAV*; Blessing, 1995, 1997) $T_{\min} = 0.955, T_{\max} = 0.991$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.143$ S = 1.066257 reflections Z = 2 F(000) = 574.8 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6257 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 120 KPlate, colourless $0.16 \times 0.12 \times 0.05 \text{ mm}$

21189 measured reflections 6257 independent reflections 4739 reflections with $I > 2\sigma(I)$ $R_{int} = 0.137$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 15$ $l = -17 \rightarrow 17$

353 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^{\ 2}) + (0.05P)^2 + 1.1826P] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ & (\Delta/\sigma)_{\text{max}} < 0.001 \\ & \Delta\rho_{\text{max}} = 0.35 \text{ e } \text{ Å}^{-3} \\ & \Delta\rho_{\text{min}} = -0.70 \text{ e } \text{ Å}^{-3} \end{split}$$

.) Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters	(A^{\cdot})	2)
--	---------------	----

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
P1	0.18580 (6)	0.73418 (5)	0.05959 (4)	0.01716 (15)	
P2	0.60170 (7)	1.01348 (5)	0.19183 (5)	0.02323 (16)	
01	0.3943 (2)	0.52924 (17)	0.35852 (15)	0.0392 (5)	
O2	0.6390 (3)	1.0848 (2)	0.12456 (18)	0.0252 (9)	0.678 (7)
O18	0.32371 (18)	0.68827 (16)	0.25708 (13)	0.0281 (4)	
C1	0.3253 (2)	0.8753 (2)	0.09346 (17)	0.0207 (5)	
C2	0.4776 (2)	0.8670 (2)	0.13901 (18)	0.0213 (5)	
C11	0.0931 (3)	0.6580(2)	0.33182 (18)	0.0221 (5)	
C12	-0.0553 (3)	0.5920(2)	0.31448 (18)	0.0244 (5)	
C13	-0.1356 (3)	0.5754 (2)	0.3960 (2)	0.0296 (6)	
C14	-0.0686 (3)	0.6254 (3)	0.4957 (2)	0.0367 (6)	
C15	0.0783 (3)	0.6912 (3)	0.51419 (19)	0.0336 (6)	
C16	0.1595 (3)	0.7067 (2)	0.43283 (18)	0.0257 (5)	
C17	0.1055 (3)	0.6968 (2)	0.16196 (17)	0.0221 (5)	
C18	0.1823 (3)	0.6811 (2)	0.24619 (17)	0.0208 (5)	
C21	0.0342 (2)	0.7555 (2)	-0.01810 (17)	0.0181 (4)	
C22	-0.0166 (3)	0.6814 (2)	-0.11679 (18)	0.0229 (5)	
C23	-0.1407 (3)	0.6967 (2)	-0.17046 (19)	0.0300 (6)	
C24	-0.2118 (3)	0.7882 (2)	-0.1260 (2)	0.0301 (6)	
C25	-0.1605 (3)	0.8631 (2)	-0.0283 (2)	0.0287 (6)	
C26	-0.0381 (3)	0.8468 (2)	0.02628 (18)	0.0238 (5)	
C31	0.2720 (2)	0.62300 (19)	-0.01863 (16)	0.0181 (4)	
C32	0.3599 (3)	0.6487 (2)	-0.09478 (17)	0.0210 (5)	
C33	0.4249 (3)	0.5621 (2)	-0.15442 (18)	0.0242 (5)	
C34	0.4026 (3)	0.4491 (2)	-0.13845 (18)	0.0248 (5)	
C35	0.3156 (3)	0.4233 (2)	-0.06372 (19)	0.0251 (5)	
C36	0.2504 (2)	0.5103 (2)	-0.00306 (18)	0.0214 (5)	
C41	0.7656 (3)	0.9844 (2)	0.25110 (17)	0.0212 (5)	
C42	0.9043 (3)	1.0604 (2)	0.25247 (18)	0.0244 (5)	
C43	1.0331 (3)	1.0474 (2)	0.30313 (19)	0.0282 (5)	
C44	1.0230 (3)	0.9582 (2)	0.35124 (19)	0.0277 (5)	
C45	0.8859 (3)	0.8815 (2)	0.3495 (2)	0.0283 (5)	
C46	0.7578 (3)	0.8945 (2)	0.29957 (19)	0.0246 (5)	
C51	0.5156 (2)	1.0892 (2)	0.30114 (17)	0.0210 (5)	
C52	0.5246 (3)	1.2106 (2)	0.31965 (18)	0.0256 (5)	
C53	0.4659 (3)	1.2743 (2)	0.4042 (2)	0.0319 (6)	
C54	0.3996 (3)	1.2151 (3)	0.47173 (19)	0.0321 (6)	
C55	0.3905 (3)	1.0942 (2)	0.45410 (19)	0.0274 (5)	
C56	0.4461 (3)	1.0295 (2)	0.36834 (19)	0.0251 (5)	

H1A	0.3399	0.9027	0.0313	0.025*
H1B	0.2866	0.9364	0.1439	0.025*
H1C	0.3736	0.5870	0.3266	0.059*
H1D	0.3672	0.5652	0.4244	0.059*
H2A	0.5256	0.8177	0.0848	0.026*
H2B	0.4617	0.8267	0.1938	0.026*
H12	-0.1022	0.5578	0.2461	0.029*
H13	-0.2364	0.5297	0.3831	0.035*
H14	-0.1235	0.6146	0.5514	0.044*
H15	0.1241	0.7260	0.5828	0.040*
H16	0.2610	0.7508	0.4462	0.031*
H17	-0.0006	0.6860	0.1609	0.027*
H22	0.0334	0.6202	-0.1477	0.027*
H23	-0.1769	0.6448	-0.2373	0.036*
H24	-0.2958	0.7992	-0.1629	0.036*
H25	-0.2088	0.9257	0.0017	0.034*
H26	-0.0036	0.8977	0.0937	0.029*
H32	0.3749	0.7257	-0.1056	0.025*
H33	0.4846	0.5796	-0.2062	0.029*
H34	0.4476	0.3898	-0.1792	0.030*
H35	0.3000	0.3460	-0.0535	0.030*
H36	0.1913	0.4926	0.0489	0.026*
H42	0.9113	1.1214	0.2188	0.029*
H43	1.1274	1.0999	0.3045	0.034*
H44	1.1107	0.9494	0.3857	0.033*
H45	0.8796	0.8200	0.3825	0.034*
H46	0.6638	0.8417	0.2984	0.029*
H52	0.5715	1.2512	0.2740	0.031*
H53	0.4712	1.3575	0.4157	0.038*
H54	0.3604	1.2581	0.5302	0.038*
H55	0.3458	1.0545	0.5010	0.033*
H56	0.4370	0.9456	0.3556	0.030*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0158 (3)	0.0191 (3)	0.0164 (3)	0.0044 (2)	0.0004 (2)	0.0045 (2)
P2	0.0174 (3)	0.0204 (3)	0.0272 (3)	0.0028 (2)	0.0006 (2)	0.0005 (2)
01	0.0513 (12)	0.0358 (11)	0.0333 (10)	0.0190 (9)	0.0024 (9)	0.0084 (8)
O2	0.0291 (15)	0.0256 (15)	0.0237 (14)	0.0057 (10)	0.0035 (10)	0.0118 (11)
O18	0.0209 (8)	0.0415 (11)	0.0276 (9)	0.0096 (7)	0.0046 (7)	0.0170 (8)
C1	0.0187 (11)	0.0218 (12)	0.0203 (11)	0.0058 (9)	-0.0002 (9)	0.0034 (9)
C2	0.0181 (11)	0.0212 (12)	0.0225 (11)	0.0041 (9)	-0.0003 (9)	0.0035 (9)
C11	0.0246 (12)	0.0246 (12)	0.0221 (11)	0.0126 (9)	0.0056 (9)	0.0090 (9)
C12	0.0264 (12)	0.0248 (12)	0.0229 (11)	0.0099 (10)	0.0044 (10)	0.0051 (10)
C13	0.0296 (13)	0.0269 (13)	0.0347 (14)	0.0059 (10)	0.0117 (11)	0.0120 (11)
C14	0.0433 (16)	0.0470 (17)	0.0298 (14)	0.0188 (13)	0.0169 (12)	0.0194 (13)
C15	0.0417 (15)	0.0408 (16)	0.0205 (12)	0.0152 (12)	0.0040 (11)	0.0080 (11)

C16	0.0272 (12)	0.0281 (13)	0.0232 (12)	0.0092 (10)	0.0023 (10)	0.0076 (10)
C17	0.0176 (11)	0.0314 (13)	0.0193 (11)	0.0083 (9)	0.0035 (9)	0.0081 (10)
C18	0.0206 (11)	0.0215 (12)	0.0219 (11)	0.0069 (9)	0.0031 (9)	0.0072 (9)
C21	0.0158 (10)	0.0196 (11)	0.0198 (11)	0.0023 (8)	0.0022 (8)	0.0086 (9)
C22	0.0244 (12)	0.0212 (12)	0.0222 (11)	0.0015 (9)	0.0017 (9)	0.0075 (9)
C23	0.0283 (13)	0.0340 (14)	0.0243 (12)	-0.0027 (11)	-0.0061 (10)	0.0117 (11)
C24	0.0187 (11)	0.0385 (15)	0.0369 (14)	-0.0010 (10)	-0.0037 (10)	0.0236 (12)
C25	0.0190 (12)	0.0383 (15)	0.0358 (14)	0.0103 (11)	0.0061 (10)	0.0188 (12)
C26	0.0211 (11)	0.0283 (13)	0.0242 (12)	0.0076 (10)	0.0023 (9)	0.0094 (10)
C31	0.0158 (10)	0.0189 (11)	0.0168 (10)	0.0020 (8)	-0.0005 (8)	0.0023 (8)
C32	0.0220 (11)	0.0195 (11)	0.0213 (11)	0.0037 (9)	0.0027 (9)	0.0064 (9)
C33	0.0222 (12)	0.0267 (13)	0.0226 (12)	0.0060 (10)	0.0058 (9)	0.0044 (10)
C34	0.0223 (12)	0.0200 (12)	0.0292 (13)	0.0076 (9)	-0.0005 (10)	0.0008 (10)
C35	0.0238 (12)	0.0182 (12)	0.0327 (13)	0.0051 (9)	-0.0001 (10)	0.0067 (10)
C36	0.0192 (11)	0.0207 (12)	0.0249 (11)	0.0015 (9)	0.0021 (9)	0.0097 (9)
C41	0.0186 (11)	0.0210 (12)	0.0210 (11)	0.0059 (9)	0.0028 (9)	0.0002 (9)
C42	0.0209 (11)	0.0246 (12)	0.0260 (12)	0.0033 (9)	0.0032 (9)	0.0056 (10)
C43	0.0178 (11)	0.0307 (14)	0.0315 (13)	0.0006 (10)	0.0007 (10)	0.0054 (11)
C44	0.0204 (12)	0.0305 (13)	0.0325 (13)	0.0090 (10)	-0.0014 (10)	0.0078 (11)
C45	0.0253 (12)	0.0302 (14)	0.0344 (13)	0.0119 (10)	0.0064 (10)	0.0129 (11)
C46	0.0195 (11)	0.0195 (12)	0.0328 (13)	0.0035 (9)	0.0045 (10)	0.0049 (10)
C51	0.0168 (11)	0.0229 (12)	0.0216 (11)	0.0049 (9)	-0.0040 (9)	0.0041 (9)
C52	0.0288 (13)	0.0263 (13)	0.0220 (11)	0.0077 (10)	-0.0006 (10)	0.0069 (10)
C53	0.0388 (15)	0.0274 (14)	0.0294 (13)	0.0132 (11)	-0.0003 (11)	0.0043 (11)
C54	0.0286 (13)	0.0426 (16)	0.0242 (12)	0.0169 (12)	0.0005 (10)	0.0021 (11)
C55	0.0207 (12)	0.0375 (14)	0.0254 (12)	0.0079 (10)	0.0028 (10)	0.0105 (11)
C56	0.0194 (11)	0.0254 (13)	0.0301 (13)	0.0048 (9)	-0.0001 (10)	0.0078 (10)

Geometric parameters (Å, °)

P1—C1	1.817 (2)	C25—H25	0.95
P1—C21	1.807 (2)	C26—H26	0.95
P1-C31	1.801 (2)	C31—C36	1.388 (3)
P2—C2	1.808 (2)	C31—C32	1.397 (3)
P2—C41	1.809 (2)	C32—C33	1.383 (3)
P2—C51	1.819 (2)	C32—H32	0.95
P1—C17	1.722 (2)	C33—C34	1.394 (3)
C17—C18	1.393 (3)	С33—Н33	0.95
C1—C2	1.532 (3)	C34—C35	1.378 (3)
C1—H1A	0.99	C34—H34	0.95
C1—H1B	0.99	C35—C36	1.393 (3)
C2—H2A	0.99	С35—Н35	0.95
C2—H2B	0.99	C36—H36	0.95
С17—Н17	0.95	C41—C46	1.392 (3)
C18—O18	1.277 (3)	C41—C42	1.393 (3)
C18—C11	1.503 (3)	C42—C43	1.395 (3)
P2—O2	1.415 (2)	C42—H42	0.95
C11—C16	1.394 (3)	C43—C44	1.380 (4)

C11—C12	1.394 (3)	C43—H43	0.95
C12—C13	1.391 (3)	C44—C45	1.385 (4)
C12—H12	0.95	C44—H44	0.95
C13—C14	1.381 (4)	C45—C46	1.386 (3)
C13—H13	0.95	C45—H45	0.95
C14—C15	1.381 (4)	C46—H46	0.95
C14—H14	0.95	C51—C52	1.381 (3)
C15—C16	1.391 (4)	C51—C56	1.400 (3)
C15—H15	0.95	C52—C53	1.391 (4)
C16—H16	0.95	C52—H52	0.95
C21—C22	1,389 (3)	C53—C54	1.388 (4)
$C_{21} - C_{26}$	1 398 (3)	С53—Н53	0.95
C^{22} C^{23}	1 393 (3)	C54 - C55	1 375 (4)
С22—Н22	0.95	C54—H54	0.95
C23—C24	1 393 (4)	C_{55}	1 392 (3)
С23—Н23	0.95	C55—H55	0.95
$C_{23} = C_{123}$	1.383(4)	C56_H56	0.95
С24—С25	0.95	01—H1C	0.95
$C_{24} = C_{124}$	1 301 (3)		0.95
025 020	1.591 (5)		0.95
C1—P1—C17	114 73 (11)	C24—C25—H25	120.0
C1 - P1 - C21	105 51 (10)	C26-C25-H25	120.0
C1 - P1 - C31	106.67 (10)	$C_{20} = C_{20} = C_{20}$	120.0(2)
C17 P1 C21	105.67(10)	C25 C26 C21	120.0 (2)
C17 - P1 - C31	115.03 (11)	C21-C26-H26	120.0
C_{21} P1 C_{31}	108 95 (10)	$C_{21} = C_{20} = 1120$ $C_{36} = C_{31} = C_{32}$	119.8 (2)
P1C17C18	125 76 (18)	C36-C31-P1	119.0(2) 119.43(17)
C17 - C18 - O18	125.70(10) 124.6(2)	C_{32} C_{31} P1	120.81(17)
$C_{2}P_{2}O_{2}$	127.0(2)	$C_{32} = C_{31} = 11$	120.01(17) 120.1(2)
$C_2 = P_2 = C_4 I$	117.01(13) 104 48 (11)	C_{33} C_{32} H_{32}	120.1 (2)
$C_2 = P_2 = C_{11}$	104.43(11) 105.72(11)	C31_C32_H32	120.0
02 P2 C41	105.72(11) 112.58(13)	$C_{32} C_{33} C_{34}$	120.0 110.0(2)
02 - 12 - 041 02 P2 C51	112.36(13) 111.04(13)	$C_{32} = C_{33} = C_{34}$	119.9 (2)
C_{41} P2 C51	111.94(13) 103.22(10)	C_{34} C_{33} H_{33}	120.1
$C_{11} = C_{12} = C_{31}$	105.22(10) 117.7(2)	$C_{34} = C_{35} = 1155$	120.1 120.2(2)
C11-C18-C17	117.7(2) 117.6(2)	$C_{35} - C_{34} - H_{34}$	110.2 (2)
C1 - C10 - C17	117.0(2) 113.41(16)	$C_{33} C_{34} H_{34}$	119.9
$C_2 = C_1 = H_1 \Lambda$	108.0	C_{34} C_{35} C_{36}	119.9
$C_2 = C_1 = H_1 A$	108.9	$C_{34} = C_{35} = C_{30}$	120.2 (2)
$\Gamma = C I = \Pi I R$	108.9	$C_{34} - C_{35} - H_{35}$	119.9
$C_2 - C_1 - H_1 D$	108.9	$C_{30} - C_{35} - 1155$	119.9
$\Pi = C \Pi = \Pi \Pi D$	108.9	$C_{31} = C_{30} = C_{33}$	119.9 (2)
$\Pi A = C I = \Pi I D$	107.7	$C_{31} - C_{30} - H_{30}$	120.0
$C_1 = C_2 = I_2$	111.75 (15)	$C_{35} - C_{30} - 1150$	120.0 110 1 (2)
$C_1 = C_2 = \Pi_2 A$ D2 C2 $\Pi_2 A$	107.3	$C_{40} - C_{41} - C_{42}$	117.1(2) 122.10(10)
$\Gamma 2 - C 2 - \Pi 2 A$	107.3	C40 - C41 - F2 C42 - C41 - F2	123.10 (18)
$U_1 - U_2 - \Pi_2 D$ D2 C2 U2D	109.3	$C_{42} - C_{41} - r_2$	117.09(18)
$\Gamma \angle - \Box \angle - \Pi \angle B$	109.3	$C_{41} = C_{42} = C_{43}$	120.3 (2)
IIZA-UZ-IIZD	107.9	U41-U42-H42	119.9

C18—C17—H17	117.1	C43—C42—H42	119.9
P1—C17—H17	117.1	C44—C43—C42	119.8 (2)
C16—C11—C12	118.4 (2)	C44—C43—H43	120.1
C16—C11—C18	119.0 (2)	C42—C43—H43	120.1
C12—C11—C18	122.5 (2)	C43—C44—C45	120.4 (2)
C13—C12—C11	120.9 (2)	C43—C44—H44	119.8
C13—C12—H12	119.6	C45—C44—H44	119.8
C11—C12—H12	119.6	C44—C45—C46	119.8 (2)
C14—C13—C12	120.0 (2)	C44—C45—H45	120.1
С14—С13—Н13	120.0	C46—C45—H45	120.1
C12—C13—H13	120.0	C45—C46—C41	120.6 (2)
C13—C14—C15	119.9 (2)	C45—C46—H46	119.7
C13—C14—H14	120.1	C41—C46—H46	119.7
C15—C14—H14	120.1	C52—C51—C56	119.5 (2)
C14-C15-C16	120.3 (2)	C52—C51—P2	118.25 (18)
C14-C15-H15	119.9	$C_{56} = C_{51} = P_{2}$	122.20(18)
C16—C15—H15	119.9	$C_{51} - C_{52} - C_{53}$	122.20(10) 120.9(2)
C_{15} C_{16} C_{11}	120.6 (2)	$C_{51} = C_{52} = H_{52}$	119.6
$C_{15} - C_{16} - H_{16}$	119.7	C_{53} C_{52} H_{52}	119.6
$C_{11} - C_{16} - H_{16}$	119.7	$C_{54} - C_{53} - C_{52}$	119.0 119.4(2)
C^{22} C^{21} C^{26}	119.7	C54—C53—H53	120.3
$C_{22} = C_{21} = C_{20}$	119.7(2) 122 47 (17)	C52-C53-H53	120.3
$C_{22} = C_{21} = P_1$	122.47(17) 117.69(17)	$C_{52} = C_{53} = H_{53}$	120.3 120.1(2)
$C_{20} = C_{21} = C_{23}$	1200(2)	$C_{55} = C_{54} = U_{55}$	110.0
$C_{21} = C_{22} = C_{23}$	120.0 (2)	C53-C54-H54	119.9
C_{23} C_{22} H_{22}	120.0	$C_{54} = C_{54} = C_{56}$	119.9 120.8(2)
$C_{23} = C_{23} = C_{24}$	1199(2)	C54—C55—H55	119.6
$C_{22} = C_{23} = C_{24}$	120.0	C56-C55-H55	119.6
$C_{22} = C_{23} = H_{23}$	120.0	$C_{55} = C_{56} = C_{51}$	119.0 119.3(2)
$C_{24} = C_{23} = C_{23}$	120.0 120.2(2)	C55-C56-H56	120.3
$C_{25} = C_{24} = C_{25}$	110.0	C51-C56-H56	120.3
$C_{23} = C_{24} = H_{24}$	110.0	H1C-01-H1D	97.0
$C_{23} = C_{24} = 1124$	119.9 120.1(2)	ine of ind	71.0
024 025 020	120.1 (2)		
P1P2	-169.97(12)	C1 - P1 - C31 - C36	137 97 (18)
C17 - P1 - C1 - C2	77 30 (18)	C_{17} P_{1} C_{31} C_{32}	-17064(17)
$C_{21} = P_{1} = C_{1} = C_{2}$	-167.09(16)	C_{21} P1 C_{31} C_{32}	71 2 (2)
C_{31} P1 C_{1} C_{2}	-51 31 (18)	C1 - P1 - C31 - C32	-422(2)
$02 - P^2 - C^2 - C^1$	-594(2)	$C_{36} = C_{31} = C_{32} = C_{33}$	0.0(3)
$C_{41} = P_{2} = C_{2} = C_{1}$	174 93 (16)	$P_1 = C_3 $	-17979(18)
$C_{1} = P_{2} = C_{2} = C_{1}$	66 39 (18)	$C_{31} = C_{32} = C_{33} = C_{34}$	0.0(3)
$C_{31} = P_{1} = C_{17} = C_{18}$	65.2(2)	C_{32} C_{33} C_{34} C_{35}	0.0(3)
C_{21} P1 C_{17} C_{18}	-1747(2)	$C_{32} = C_{33} = C_{34} = C_{35} = C_{36}$	-0.6(4)
C1 - P1 - C17 - C18	-501(2)	$C_{32} = C_{31} = C_{36} = C_{35}$	-0.4(3)
P1 - C17 - C18 - O18	-26(4)	$P1_{21}_{21}_{23}_{23}_{23}_{23}_{23}_{23}_{23}_{23$	179 47 (19)
P1 C17 C18 C11	2.0 (+) 175 31 (17)	C_{34} C_{35} C_{36} C_{21}	1/2.77(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/A(3)	$O_2 P_2 C_{41} C_{46}$	-163.0(2)
$C_{10} - C_{10} - C_{11} - C_{10}$	-1427(2)	$C_2 = C_4 = C_{40}$	103.9(2)
U1/U10U11U10	-143.7(2)	$U_2 - r_2 - U_{41} - U_{40}$	-55.1 (2)

O18—C18—C11—C12	-147.2 (2)	C51—P2—C41—C46	75.2 (2)
C17—C18—C11—C12	34.7 (3)	O2—P2—C41—C42	19.7 (2)
C16—C11—C12—C13	0.3 (3)	C2—P2—C41—C42	148.40 (18)
C18—C11—C12—C13	-178.2 (2)	C51—P2—C41—C42	-101.23 (19)
C11—C12—C13—C14	0.5 (4)	C46—C41—C42—C43	-0.9 (3)
C12—C13—C14—C15	-0.4 (4)	P2-C41-C42-C43	175.69 (18)
C13—C14—C15—C16	-0.4 (4)	C41—C42—C43—C44	0.6 (4)
C14—C15—C16—C11	1.2 (4)	C42—C43—C44—C45	0.0 (4)
C12—C11—C16—C15	-1.1 (4)	C43—C44—C45—C46	-0.3 (4)
C18—C11—C16—C15	177.4 (2)	C44—C45—C46—C41	-0.1 (4)
C17—P1—C21—C22	-114.7 (2)	C42—C41—C46—C45	0.7 (3)
C31—P1—C21—C22	9.2 (2)	P2-C41-C46-C45	-175.73 (18)
C1—P1—C21—C22	123.45 (19)	O2—P2—C51—C52	-13.5 (2)
C17—P1—C21—C26	61.9 (2)	C2—P2—C51—C52	-142.77 (18)
C31—P1—C21—C26	-174.12 (17)	C41—P2—C51—C52	107.8 (2)
C1—P1—C21—C26	-59.9 (2)	O2—P2—C51—C56	168.8 (2)
C26—C21—C22—C23	-1.1 (3)	C2—P2—C51—C56	39.6 (2)
P1—C21—C22—C23	175.45 (17)	C41—P2—C51—C56	-69.8 (2)
C21—C22—C23—C24	1.4 (3)	C56—C51—C52—C53	0.1 (4)
C22—C23—C24—C25	-0.7 (4)	P2-C51-C52-C53	-177.56 (19)
C23—C24—C25—C26	-0.4 (4)	C51—C52—C53—C54	1.0 (4)
C24—C25—C26—C21	0.7 (4)	C52—C53—C54—C55	-0.8 (4)
C22—C21—C26—C25	0.0 (3)	C53—C54—C55—C56	-0.6 (4)
P1-C21-C26-C25	-176.69 (17)	C54—C55—C56—C51	1.7 (4)
C17—P1—C31—C36	9.5 (2)	C52—C51—C56—C55	-1.5 (3)
C21—P1—C31—C36	-108.58 (18)	P2-C51-C56-C55	176.08 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1C…O18	0.95	1.83	2.783 (3)	175
C1—H1A····O2 ⁱ	0.99	2.18	3.147 (4)	166
C2—H2 <i>B</i> ···O18	0.99	2.25	3.145 (3)	150
C32—H32···O2 ⁱ	0.95	2.36	3.298 (4)	168
C12—H12…Cg3 ⁱⁱ	0.95	2.87	3.777 (3)	159
C26—H26…Cg4 ⁱⁱⁱ	0.95	2.97	3.757 (3)	141
C45—H45··· $Cg1^{iv}$	0.95	2.77	3.589 (3)	145

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*.