Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

3-*tert*-Butyl-7,7-dimethyl-1-phenyl-5,6,7,8-tetrahydroimidazo[3,4-*b*]quinolin-5-one and 2,8,8-trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo-[2,3-*a*]quinolin-6-one: chains generated by C—H···N hydrogen bonds

John N. Low,^a Justo Cobo,^b Jaime Mera,^c Jairo Quiroga^c and Christopher Glidewell^d*

Correspondence e-mail: cg@st-andrews.ac.uk

Received 5 May 2004 Accepted 10 May 2004 Online 22 June 2004

In both 3-*tert*-butyl-7,7-dimethyl-1-phenyl-5,6,7,8-tetrahydroimidazo[3,4-*b*]quinolin-5-one, $C_{22}H_{25}N_3O$, (I), and 2,8,8-trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo[2,3-*a*]quinolin-6one, $C_{19}H_{19}N_3O$, (II), the heterobicyclic portions of the molecules are planar, with naphthalene-type delocalization in (II), while the carbocyclic ring in each compound adopts an envelope conformation. In both (I) and (II), the molecules are linked weakly into chains by a single $C-H \cdots N$ hydrogen bond.

Comment

As part of a program for the synthesis of fused pyrazole derivatives (Quiroga et al., 1998, 2001; Cannon et al., 2001a,b; Low et al., 2001), we have been investigating three-component cyclocondensation reactions induced by microwave irradiation. We report here the molecular and supramolecular structures of two compounds, (I) and (II), obtained from condensation reactions between a substituted aminopyrazole, 5,5-dimethylcyclohexane-1,3-dione (dimedone) and a simple carbonyl compound or its equivalent. Thus, from the reaction involving 5-amino-3-tert-butyl-1-phenylpyrazole and formaldehyde, we have now obtained 3-tert-butyl-7,7-dimethyl-1phenyl-5,6,7,8-tetrahydroimidazo[3,4-b]quinolin-5-one, (I), in which a single formaldehyde unit has been utilized in the construction of the fused ring system. When two such units are incorporated, spiro compound (III) results (Low et al., 2004). When 5-amino-3-methyl-1H-pyrazole is used in combination

with orthobenzoic acid trimethyl ester, the product is (II), analogous to the compound, (IV), formed from this pyrazole in the presence of formaldehyde (Low *et al.*, 2004).

In both (I) (Fig. 1) and (II) (Fig. 2), the heterobicyclic portions of the fused ring systems are planar, but the carbocyclic rings are puckered. The ring-puckering parameters (Cremer & Pople, 1975) for (I) $[\theta = 127.4 (3)^{\circ} \text{ and } \varphi = 353.8 (3)^{\circ}$ for the atom sequence C4a-C5-C6-C7-C8-C8a] and (II) $[\theta = 65.2 (2)^{\circ} \text{ and } \varphi = 174.3 (3)^{\circ}$ for the atom

Figure 1

The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ^cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360, Colombia, and ^dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

sequence C5a-C6-C7-C8-C9-C9a] indicate envelope conformations for both these rings (Evans & Boeyens, 1989), consistent with the enforced coplanarity of atoms C5, C4a, C8a and C8 in (I), and of atoms C6, C5a, C9a and C9 in (II).

In (I), the C3a-C4 and C4-C4a bonds are of very similar length (Table 1), as are the C8a-N9 and N9-C9a bonds, consistent with aromatic delocalization within the central ring of (I). The formally single C3a-N4 and C9a-N9b bonds in (II) (Table 3) are only slightly longer than the formal double bond N1=C2, although each is significantly longer than the cross-ring C3a-N9b bond, also formally a single bond. The lengths of the C2-C3 and C3=C3a bonds, formally single and double, respectively, differ by less than 0.03 Å. These observations suggest that this heterocyclic system exhibits a degree of naphthalene-type delocalization, involving a peripheral system of ten π electrons but with only modest participation by the cross-ring bond (Glidewell & Lloyd, 1984).

In each of (I) and (II), the molecules are linked weakly into chains by means of a single $C-H\cdots N$ hydrogen bond (Tables 2 and 4); the structure of neither compound exhibits any $C-H\cdots \pi$ (arene) hydrogen bonds or aromatic $\pi-\pi$ stacking interactions. In (I), atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor, *via* atom H6*B*, to pyridine ring atom N9 in the molecule at (1 + x, y, z), so generating by translation a *C*(6) chain (Bernstein *et al.*, 1995) running parallel to the [100] direction (Fig. 3). In (II), aryl atom C54 in the molecule at (x, y, z) acts as a hydrogen-bond donor to pyrazole-ring atom N1 in the molecule at $(1 + x, \frac{3}{2} - y, -\frac{1}{2} + z)$,

Figure 3

Part of the crystal structure of (I), showing the formation of a C(6) chain along [100]. For clarity, H atoms bonded to C atoms not participating in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (-1 + x, y, z), respectively.

Figure 4

Part of the crystal structure of (II), showing the formation of a C(10) chain along [201]. For clarity, H atoms bonded to C atoms not participating in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions $(1 + x, \frac{3}{2} - y, -\frac{1}{2} + z)$ and $(-1 + x, \frac{3}{2} - y, \frac{1}{2} + z)$, respectively.

so producing a zigzag C(10) chain running parallel to the [201] direction and generated by the *c*-glide plane at $y = \frac{3}{4}$ (Fig. 4).

The constitutions of (II) and (IV) differ only by the presence of the phenyl substituent in (II); however, this difference profoundly influences the differences in the supramolecular structures of these compounds. In (IV), the C-H bond that is replaced by the C-phenyl bond in (II) acts as the sole hydrogen-bond donor, forming, by means of paired C-H···N hydrogen bonds, a centrosymmetric $R_2^2(6)$ dimer. Dimers of this type are then linked into chains by a single π - π stacking interaction (Low *et al.*, 2004).

Experimental

For the synthesis of (I), a mixture of 5-amino-3-tert-butyl-1-phenylpyrazole (1 mmol), dimedone (1 mmol) and formaldehyde (3 mmol) was placed in Pyrex-glass open vessels and irradiated in a domestic microwave oven for 4 min (at 600 W). The reaction mixture was extracted with ethanol and the product, (I), was isolated by column chromatography on silica gel, using CHCl3 as eluant, and crystallized from ethanol, yielding crystals suitable for single-crystal X-ray diffraction (m.p. 413 K; yield 41%). Analysis found: C 75.5, H 7.3, N 12.1%; C₂₂H₂₅N₃O requires: C 76.0, H 7.3, N 12.1%. For the synthesis of (II), an equimolar mixture of 5-amino-3-methyl-1H-pyrazole, dimedone and orthobenzoic acid trimethyl ester (1 mmol of each) was placed in Pyrex-glass open vessels and irradiated in a domestic microwave oven for 2 min (at 600 W). The reaction mixture was extracted with ethanol and the product, (II), was crystallized from ethanol, producing crystals suitable for single-crystal X-ray diffraction (m.p. 533 K; yield 55%). MS EI (70 eV) m/z (%): 306 (23), 305 $(100, M^{+}), 304 (60), 291 (13), 290 (54), 250 (14), 249 (73), 248 (14), 220$ (13), 153 (11), 127 (16), 126 (10), 77 (29), 66 (10), 55 (10), 53 (16), 52 (13), 351 (17), 42 (20), 41 (34), 39 (35).

Z = 2

 $D_x = 1.223 \text{ Mg m}^{-3}$

Cell parameters from 4348

Mo $K\alpha$ radiation

reflections

 $\mu = 0.08~\mathrm{mm}^{-1}$

Needle, colourless

 $0.18 \times 0.08 \times 0.08 \text{ mm}$

T = 120 (2) K

 $\theta = 3.3 - 27.6^{\circ}$

Compound (I)

Crystal data

 $\begin{array}{l} C_{22}H_{25}N_{3}O\\ M_r = 347.45\\ Triclinic, P\overline{1}\\ a = 6.1514 \ (2) \ \mathring{A}\\ b = 10.3171 \ (5) \ \mathring{A}\\ c = 15.7351 \ (8) \ \mathring{A}\\ \alpha = 71.722 \ (2)^{\circ}\\ \beta = 85.780 \ (3)^{\circ}\\ \gamma = 85.306 \ (3)^{\circ}\\ V = 943.84 \ (7) \ \mathring{A}^{3} \end{array}$

Data collection

Nonius KappaCCD diffractometer
 φ scans, and ω scans with κ offsets2666 reflections with $I > 2\sigma(I)$ Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997) $\theta_{max} = 27.6^{\circ}$
 $h = -7 \rightarrow 8$
 $T_{min} = 0.964, T_{max} = 0.994$
 $k = -13 \rightarrow 13$ 21 211 measured reflections
4348 independent reflections $l = -20 \rightarrow 20$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2]$
+ 0.3463P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Selected interatomic distances (Å) for (I).

N1-N2	1.384 (2)	C7-C8	1.529 (3)
N2-C3	1.320 (3)	C8-C8a	1.500 (3)
C3-C3a	1.438 (3)	C8a-N9	1.338 (3)
C3a-C4	1.386 (3)	N9-C9a	1.340 (3)
C4-C4a	1.386 (3)	C9a-N1	1.368 (3)
C4a-C5	1.482 (3)	C3a-C9a	1.408 (3)
C5-C6	1.500 (3)	C4a-C8a	1.416 (3)
C6-C7	1.532 (3)		

Table 2

Hydrogen-bonding geometry	(Å,	°)	for	(I).
---------------------------	-----	----	-----	------

$D - H \cdots a$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C6-H6B\cdots N9^{i}$	0.99	2.56	3.512 (3)	161

Symmetry code: (i) 1 + x, y, z.

Compound (II)

Crystal data

C ₁₉ H ₁₉ N ₃ O	$D_x = 1.337 \text{ Mg m}^{-3}$
$M_r = 305.37$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 3477
a = 7.7988 (3) Å	reflections
b = 17.0950 (6) Å	$\theta = 3.0-27.6^{\circ}$
c = 12.0231 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 108.8000 \ (18)^{\circ}$	T = 120 (2) K
$V = 1517.41 (9) \text{ Å}^3$	Plate, colourless
Z = 4	$0.40 \times 0.20 \times 0.08 \text{ mm}$

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) $T_{\min} = 0.974$, $T_{\max} = 0.993$ 21 719 measured reflections 3477 independent reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.051$
$wR(F^2) = 0.134$
S = 1.03
3477 reflections
212 parameters
H-atom parameters constrained

2503 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.060$ $\theta_{\text{max}} = 27.6^{\circ}$ $h = -9 \rightarrow 10$ $k = -21 \rightarrow 22$ $l = -15 \rightarrow 15$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0711P)^{2} + 0.3887P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97
Extinction coefficient: 0.027 (3)

Table 3 Selected interatomic distances (Å) for (II).

N1-C2	1.340 (2)	C8-C9	1.535 (2)
C2-C3	1.407 (2)	C9-C9a	1.493 (2)
C3-C3a	1.383 (2)	C9a-N9b	1.355 (2)
C3a-N4	1.358 (2)	N9b-N1	1.3625 (18)
N4-C5	1.325 (2)	C3a-N9b	1.393 (2)
C5-C5a	1.446 (2)	C5a-C9a	1.379 (2)
C5a-C6	1.495 (2)	C7-C8	1.523 (2)
C6-C7	1.513 (2)		
	. ,		

lable 4			
Hydrogen-bonding geometry	(Å,	°)	for

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C54-H54\cdots N1^{ii}$	0.95	2.58	3.492 (2)	162

(II).

Symmetry code: (ii) $1 + x, \frac{3}{2} - y, z - \frac{1}{2}$.

Crystals of (I) are triclinic; space group $P\overline{1}$ was selected and confirmed by the successful structure analysis. For (II), space group $P2_1/c$ was uniquely determined from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C-H distances of 0.95 (aromatic), 0.98 (CH₃) or 0.99 Å (CH₂), and with U_{iso} (H) values of $1.2U_{eq}$ (C) $[1.5U_{eq}$ (C) for the methyl groups].

For both compounds, data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXS*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97 and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) for financial support. JM and JQ thank COLCIEN-CIAS and the Universidad de Valle for financial support. Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1220). Services for accessing these data are described at the back of the journal.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001a). Acta Cryst. E57, o151–o153.
- Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001b). Acta Cryst. E57, 0157–0159.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

- Glidewell, C. & Lloyd, D. M. G. (1984). Tetrahedron, 40, 4455-4472.
- Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o265–o269.
- Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Quiroga, J. & Mejía, D. (2001). Acta Cryst. C57, 1356–1358.
- McArdle, P. (2003). OSCAIL for Windows. Program for Structure Solution. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Quiroga, J., Hormaza, A., Insuasty, B., Saitz, C. & Jullian, C. (1998). J. Heterocycl. Chem. 35, 575–578.
- Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). *Tetrahedron*, 57, 6947–6953.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2004). C60, o479-o482 [doi:10.1107/S0108270104011291]

3-*tert*-Butyl-7,7-dimethyl-1-phenyl-5,6,7,8-tetrahydroimidazo[3,4-*b*]quinolin-5one and 2,8,8-trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo[2,3-*a*]quinolin-6one: chains generated by C—H…N hydrogen bonds

John N. Low, Justo Cobo, Jaime Mera, Jairo Quiroga and Christopher Glidewell

Computing details

For both compounds, data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO*–SMN (Otwinowski & Minor, 1997); data reduction: *DENZO*–SMN; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXS97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

(I) 3-tert-Butyl-7,7-dimethyl-1-phenyl-5,6,7,8- tetrahydroimidazo[3,4-b]quinolin-5-one

Crystal data
$C_{22}H_{25}N_{3}O$
$M_r = 347.45$
Triclinic, P1
Hall symbol: -P 1
a = 6.1514 (2) Å
<i>b</i> = 10.3171 (5) Å
c = 15.7351 (8) Å
$\alpha = 71.722 \ (2)^{\circ}$
$\beta = 85.780 \ (3)^{\circ}$
$\gamma = 85.306 (3)^{\circ}$
V = 943.84 (7) Å ³

Data collection

Nonius KappaCCD diffractometer Radiation source: rotating anode Graphite monochromator φ scans, and ω scans with κ offsets Absorption correction: multi-scan (*SORTAV*; Blessing, 1995, 1997) $T_{\min} = 0.964, T_{\max} = 0.994$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.160$ Z = 2 F(000) = 372 $D_x = 1.223 \text{ Mg m}^{-3}$ Melting point: 413 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4348 reflections $\theta = 3.3-27.6^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 120 KNeedle, colourless $0.18 \times 0.08 \times 0.08 \text{ mm}$

21211 measured reflections 4348 independent reflections 2666 reflections with $I > 2\sigma(I)$ $R_{int} = 0.105$ $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -7 \rightarrow 8$ $k = -13 \rightarrow 13$ $l = -20 \rightarrow 20$

S = 1.024348 reflections 240 parameters 0 restraints

Primary atom site location: structure-invariant direct methods	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0633P)^2 + 0.3463P]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} < 0.001$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.4926 (3)	0.63590 (17)	0.29289 (11)	0.0294 (4)
C11	0.3406 (3)	0.7490 (2)	0.28932 (14)	0.0300 (5)
C12	0.3974 (4)	0.8816 (2)	0.24695 (15)	0.0352 (5)
C13	0.2449 (4)	0.9890 (2)	0.24520 (16)	0.0401 (6)
C14	0.0383 (4)	0.9640 (3)	0.28538 (16)	0.0408 (6)
C15	-0.0151 (4)	0.8318 (2)	0.32808 (15)	0.0381 (5)
C16	0.1342 (3)	0.7228 (2)	0.33087 (15)	0.0342 (5)
N2	0.4543 (3)	0.51076 (18)	0.35583 (12)	0.0318 (4)
C3	0.6170 (3)	0.4233 (2)	0.34732 (14)	0.0295 (5)
C31	0.6163 (3)	0.2757 (2)	0.40451 (14)	0.0326 (5)
C32	0.4554 (4)	0.2600 (3)	0.48550 (16)	0.0427 (6)
C33	0.5456 (4)	0.1925 (2)	0.34698 (17)	0.0427 (6)
C34	0.8452 (4)	0.2235 (3)	0.43831 (17)	0.0465 (6)
C4A	1.0614 (3)	0.5607 (2)	0.16742 (13)	0.0269 (5)
C3A	0.7706 (3)	0.4904 (2)	0.27701 (13)	0.0279 (5)
C4	0.9659 (3)	0.4585 (2)	0.23619 (13)	0.0285 (5)
C5	1.2720 (3)	0.5296 (2)	0.12364 (14)	0.0294 (5)
O5	1.3606 (2)	0.41429 (16)	0.14590 (10)	0.0391 (4)
C6	1.3728 (3)	0.6460 (2)	0.05286 (14)	0.0330 (5)
C7	1.2080 (3)	0.7542 (2)	-0.00153 (14)	0.0310 (5)
C71	1.0758 (4)	0.6924 (2)	-0.05632 (15)	0.0381 (5)
C72	1.3302 (4)	0.8716 (2)	-0.06540 (16)	0.0429 (6)
C8	1.0557 (3)	0.8051 (2)	0.06407 (14)	0.0322 (5)
C8A	0.9560 (3)	0.6933 (2)	0.13889 (14)	0.0281 (5)
N9	0.7658 (3)	0.72708 (17)	0.17598 (11)	0.0290 (4)
C9A	0.6834 (3)	0.6263 (2)	0.24410 (14)	0.0281 (5)
H12	0.5392	0.8990	0.2194	0.042*
H13	0.2826	1.0804	0.2162	0.048*
H14	-0.0660	1.0380	0.2834	0.049*
H15	-0.1566	0.8149	0.3561	0.046*
H16	0.0963	0.6316	0.3607	0.041*
H32A	0.4968	0.3163	0.5209	0.064*
H32B	0.4586	0.1639	0.5226	0.064*
H32C	0.3077	0.2897	0.4648	0.064*
H33A	0.3961	0.2229	0.3288	0.064*
H33B	0.5512	0.0953	0.3818	0.064*
H33C	0.6443	0.2062	0.2935	0.064*
H34A	0.9478	0.2264	0.3871	0.070*

H34B	0.8406	0.1292	0.4782	0.070*	
H34C	0.8933	0.2817	0.4712	0.070*	
H4	1.0330	0.3685	0.2549	0.034*	
H6A	1.4670	0.6087	0.0112	0.040*	
H6B	1.4675	0.6910	0.0819	0.040*	
H71A	0.9769	0.7637	-0.0933	0.057*	
H71B	0.9905	0.6197	-0.0157	0.057*	
H71C	1.1755	0.6541	-0.0951	0.057*	
H72A	1.4173	0.9110	-0.0310	0.064*	
H72B	1.2251	0.9420	-0.0992	0.064*	
H72C	1.4269	0.8374	-0.1070	0.064*	
H8A	1.1388	0.8603	0.0902	0.039*	
H8B	0.9369	0.8658	0.0305	0.039*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0281 (9)	0.0301 (10)	0.0288 (10)	0.0010 (7)	0.0018 (7)	-0.0089 (8)
C11	0.0303 (11)	0.0353 (12)	0.0266 (11)	0.0046 (9)	-0.0054 (8)	-0.0133 (10)
C12	0.0328 (12)	0.0357 (13)	0.0364 (13)	0.0024 (9)	-0.0001 (9)	-0.0119 (10)
C13	0.0425 (14)	0.0372 (13)	0.0396 (14)	0.0068 (10)	-0.0008 (10)	-0.0132 (11)
C14	0.0386 (13)	0.0461 (15)	0.0409 (14)	0.0124 (11)	-0.0029 (10)	-0.0215 (12)
C15	0.0295 (12)	0.0505 (15)	0.0378 (13)	0.0041 (10)	0.0005 (9)	-0.0211 (12)
C16	0.0305 (12)	0.0399 (13)	0.0348 (12)	0.0000 (10)	-0.0001 (9)	-0.0159 (10)
N2	0.0304 (10)	0.0340 (10)	0.0299 (10)	-0.0015 (8)	-0.0013 (7)	-0.0084 (8)
C3	0.0280 (11)	0.0344 (12)	0.0278 (11)	-0.0008 (9)	-0.0029 (8)	-0.0121 (9)
C31	0.0303 (11)	0.0343 (12)	0.0293 (12)	-0.0003 (9)	-0.0011 (9)	-0.0047 (9)
C32	0.0394 (13)	0.0441 (14)	0.0367 (14)	-0.0045 (11)	0.0056 (10)	-0.0026 (11)
C33	0.0480 (14)	0.0329 (13)	0.0457 (15)	0.0006 (10)	-0.0054 (11)	-0.0099 (11)
C34	0.0377 (13)	0.0521 (16)	0.0377 (14)	0.0019 (11)	-0.0042 (10)	0.0026 (12)
C4A	0.0262 (10)	0.0310 (11)	0.0259 (11)	-0.0005 (8)	-0.0018 (8)	-0.0126 (9)
C3A	0.0272 (10)	0.0313 (11)	0.0259 (11)	-0.0009(8)	-0.0037 (8)	-0.0096 (9)
C4	0.0292 (11)	0.0292 (11)	0.0276 (11)	0.0032 (9)	-0.0048 (8)	-0.0100 (9)
C5	0.0291 (11)	0.0369 (13)	0.0245 (11)	0.0012 (9)	-0.0035 (8)	-0.0131 (10)
O5	0.0382 (9)	0.0386 (9)	0.0342 (9)	0.0096 (7)	0.0027 (7)	-0.0064 (7)
C6	0.0292 (11)	0.0376 (12)	0.0328 (12)	-0.0021 (9)	0.0021 (9)	-0.0127 (10)
C7	0.0369 (12)	0.0251 (11)	0.0321 (12)	-0.0050 (9)	0.0037 (9)	-0.0109 (9)
C71	0.0507 (14)	0.0336 (12)	0.0295 (12)	-0.0035 (10)	-0.0047 (10)	-0.0085 (10)
C72	0.0518 (15)	0.0335 (13)	0.0423 (14)	-0.0092 (11)	0.0136 (11)	-0.0122 (11)
C8	0.0353 (12)	0.0273 (11)	0.0347 (12)	-0.0023 (9)	0.0026 (9)	-0.0114 (10)
C8A	0.0291 (11)	0.0304 (11)	0.0274 (11)	-0.0033 (9)	-0.0018 (8)	-0.0123 (9)
N9	0.0301 (9)	0.0292 (10)	0.0292 (10)	-0.0009 (7)	-0.0008 (7)	-0.0117 (8)
C9A	0.0267 (11)	0.0334 (11)	0.0267 (11)	-0.0016 (9)	-0.0025 (8)	-0.0127 (9)

Geometric parameters (Å, °)

N1—N2	1.384 (2)	C3—C31	1.506 (3)
N2—C3	1.320 (3)	C31—C32	1.530 (3)

C3 - C3A	1 438 (3)	C31 - C33	1534(3)
$C_3A - C_4$	1 386 (3)	$C_{31} - C_{34}$	1.537(3)
C4-C4A	1 386 (3)	C_{32} H ₃₂ A	0.98
C4A - C5	1.300(3) 1.482(3)	C32_H32R	0.98
C5-C6	1.102(3)	C_{32} H32D	0.98
$C_{5} = C_{0}$	1.500(3) 1.532(3)	C33 H33A	0.98
C_{0}	1.532(3) 1 529(3)	C33 H33B	0.98
C_{1}^{2}	1.529(3) 1 500(3)	C33 H33C	0.98
	1.300(3) 1.338(3)	C34 H34A	0.98
	1.338(3) 1 340(3)	C_{34} H34B	0.98
COA NI	1.340(3) 1.268(2)	C_{34} $H_{24}C$	0.98
$C_{2A} = C_{0A}$	1.308(3)		0.98
$C_{A} = C_{A}$	1.408(3)	$C_4 - \Pi_4$	0.95
C4A - C8A	1.410(3)	C_{3}	1.223 (2)
	1.424 (5)	Со—ноя	0.99
	1.383 (3)	Со—НоВ	0.99
	1.391 (3)	C/=C/2	1.522 (3)
C12—C13	1.386 (3)	C/C/1	1.531 (3)
С12—Н12	0.95	С/1—Н/1А	0.98
C13—C14	1.383 (3)	С71—Н71В	0.98
С13—Н13	0.95	С71—Н71С	0.98
C14—C15	1.373 (3)	С72—Н72А	0.98
C14—H14	0.95	С72—Н72В	0.98
C15—C16	1.384 (3)	С72—Н72С	0.98
C15—H15	0.95	C8—H8A	0.99
C16—H16	0.95	C8—H8B	0 99
		C0 110D	0.77
			0.77
C9A—N1—N2	110.12 (16)	C4—C4A—C8A	119.88 (18)
C9A—N1—N2 C9A—N1—C11	110.12 (16) 131.16 (18)	C4—C4A—C8A C4—C4A—C5	119.88 (18) 119.54 (18)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11	110.12 (16) 131.16 (18) 118.72 (16)	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5	119.88 (18) 119.54 (18) 120.58 (18)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2)	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5 C4—C3A—C9A	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19)	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5 C4—C3A—C9A C4—C3A—C3	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2)	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5 C4—C3A—C9A C4—C3A—C3 C9A—C3A—C3	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2)	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5 C4—C3A—C9A C4—C3A—C3 C9A—C3A—C3 C4A—C4—C3A	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5 C4—C3A—C9A C4—C3A—C3 C9A—C3A—C3 C4A—C4—C3A C4A—C4—C3A	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12 C13—C12—H12	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4	C4C4AC8A C4C4AC5 C8AC4AC5 C4C3AC9A C4C3AC3 C9AC3AC3 C4AC4C3A C4AC4H4 C3AC4H4	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12 C13—C12—H12 C14—C13—C12	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.6 (2)	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5 C4—C3A—C9A C4—C3A—C3 C9A—C3A—C3 C4A—C4—C3A C4A—C4—C3A C4A—C4—H4 C3A—C4—H4 O5—C5—C4A	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12 C13—C12—H12 C14—C13—C12 C14—C13—H13	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.6 (2) 119.7	C4C4AC8A C4C4AC5 C8AC4AC5 C4C3AC3 C4C3AC3 C9AC3AC3 C4AC4C3A C4AC4H4 C3AC4H4 C3AC4H4 O5C5C6	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12 C13—C12—H12 C14—C13—C12 C14—C13—H13 C12—C13—H13	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.6 (2) 119.7 119.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12 C13—C12—H12 C14—C13—H13 C12—C13—H13 C12—C13—H13 C15—C14—C13	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.4 120.6 (2) 119.7 119.7 119.6 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17)
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12 C13—C12—H12 C14—C13—C12 C14—C13—H13 C12—C13—H13 C15—C14—C13 C15—C14—H14	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.4 120.6 (2) 119.7 119.7 119.6 (2) 120.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12 C13—C12—H12 C14—C13—H13 C12—C13—H13 C15—C14—C13 C15—C14—H14	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.6 (2) 119.7 119.7 119.6 (2) 120.2	$\begin{array}{c} C4 - C4A - C8A \\ C4 - C4A - C5 \\ C8A - C4A - C5 \\ C4 - C3A - C9A \\ C4 - C3A - C3 \\ C9A - C3A - C3 \\ C9A - C3A - C3 \\ C4A - C4 - C4 - C3A \\ C4A - C4 - H4 \\ C3A - C4 - H4 \\ O5 - C5 - C4A \\ O5 - C5 - C6 \\ C4A - C5 - C6 \\ C5 - C6 - C7 \\ C5 - C6 - H6A \\ C7 - C6 - H6A \\ \end{array}$	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6 108.6
C9A—N1—N2 C9A—N1—C11 N2—N1—C11 C12—C11—C16 C12—C11—N1 C16—C11—N1 C11—C12—C13 C11—C12—H12 C13—C12—H12 C14—C13—C12 C14—C13—H13 C12—C13—H13 C15—C14—C13 C15—C14—H14 C13—C14—H14 C14—C15—C16	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.6 (2) 119.7 119.7 119.6 (2) 120.2 120.2 120.2 121.0 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6 108.6 108.6
$\begin{array}{ccccccc} C9A & - N1 & - N2 \\ C9A & - N1 & - C11 \\ N2 & - N1 & - C11 \\ C12 & - C11 & - C16 \\ C12 & - C11 & - N1 \\ C16 & - C11 & - N1 \\ C16 & - C11 & - N1 \\ C11 & - C12 & - C13 \\ C11 & - C12 & - H12 \\ C13 & - C12 & - H12 \\ C14 & - C13 & - H13 \\ C15 & - C14 & - H13 \\ C15 & - C14 & - H14 \\ C13 & - C14 & - H14 \\ C13 & - C15 & - C16 \\ C14 & - C15 & - H15 \end{array}$	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.4 120.6 (2) 119.7 119.7 119.7 119.6 (2) 120.2 120.2 120.2 121.0 (2) 119.5	$\begin{array}{c} C4 - C4A - C8A \\ C4 - C4A - C5 \\ C8A - C4A - C5 \\ C4 - C3A - C9A \\ C4 - C3A - C3 \\ C9A - C3A - C3 \\ C9A - C3A - C3 \\ C4A - C4 - C3A \\ C4A - C4 - H4 \\ C3A - C4 - H4 \\ O5 - C5 - C4A \\ O5 - C5 - C6 \\ C4A - C5 - C6 \\ C5 - C6 - C7 \\ C5 - C6 - H6A \\ C7 - C6 - H6B \\ C7 - C6 - H6B \\ C7 - C6 - H6B \end{array}$	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6 108.6 108.6 108.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.4 120.6 (2) 119.7 119.7 119.7 119.6 (2) 120.2 120.2 120.2 121.0 (2) 119.5	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5 C4—C3A—C9A C4—C3A—C3 C9A—C3A—C3 C4A—C4—C3A C4A—C4—C4 C4A—C4—H4 C3A—C4—H4 C5—C5—C4A O5—C5—C6 C4A—C5—C6 C5—C6—C7 C5—C6—H6A C7—C6—H6B C7—C6—H6B H6A—C6—H6B	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6 108.6 108.6 108.6 107.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.4 120.6 (2) 119.7 119.7 119.6 (2) 120.2 120.2 120.2 121.0 (2) 119.5 119.5 118.9 (2)	C4—C4A—C8A C4—C4A—C5 C8A—C4A—C5 C4—C3A—C9A C4—C3A—C3 C9A—C3A—C3 C4A—C4—C4—C3A C4A—C4—H4 C3A—C4—H4 C3A—C4—H4 O5—C5—C4A O5—C5—C6 C4A—C5—C6 C4A—C5—C6 C5—C6—H6A C7—C6—H6B H6A—C6—H6B C72—C7—C8	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6 108.6 108.6 108.6 107.6 110.44 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.6 (2) 119.7 119.7 119.7 119.6 (2) 120.2 120.2 120.2 120.2 121.0 (2) 119.5 118.9 (2) 120.5	$\begin{array}{c} C4 - C4A - C8A \\ C4 - C4A - C5 \\ C8A - C4A - C5 \\ C4 - C3A - C9A \\ C4 - C3A - C3 \\ C9A - C3A - C3 \\ C9A - C3A - C3 \\ C4A - C4 - C3A \\ C4A - C4 - H4 \\ C3A - C4 - H4 \\ O5 - C5 - C4A \\ O5 - C5 - C6 \\ C4A - C5 - C6 \\ C5 - C6 - C7 \\ C5 - C6 - H6A \\ C7 - C6 - H6B \\ C7 - C6 - H6B \\ H6A - C6 - H6B \\ C72 - C7 - C8 \\ C72 - C7 - C71 \\ \end{array}$	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6 108.6 108.6 108.6 107.6 110.44 (17) 108.81 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.6 (2) 119.7 119.7 119.7 119.6 (2) 120.2 120.2 120.2 120.2 121.0 (2) 119.5 118.9 (2) 120.5 120.5	C4C4AC8A C4C4AC5 C8AC4AC5 C4C3AC3 C9AC3AC3 C9AC3AC3 C4AC4C3A C4AC4C3A C4AC4C4C3A C4AC4C4C4 C3AC4C4C4 C3AC4C4 C5C5C6 C4AC5C6 C5C6C7 C5C6	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6 108.6 108.6 108.6 108.6 107.6 110.44 (17) 108.81 (18) 109.99 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.12 (16) 131.16 (18) 118.72 (16) 120.7 (2) 120.93 (19) 118.3 (2) 119.2 (2) 120.4 120.4 120.4 120.6 (2) 119.7 119.7 119.6 (2) 120.2 120.2 120.2 121.0 (2) 119.5 118.9 (2) 120.5 120.5 107.77 (17)	C4C4AC8A C4C4AC5 C8AC4AC5 C4C3AC3 C9AC3AC3 C9AC3AC3 C4AC4C3A C4AC4H4 C3AC4H4 C3AC4H4 O5C5C6 C4AC5C6 C5C6C7 C5C6H6A C7C6H6B H6AC6H6B C72C7C8 C72C7C71 C8C7C71 C72C7C6	119.88 (18) 119.54 (18) 120.58 (18) 116.53 (19) 138.5 (2) 104.99 (17) 118.51 (19) 120.7 120.7 121.01 (19) 121.91 (19) 117.06 (18) 114.52 (17) 108.6 108.6 108.6 108.6 108.6 107.6 110.44 (17) 108.81 (18) 109.99 (18) 109.24 (18)

N2—C3—C3A	109.97 (19)	C8—C7—C6	108.03 (18)
N2—C3—C31	120.21 (19)	C71—C7—C6	110.32 (17)
C3A—C3—C31	129.76 (18)	С7—С71—Н71А	109.5
C3—C31—C32	110.35 (18)	С7—С71—Н71В	109.5
C3—C31—C33	107.90 (18)	H71A—C71—H71B	109.5
C32—C31—C33	109.42 (19)	С7—С71—Н71С	109.5
C3—C31—C34	110.33 (18)	H71A—C71—H71C	109.5
C32—C31—C34	108.67 (18)	H71B—C71—H71C	109.5
C33—C31—C34	110.15 (19)	С7—С72—Н72А	109.5
C31—C32—H32A	109.5	С7—С72—Н72В	109.5
C31—C32—H32B	109.5	H72A—C72—H72B	109.5
H32A—C32—H32B	109.5	С7—С72—Н72С	109.5
С31—С32—Н32С	109.5	Н72А—С72—Н72С	109.5
H32A—C32—H32C	109.5	H72B—C72—H72C	109.5
H32B—C32—H32C	109.5	C8A—C8—C7	114.17 (17)
С31—С33—Н33А	109.5	C8A—C8—H8A	108.7
C31—C33—H33B	109.5	С7—С8—Н8А	108.7
H33A—C33—H33B	109.5	C8A—C8—H8B	108.7
С31—С33—Н33С	109.5	С7—С8—Н8В	108.7
Н33А—С33—Н33С	109.5	H8A—C8—H8B	107.6
H33B—C33—H33C	109.5	N9—C8A—C4A	123.13 (19)
C31—C34—H34A	109.5	N9—C8A—C8	116.16 (18)
C31—C34—H34B	109.5	C4A—C8A—C8	120.71 (18)
H34A—C34—H34B	109.5	C8A—N9—C9A	114.87 (18)
C31—C34—H34C	109.5	N9—C9A—N1	125.79 (19)
H34A—C34—H34C	109.5	N9—C9A—C3A	127.03 (18)
H34B—C34—H34C	109.5	N1—C9A—C3A	107.15 (18)
C9A—N1—C11—C12	-17.0 (3)	C4—C4A—C5—O5	1.7 (3)
N2—N1—C11—C12	161.83 (19)	C8A—C4A—C5—O5	-177.62 (19)
C9A—N1—C11—C16	164.1 (2)	C4—C4A—C5—C6	-176.99 (18)
N2—N1—C11—C16	-17.1 (3)	C8A—C4A—C5—C6	3.7 (3)
C16—C11—C12—C13	-0.9 (3)	O5—C5—C6—C7	148.82 (19)
N1—C11—C12—C13	-179.79 (19)	C4A—C5—C6—C7	-32.5 (3)
C11—C12—C13—C14	0.1 (3)	C5—C6—C7—C72	175.44 (18)
C12—C13—C14—C15	0.6 (3)	C5—C6—C7—C8	55.3 (2)
C13—C14—C15—C16	-0.6 (3)	C5—C6—C7—C71	-65.0(2)
C14—C15—C16—C11	-0.2 (3)	C72—C7—C8—C8A	-170.53 (18)
C12—C11—C16—C15	0.9 (3)	C71—C7—C8—C8A	69.4 (2)
N1—C11—C16—C15	179.86 (18)	C6—C7—C8—C8A	-51.1 (2)
C9A—N1—N2—C3	0.0 (2)	C4—C4A—C8A—N9	0.7 (3)
C11—N1—N2—C3	-179.07 (17)	C5—C4A—C8A—N9	-179.98 (18)
N1—N2—C3—C3A	0.2 (2)	C4—C4A—C8A—C8	-179.51 (18)
N1—N2—C3—C31	-177.34 (17)	C5—C4A—C8A—C8	-0.2 (3)
N2—C3—C31—C32	-17.7 (3)	C7—C8—C8A—N9	-154.76 (18)
C3A—C3—C31—C32	165.3 (2)	C7—C8—C8A—C4A	25.5 (3)
N2—C3—C31—C33	101.8 (2)	C4A—C8A—N9—C9A	1.4 (3)
C3A—C3—C31—C33	-75.2 (3)	C8—C8A—N9—C9A	-178.38 (17)

N2-C3-C31-C34	-137.9 (2)	C8A—N9—C9A—N1	179.57 (18)
C3A—C3—C31—C34	45.2 (3)	C8A—N9—C9A—C3A	-2.8 (3)
N2—C3—C3A—C4	-179.8 (2)	N2—N1—C9A—N9	177.88 (18)
C31—C3—C3A—C4	-2.6 (4)	C11—N1—C9A—N9	-3.2 (3)
N2—C3—C3A—C9A	-0.3 (2)	N2—N1—C9A—C3A	-0.1 (2)
C31—C3—C3A—C9A	176.94 (19)	C11—N1—C9A—C3A	178.75 (19)
C8A—C4A—C4—C3A	-1.6 (3)	C4—C3A—C9A—N9	1.9 (3)
C5—C4A—C4—C3A	179.07 (18)	C3—C3A—C9A—N9	-177.76 (19)
C9A—C3A—C4—C4A	0.4 (3)	C4—C3A—C9A—N1	179.92 (17)
C3—C3A—C4—C4A	180.0 (2)	C3—C3A—C9A—N1	0.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C6—H6 <i>B</i> ···N9 ⁱ	0.99	2.56	3.512 (3)	161

F(000) = 648 $D_x = 1.337 \text{ Mg m}^{-3}$ Melting point: 533 K

 $\theta = 3.0-27.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 120 KPlate, colourless $0.40 \times 0.20 \times 0.08 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3477 reflections

Symmetry code: (i) x+1, y, z.

(II) 2,8,8-Trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo[2,3-a]quinolin-6-one

Crystal data
$C_{19}H_{19}N_{3}O$
$M_r = 305.37$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 7.7988 (3) Å
<i>b</i> = 17.0950 (6) Å
c = 12.0231 (3) Å
$\beta = 108.8000 \ (18)^{\circ}$
$V = 1517.41 (9) \text{ Å}^3$
Z = 4

Data collection

Nonius KannaCCD	21719 measured reflections
diffractometer	3477 independent reflections
Radiation source: rotating anode	2503 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.060$
φ scans, and ω scans with κ offsets	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 3.0^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(SORTAV; Blessing, 1995, 1997)	$k = -21 \rightarrow 22$
$T_{\min} = 0.974, \ T_{\max} = 0.993$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.051$
$wR(F^2) = 0.134$
S = 1.03
3477 reflections
212 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0711P)^2 + 0.3887P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97, Fc^{*}=kFc[1+0.001xFc^{2 λ 3/sin(2 θ)]^{-1/4}} Extinction coefficient: 0.027 (3)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.20587 (18)	0.84734 (8)	0.64251 (12)	0.0212 (3)
C2	0.2151 (2)	0.92440 (9)	0.62466 (14)	0.0208 (4)
C3	0.3362 (2)	0.94346 (10)	0.56381 (14)	0.0223 (4)
C3A	0.4062 (2)	0.87260 (9)	0.54327 (14)	0.0204 (4)
N4	0.52405 (18)	0.85190 (8)	0.48631 (12)	0.0211 (3)
C5	0.5692 (2)	0.77709 (9)	0.48729 (14)	0.0201 (4)
C5A	0.4993 (2)	0.71800 (9)	0.54723 (13)	0.0195 (4)
C6	0.5815 (2)	0.63875 (9)	0.57918 (14)	0.0217 (4)
O6	0.72358 (17)	0.61996 (7)	0.56513 (11)	0.0311 (3)
C7	0.4900 (2)	0.58442 (9)	0.64206 (15)	0.0244 (4)
C8	0.2888 (2)	0.59886 (9)	0.61866 (14)	0.0223 (4)
C9	0.2671 (2)	0.68471 (9)	0.64919 (15)	0.0223 (4)
C9A	0.3664 (2)	0.73904 (9)	0.59422 (13)	0.0189 (4)
N9B	0.32353 (18)	0.81598 (7)	0.59205 (11)	0.0192 (3)
C21	0.0981 (2)	0.97774 (9)	0.66769 (15)	0.0249 (4)
C51	0.6914 (2)	0.75871 (10)	0.41790 (14)	0.0208 (4)
C52	0.8311 (2)	0.81025 (10)	0.42116 (15)	0.0239 (4)
C53	0.9428 (2)	0.79628 (10)	0.35357 (15)	0.0271 (4)
C54	0.9150 (2)	0.73119 (10)	0.28171 (15)	0.0273 (4)
C55	0.7744 (2)	0.68033 (10)	0.27692 (14)	0.0253 (4)
C56	0.6630 (2)	0.69345 (10)	0.34422 (14)	0.0232 (4)
C81	0.2181 (3)	0.54709 (10)	0.69784 (16)	0.0298 (4)
C82	0.1801 (2)	0.58207 (10)	0.49040 (15)	0.0283 (4)
H21A	0.0151	1.0060	0.6010	0.037*
H21B	0.1745	1.0153	0.7236	0.037*
H91C	0.0282	0.9469	0.7067	0.037*
H3	0.3639	0.9940	0.5416	0.027*
H52	0.8503	0.8553	0.4699	0.029*
H53	1.0384	0.8315	0.3568	0.032*
H54	0.9917	0.7214	0.2359	0.033*
H55	0.7544	0.6359	0.2268	0.030*
H56	0.5672	0.6581	0.3403	0.028*
H7A	0.5530	0.5890	0.7276	0.029*
H7B	0.5060	0.5300	0.6190	0.029*
H81A	0.2314	0.4920	0.6798	0.045*
H81B	0.0899	0.5587	0.6843	0.045*
H81C	0.2875	0.5574	0.7803	0.045*
H82A	0.2232	0.6159	0.4391	0.042*
H82B	0.0515	0.5924	0.4774	0.042*
H82C	0.1961	0.5272	0.4725	0.042*
H9A	0.1369	0.6985	0.6220	0.027*
H9B	0.3132	0.6913	0.7356	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0201 (7)	0.0215 (7)	0.0249 (7)	0.0016 (6)	0.0112 (6)	-0.0020 (6)
C2	0.0203 (8)	0.0194 (8)	0.0223 (8)	0.0005 (6)	0.0061 (7)	-0.0002 (6)
C3	0.0239 (9)	0.0177 (8)	0.0274 (8)	0.0014 (6)	0.0113 (7)	0.0018 (7)
C3A	0.0200 (8)	0.0209 (8)	0.0217 (8)	-0.0016 (7)	0.0086 (7)	0.0019 (6)
N4	0.0213 (7)	0.0198 (7)	0.0244 (7)	0.0018 (6)	0.0106 (6)	0.0012 (6)
C5	0.0189 (8)	0.0214 (8)	0.0197 (8)	-0.0006 (6)	0.0058 (7)	0.0000 (6)
C5A	0.0190 (8)	0.0196 (8)	0.0202 (8)	-0.0013 (6)	0.0069 (7)	-0.0017 (6)
C6	0.0224 (9)	0.0210 (8)	0.0219 (8)	0.0005 (7)	0.0072 (7)	-0.0030(7)
O6	0.0319 (7)	0.0291 (7)	0.0385 (7)	0.0095 (6)	0.0202 (6)	0.0059 (5)
C7	0.0272 (9)	0.0196 (8)	0.0273 (9)	0.0013 (7)	0.0100 (7)	0.0034 (7)
C8	0.0246 (9)	0.0169 (8)	0.0268 (9)	-0.0008 (7)	0.0102 (7)	0.0004 (7)
C9	0.0247 (9)	0.0196 (8)	0.0259 (8)	-0.0028 (7)	0.0126 (7)	-0.0017 (7)
C9A	0.0199 (8)	0.0162 (8)	0.0203 (8)	-0.0011 (6)	0.0059 (7)	-0.0003 (6)
N9B	0.0185 (7)	0.0183 (7)	0.0230 (7)	-0.0004 (5)	0.0101 (6)	-0.0004 (5)
C21	0.0260 (9)	0.0220 (8)	0.0294 (9)	0.0014 (7)	0.0129 (8)	-0.0012 (7)
C51	0.0192 (9)	0.0223 (8)	0.0214 (8)	0.0029 (7)	0.0070 (7)	0.0031 (6)
C52	0.0242 (9)	0.0225 (9)	0.0267 (9)	-0.0001 (7)	0.0104 (7)	-0.0006 (7)
C53	0.0210 (9)	0.0297 (9)	0.0336 (10)	-0.0003 (7)	0.0132 (8)	0.0039 (8)
C54	0.0286 (10)	0.0302 (10)	0.0284 (9)	0.0073 (8)	0.0163 (8)	0.0077 (7)
C55	0.0304 (10)	0.0242 (9)	0.0222 (8)	0.0055 (7)	0.0100 (8)	0.0013 (7)
C56	0.0221 (9)	0.0239 (9)	0.0238 (8)	0.0007 (7)	0.0078 (7)	0.0028 (7)
C81	0.0343 (10)	0.0232 (9)	0.0349 (10)	-0.0028 (7)	0.0155 (8)	0.0039 (7)
C82	0.0299 (10)	0.0245 (9)	0.0292 (9)	-0.0051 (7)	0.0076 (8)	-0.0029 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C2	1.340 (2)	С52—Н52	0.95
C2—C3	1.407 (2)	C53—C54	1.382 (3)
C3—C3A	1.383 (2)	С53—Н53	0.95
C3A—N4	1.358 (2)	C54—C55	1.385 (3)
N4—C5	1.325 (2)	C54—H54	0.95
C5—C5A	1.446 (2)	C55—C56	1.383 (2)
C5A—C6	1.495 (2)	С55—Н55	0.95
С6—С7	1.513 (2)	С56—Н56	0.95
С8—С9	1.535 (2)	C6—O6	1.217 (2)
С9—С9А	1.493 (2)	С7—С8	1.523 (2)
C9A—N9B	1.355 (2)	С7—Н7А	0.99
N9B—N1	1.3625 (18)	С7—Н7В	0.99
C3A—N9B	1.393 (2)	C8—C81	1.527 (2)
С5А—С9А	1.379 (2)	C8—C82	1.528 (2)
C2—C21	1.495 (2)	C81—H81A	0.98
C21—H21A	0.98	C81—H81B	0.98
C21—H21B	0.98	C81—H81C	0.98
С21—Н91С	0.98	C82—H82A	0.98
С3—Н3	0.95	C82—H82B	0.98

C5—C51	1.488 (2)	C82—H82C	0.98
C51—C52	1.392 (2)	С9—Н9А	0.99
C51—C56	1.397 (2)	C9—H9B	0.99
C52—C53	1.390 (2)		
C2—N1—N9B	103.69 (12)	C5—C5A—C6	124.20 (14)
N1—C2—C3	113.00 (14)	O6—C6—C5A	122.53 (15)
N1—C2—C21	118.27 (14)	O6—C6—C7	120.29 (15)
C3—C2—C21	128.72 (15)	C5A—C6—C7	116.90 (14)
C2—C21—H21A	109.5	C6—C7—C8	115.59 (14)
C2—C21—H21B	109.5	C6—C7—H7A	108.4
H21A—C21—H21B	109.5	C8—C7—H7A	108.4
C2—C21—H91C	109.5	C6—C7—H7B	108.4
H21A—C21—H91C	109.5	C8—C7—H7B	108.4
H21B—C21—H91C	109.5	H7A—C7—H7B	107.4
C3A—C3—C2	105.04 (14)	C7—C8—C81	110.40 (14)
СЗА—СЗ—НЗ	127.5	C7—C8—C82	111.05 (14)
С2—С3—Н3	127.5	C81—C8—C82	109.03 (14)
N4—C3A—C3	133.49 (15)	C7—C8—C9	107.28 (13)
N4—C3A—N9B	120.76 (14)	C81—C8—C9	108.38 (13)
C3—C3A—N9B	105.71 (13)	C82—C8—C9	110.66 (14)
C5—N4—C3A	117.91 (13)	C8—C81—H81A	109.5
N4—C5—C5A	122.46 (14)	C8—C81—H81B	109.5
N4—C5—C51	114.53 (14)	H81A—C81—H81B	109.5
C5A—C5—C51	122.97 (14)	C8—C81—H81C	109.5
C52—C51—C56	119.07 (15)	H81A—C81—H81C	109.5
C52—C51—C5	119.17 (15)	H81B—C81—H81C	109.5
C56—C51—C5	121.66 (14)	C8—C82—H82A	109.5
C53—C52—C51	120.47 (16)	C8—C82—H82B	109.5
С53—С52—Н52	119.8	H82A—C82—H82B	109.5
C51—C52—H52	119.8	C8—C82—H82C	109.5
C54—C53—C52	120.12 (16)	H82A—C82—H82C	109.5
С54—С53—Н53	119.9	H82B—C82—H82C	109.5
С52—С53—Н53	119.9	C9A—C9—C8	112.09 (13)
C53—C54—C55	119.61 (15)	С9А—С9—Н9А	109.2
С53—С54—Н54	120.2	С8—С9—Н9А	109.2
С55—С54—Н54	120.2	С9А—С9—Н9В	109.2
C56—C55—C54	120.76 (16)	C8—C9—H9B	109.2
С56—С55—Н55	119.6	Н9А—С9—Н9В	107.9
С54—С55—Н55	119.6	N9B—C9A—C5A	117.30 (14)
C55—C56—C51	119.95 (16)	N9B—C9A—C9	116.90 (13)
С55—С56—Н56	120.0	C5A—C9A—C9	125.79 (14)
C51—C56—H56	120.0	C9A—N9B—N1	124.80 (13)
C9A—C5A—C5	118.42 (14)	C9A—N9B—C3A	122.53 (13)
C9A—C5A—C6	116.60(14)	N1—N9B—C3A	112.55 (13)
N9B—N1—C2—C3	-0.02(18)	C5—C5A—C6—O6	6.0(2)
N9B-N1-C2-C21	178.86 (14)	C9A—C5A—C6—C7	10.2(2)

N1—C2—C3—C3A	-0.11 (19)	C5—C5A—C6—C7	179.90 (15)
C21—C2—C3—C3A	-178.85 (16)	O6—C6—C7—C8	-159.59 (15)
C2—C3—C3A—N4	177.79 (17)	C5A—C6—C7—C8	26.4 (2)
C2—C3—C3A—N9B	0.18 (18)	C6—C7—C8—C81	-173.26 (14)
C3—C3A—N4—C5	177.12 (18)	C6—C7—C8—C82	65.68 (18)
N9B—C3A—N4—C5	-5.6 (2)	C6—C7—C8—C9	-55.35 (18)
C3A—N4—C5—C5A	-0.7 (2)	С7—С8—С9—С9А	49.05 (18)
C3A—N4—C5—C51	177.04 (14)	C81—C8—C9—C9A	168.26 (14)
N4—C5—C51—C52	39.9 (2)	C82—C8—C9—C9A	-72.23 (18)
C5A—C5—C51—C52	-142.40 (16)	C5—C5A—C9A—N9B	-6.9 (2)
N4—C5—C51—C56	-136.28 (16)	C6—C5A—C9A—N9B	163.46 (14)
C5A-C5-C51-C56	41.4 (2)	C5—C5A—C9A—C9	174.13 (15)
C56—C51—C52—C53	-1.1 (2)	C6—C5A—C9A—C9	-15.5 (2)
C5—C51—C52—C53	-177.37 (15)	C8—C9—C9A—N9B	165.06 (14)
C51—C52—C53—C54	0.5 (3)	C8—C9—C9A—C5A	-16.0 (2)
C52—C53—C54—C55	0.4 (3)	C5A—C9A—N9B—N1	-174.75 (14)
C53—C54—C55—C56	-0.7 (3)	C9—C9A—N9B—N1	4.3 (2)
C54—C55—C56—C51	0.1 (3)	C5A—C9A—N9B—C3A	1.0 (2)
C52—C51—C56—C55	0.8 (2)	C9—C9A—N9B—C3A	-179.96 (14)
C5-C51-C56-C55	176.97 (15)	C2—N1—N9B—C9A	176.24 (14)
N4—C5—C5A—C9A	7.1 (2)	C2—N1—N9B—C3A	0.14 (17)
C51—C5—C5A—C9A	-170.43 (15)	N4—C3A—N9B—C9A	5.6 (2)
N4—C5—C5A—C6	-162.50 (15)	C3—C3A—N9B—C9A	-176.41 (14)
C51—C5—C5A—C6	20.0 (2)	N4—C3A—N9B—N1	-178.19 (14)
C9A—C5A—C6—O6	-163.75 (16)	C3—C3A—N9B—N1	-0.21 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C54—H54…N1 ⁱ	0.95	2.58	3.492 (2)	162

Symmetry code: (i) x+1, -y+3/2, z-1/2.