inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

M-type Gd2[Si2O7]

crossmark logo

aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 July 2023; accepted 27 July 2023; online 1 August 2023)

The title compound, digadolinium(III) oxidodisilicate, Gd2[Si2O7], was obtained in its M-type crystal structure after attempts to synthesize Gd5Br3[AsO3]4 as a by-product from fused silica ampoules. It crystallizes isotypically with M-type Eu2[Si2O7]. This structure consists of layers of ecliptically arranged oxidodisilicate [Si2O7]6− units separated from each other by bilayers consisting of GdIII cations.

3D view (loading...)
[Scheme 3D1]

Structure description

M-type Gd2[Si2O7] crystallizes as colourless platelets, isotypic with M-type Eu2[Si2O7] (Strobel et al., 2009[Strobel, S., Schäfer, M. C. & Schleid, T. (2009). Z. Kristallogr. Suppl. 29, 40.]), in the monoclinic space group P21/n. In the crystal structure, the two crystallographically distinguishable [SiO4]4− tetra­hedra form discrete ecliptically arranged oxidodisilicate [Si2O7]6− units, which stand only on `two legs', here atoms O1 and O6, like the E- (Felsche, 1970[Felsche, J. (1970). J. Less-Common Met. 21, 1-14.]) and ζ-type oxidodisilicates (Hartenbach et al., 2006[Hartenbach, I., Meier, S. F. & Schleid, T. (2006). Z. Naturforsch. Teil B, 61, 1054-1060.]), leading to the so-called `horseshoe' conformation, with an Si1—O4—Si2 angle of 161.3 (3)° (Fig. 1[link]). Within the oxidosilicate tetra­hedra, Si—O distances (Table 1[link]) ranging from 1.588 (6) to 1.639 (6) Å to the terminal, as well as 1.646 (8) and 1.662 (8) Å to the bridging, oxide ligands (O4) occur, which agree well with those of the well-known dieuropium(III) oxidodisilicate, Eu2[Si2O7], in its M-type structure [d(Si—O) = 1.61–1.66 Å] (Strobel et al., 2009[Strobel, S., Schäfer, M. C. & Schleid, T. (2009). Z. Kristallogr. Suppl. 29, 40.]). Six terminal and four edge-bridging GdIII cations coordinate to each vertex-shared [Si2O7]6− bi­tetra­hedron, two of which bind one edge each of two terminal O2− anions of one tetra­hedral half (O1—O3 and O6—O7) and two of which bind three times each to one terminal O2− anion of both tetra­hedral halves of the oxosilicate doubles, as well as to the bridging O atom (O2⋯O4⋯O5 and O3⋯O4⋯O7). Both crystallographically distinct GdIII cations are surrounded by eight O2− anions, each with Gd—O distances ranging from 2.250 (8) to 2.691 (6) Å (Fig. 2[link]). In the crystal structure of M-type Gd2[Si2O7], the [Si2O7]6− units are present in a layered arrangement parallel to (001) with adjacent bi­tetra­hedra occurring mirrored along [010] at the inversion centre, whereas they are identically oriented along [100]. This structure consists of layers of [Si2O7]6− units separated from each other by bilayers consisting of GdIII cations (Fig. 3[link]).

Table 1
Selected bond lengths (Å)

Gd1—O1i 2.291 (5) Gd2—O3 2.565 (7)
Gd1—O7i 2.305 (8) Gd2—O4vii 2.655 (5)
Gd1—O3ii 2.376 (8) Gd2—Si1 3.103 (3)
Gd1—O6 2.384 (5) Gd2—Si2vii 3.233 (3)
Gd1—O5iii 2.441 (7) Gd2—Si1vi 3.269 (3)
Gd1—O2 2.533 (8) Gd2—Gd1viii 3.8078 (6)
Gd1—O4iii 2.621 (5) Si1—O2 1.588 (6)
Gd1—O7iv 2.691 (6) Si1—O1 1.612 (6)
Gd1—Si2iv 3.128 (3) Si1—O3 1.635 (6)
Gd1—Si2iii 3.217 (3) Si1—O4iii 1.646 (8)
Gd1—Si1 3.277 (3) Si1—Gd2vi 3.269 (3)
Gd1—Gd2iii 3.8078 (6) Si2—O5 1.595 (6)
Gd2—O5 2.250 (8) Si2—O6ix 1.600 (6)
Gd2—O2v 2.302 (7) Si2—O7 1.639 (6)
Gd2—O6vi 2.313 (5) Si2—O4 1.662 (8)
Gd2—O7vii 2.471 (8) Si2—Gd1ix 3.128 (3)
Gd2—O1 2.472 (5) Si2—Gd1viii 3.217 (3)
Gd2—O3vi 2.522 (8) Si2—Gd2x 3.233 (3)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, y, z-1]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, -y, -z+1]; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) x, y, z+1; (x) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The unique oxidodisilicate [Si2O7]6− anion composed of two vertex-connected [SiO4]4− tetra­hedra in M-type Gd2[Si2O7], where the position of the O atoms define a horseshoe arrangement (left), and its Newman projection (right). Displacement ellipsoids are drawn at the 95% probability level. The symmetry codes are available in Table 1[link].
[Figure 2]
Figure 2
The oxygen environment of the two crystallographically different GdIII cations in M-type Gd2[Si2O7]. Displacement ellipsoids are drawn at the 95% probability level. The symmetry codes are available in Table 1[link].
[Figure 3]
Figure 3
View at the monoclinic crystal structure of M-type Gd2[Si2O7] along [010] emphasizing the discrete [Si2O7]6− anions (polyhedral representation). Displacement ellipsoids are drawn at the 95% probability level.

Synthesis and crystallization

Single crystals of M-Gd2[Si2O7] were obtained as a by-product during the synthesis of Gd5Br3[AsO3]4 (Locke et al., 2023[Locke, R. J. C. (2023). Planned doctoral thesis, University of Stuttgart, Germany.]) by reacting Gd2O3 with fused silica (SiO2) as the reaction vessel at a temperature of 1100 K, taking advantage of the presumed mineralizers As2O3 and GdBr3. The transparent colourless crystals exhibit a platelet-like habit.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula Gd2[Si2O7]
Mr 482.68
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.7267 (5), 8.3859 (6), 9.6814 (7)
β (°) 113.486 (3)
V3) 575.34 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 23.25
Crystal size (mm) 1.0 × 0.5 × 0.1
 
Data collection
Diffractometer Stoe StadiVari
Absorption correction Numerical (LANA; Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136-140.])
Tmin, Tmax 0.031, 0.108
No. of measured, independent and observed [I > 2σ(I)] reflections 11604, 2030, 1462
Rint 0.051
(sin θ/λ)max−1) 0.766
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.068, 0.95
No. of reflections 2030
No. of parameters 102
Δρmax, Δρmin (e Å−3) 1.72, −1.87
Computer programs: X-AREA (Stoe & Cie, 2020[Stoe & Cie (2020). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2020); cell refinement: X-AREA (Stoe & Cie, 2020); data reduction: X-AREA (Stoe & Cie, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

igadolinium(III) oxidodisilicate top
Crystal data top
Gd2[Si2O7]F(000) = 848
Mr = 482.68Dx = 5.572 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 7.7267 (5) ÅCell parameters from 12003 reflections
b = 8.3859 (6) Åθ = 2.3–33.0°
c = 9.6814 (7) ŵ = 23.25 mm1
β = 113.486 (3)°T = 293 K
V = 575.34 (7) Å3Platelet, colourless
Z = 41.0 × 0.5 × 0.1 mm
Data collection top
Stoe StadiVari
diffractometer
2030 independent reflections
Radiation source: fine-focus sealed tube1462 reflections with I > 2σ(I)
Detector resolution: 5.81 pixels mm-1Rint = 0.051
rotation method, ω scansθmax = 33.0°, θmin = 2.9°
Absorption correction: numerical
(LANA; Koziskova et al., 2016)
h = 1111
Tmin = 0.031, Tmax = 0.108k = 1212
11604 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0305P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.068Δρmax = 1.72 e Å3
S = 0.95Δρmin = 1.86 e Å3
2030 reflectionsExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
102 parametersExtinction coefficient: 0.0096 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.48343 (8)0.48090 (4)0.21037 (4)0.00929 (12)
Gd20.47192 (8)0.00947 (4)0.70211 (4)0.00892 (13)
Si10.3936 (4)0.2763 (3)0.4626 (3)0.0091 (6)
Si20.3149 (4)0.2212 (3)0.9603 (3)0.0098 (6)
O10.4411 (13)0.2968 (6)0.6396 (6)0.0128 (12)
O20.2751 (11)0.4101 (7)0.3477 (7)0.0126 (15)
O30.3205 (12)0.0922 (7)0.4242 (7)0.0140 (15)
O40.0880 (10)0.2262 (6)0.9314 (6)0.0118 (11)
O50.3162 (11)0.0874 (6)0.8436 (7)0.0109 (14)
O60.4408 (13)0.2074 (6)0.1370 (6)0.0125 (12)
O70.3525 (12)0.4030 (6)0.9167 (7)0.0104 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0079 (2)0.0081 (2)0.0127 (2)0.0003 (2)0.0050 (2)0.00029 (16)
Gd20.0078 (2)0.0078 (2)0.0120 (2)0.0004 (2)0.0048 (2)0.00001 (16)
Si10.0085 (14)0.0073 (12)0.0108 (12)0.0016 (9)0.0032 (10)0.0000 (9)
Si20.0102 (14)0.0087 (13)0.0120 (12)0.0013 (9)0.0060 (10)0.0010 (9)
O10.014 (4)0.014 (3)0.012 (3)0.004 (4)0.007 (4)0.001 (2)
O20.011 (4)0.014 (3)0.010 (3)0.005 (3)0.001 (3)0.002 (2)
O30.009 (4)0.014 (3)0.021 (4)0.003 (3)0.008 (3)0.003 (2)
O40.008 (3)0.011 (3)0.014 (3)0.005 (3)0.005 (3)0.001 (2)
O50.009 (4)0.009 (3)0.014 (3)0.000 (3)0.004 (3)0.005 (2)
O60.012 (4)0.017 (3)0.009 (3)0.000 (4)0.004 (4)0.001 (2)
O70.012 (4)0.006 (3)0.014 (3)0.001 (3)0.007 (3)0.001 (2)
Geometric parameters (Å, º) top
Gd1—O1i2.291 (5)Si1—O11.612 (6)
Gd1—O7i2.305 (8)Si1—O31.635 (6)
Gd1—O3ii2.376 (8)Si1—O4iii1.646 (8)
Gd1—O62.384 (5)Si1—Gd2vi3.269 (3)
Gd1—O5iii2.441 (7)Si2—O51.595 (6)
Gd1—O22.533 (8)Si2—O6ix1.600 (6)
Gd1—O4iii2.621 (5)Si2—O71.639 (6)
Gd1—O7iv2.691 (6)Si2—O41.662 (8)
Gd1—Si2iv3.128 (3)Si2—Gd1ix3.128 (3)
Gd1—Si2iii3.217 (3)Si2—Gd1viii3.217 (3)
Gd1—Si13.277 (3)Si2—Gd2x3.233 (3)
Gd1—Gd2iii3.8078 (6)O1—Gd1i2.291 (5)
Gd2—O52.250 (8)O2—Gd2xi2.302 (7)
Gd2—O2v2.302 (7)O3—Gd1xii2.376 (8)
Gd2—O6vi2.313 (5)O3—Gd2vi2.522 (8)
Gd2—O7vii2.471 (8)O4—Si1viii1.646 (8)
Gd2—O12.472 (5)O4—Gd1viii2.621 (5)
Gd2—O3vi2.522 (8)O4—Gd2x2.655 (5)
Gd2—O32.565 (7)O5—Gd1viii2.441 (7)
Gd2—O4vii2.655 (5)O6—Si2iv1.600 (6)
Gd2—Si13.103 (3)O6—Gd2vi2.313 (5)
Gd2—Si2vii3.233 (3)O7—Gd1i2.305 (8)
Gd2—Si1vi3.269 (3)O7—Gd2x2.471 (8)
Gd2—Gd1viii3.8078 (6)O7—Gd1ix2.691 (6)
Si1—O21.588 (6)
O1i—Gd1—O7i86.5 (3)O5—Gd2—Si2vii94.83 (17)
O1i—Gd1—O3ii88.5 (3)O2v—Gd2—Si2vii148.23 (16)
O7i—Gd1—O3ii100.09 (19)O6vi—Gd2—Si2vii72.48 (17)
O1i—Gd1—O6160.3 (2)O7vii—Gd2—Si2vii29.74 (15)
O7i—Gd1—O6106.7 (3)O1—Gd2—Si2vii128.99 (19)
O3ii—Gd1—O6103.0 (3)O3vi—Gd2—Si2vii87.49 (15)
O1i—Gd1—O5iii84.7 (3)O3—Gd2—Si2vii75.78 (15)
O7i—Gd1—O5iii72.1 (2)O4vii—Gd2—Si2vii30.84 (16)
O3ii—Gd1—O5iii170.0 (2)Si1—Gd2—Si2vii106.49 (7)
O6—Gd1—O5iii85.6 (3)O5—Gd2—Si1vi149.41 (16)
O1i—Gd1—O285.0 (3)O2v—Gd2—Si1vi94.01 (18)
O7i—Gd1—O2168.21 (19)O6vi—Gd2—Si1vi71.81 (19)
O3ii—Gd1—O271.6 (2)O7vii—Gd2—Si1vi88.20 (16)
O6—Gd1—O283.7 (3)O1—Gd2—Si1vi127.82 (19)
O5iii—Gd1—O2115.06 (16)O3vi—Gd2—Si1vi29.34 (15)
O1i—Gd1—O4iii95.96 (18)O3—Gd2—Si1vi77.72 (16)
O7i—Gd1—O4iii131.3 (2)O4vii—Gd2—Si1vi30.05 (17)
O3ii—Gd1—O4iii128.6 (2)Si1—Gd2—Si1vi99.74 (6)
O6—Gd1—O4iii64.33 (18)Si2vii—Gd2—Si1vi60.26 (5)
O5iii—Gd1—O4iii59.7 (2)O5—Gd2—Gd1viii37.46 (17)
O2—Gd1—O4iii58.0 (2)O2v—Gd2—Gd1viii139.14 (19)
O1i—Gd1—O7iv139.54 (18)O6vi—Gd2—Gd1viii91.6 (3)
O7i—Gd1—O7iv66.0 (3)O7vii—Gd2—Gd1viii35.64 (16)
O3ii—Gd1—O7iv69.1 (3)O1—Gd2—Gd1viii89.1 (2)
O6—Gd1—O7iv60.18 (17)O3vi—Gd2—Gd1viii147.64 (15)
O5iii—Gd1—O7iv112.0 (2)O3—Gd2—Gd1viii88.6 (2)
O2—Gd1—O7iv116.6 (2)O4vii—Gd2—Gd1viii92.70 (16)
O4iii—Gd1—O7iv124.43 (16)Si1—Gd2—Gd1viii95.78 (5)
O1i—Gd1—Si2iv168.31 (19)Si2vii—Gd2—Gd1viii62.16 (5)
O7i—Gd1—Si2iv91.68 (16)Si1vi—Gd2—Gd1viii122.43 (5)
O3ii—Gd1—Si2iv80.41 (16)O2—Si1—O1119.5 (4)
O6—Gd1—Si2iv30.06 (14)O2—Si1—O3117.2 (4)
O5iii—Gd1—Si2iv105.74 (15)O1—Si1—O3104.7 (3)
O2—Gd1—Si2iv95.01 (15)O2—Si1—O4iii101.2 (4)
O4iii—Gd1—Si2iv93.91 (12)O1—Si1—O4iii111.0 (4)
O7iv—Gd1—Si2iv31.58 (13)O3—Si1—O4iii101.8 (4)
O1i—Gd1—Si2iii91.52 (18)O2—Si1—Gd2156.8 (3)
O7i—Gd1—Si2iii100.47 (18)O1—Si1—Gd252.31 (19)
O3ii—Gd1—Si2iii159.41 (19)O3—Si1—Gd255.7 (2)
O6—Gd1—Si2iii72.03 (17)O4iii—Si1—Gd2102.0 (2)
O5iii—Gd1—Si2iii28.81 (16)O2—Si1—Gd2vi112.5 (3)
O2—Gd1—Si2iii87.91 (15)O1—Si1—Gd2vi127.9 (3)
O4iii—Gd1—Si2iii30.98 (17)O3—Si1—Gd2vi49.1 (3)
O7iv—Gd1—Si2iii121.22 (15)O4iii—Si1—Gd2vi53.89 (19)
Si2iv—Gd1—Si2iii100.16 (3)Gd2—Si1—Gd2vi80.26 (6)
O1i—Gd1—Si191.69 (18)O2—Si1—Gd148.9 (3)
O7i—Gd1—Si1160.70 (18)O1—Si1—Gd1135.2 (3)
O3ii—Gd1—Si199.08 (19)O3—Si1—Gd1118.8 (3)
O6—Gd1—Si170.92 (19)O4iii—Si1—Gd152.41 (19)
O5iii—Gd1—Si188.55 (16)Gd2—Si1—Gd1153.91 (9)
O2—Gd1—Si128.19 (15)Gd2vi—Si1—Gd179.48 (6)
O4iii—Gd1—Si129.85 (17)O5—Si2—O6ix122.3 (4)
O7iv—Gd1—Si1123.92 (15)O5—Si2—O7114.8 (4)
Si2iv—Gd1—Si193.76 (7)O6ix—Si2—O7104.4 (3)
Si2iii—Gd1—Si160.34 (5)O5—Si2—O4101.7 (4)
O1i—Gd1—Gd2iii89.6 (3)O6ix—Si2—O4109.5 (4)
O7i—Gd1—Gd2iii38.66 (17)O7—Si2—O4102.5 (4)
O3ii—Gd1—Gd2iii138.72 (18)O5—Si2—Gd1ix156.8 (3)
O6—Gd1—Gd2iii92.0 (2)O6ix—Si2—Gd1ix48.29 (18)
O5iii—Gd1—Gd2iii34.10 (16)O7—Si2—Gd1ix59.3 (2)
O2—Gd1—Gd2iii149.15 (15)O4—Si2—Gd1ix101.5 (2)
O4iii—Gd1—Gd2iii92.60 (17)O5—Si2—Gd1viii47.5 (3)
O7iv—Gd1—Gd2iii86.64 (19)O6ix—Si2—Gd1viii136.8 (3)
Si2iv—Gd1—Gd2iii96.26 (5)O7—Si2—Gd1viii117.8 (3)
Si2iii—Gd1—Gd2iii61.86 (5)O4—Si2—Gd1viii54.3 (2)
Si1—Gd1—Gd2iii122.19 (5)Gd1ix—Si2—Gd1viii155.51 (9)
O5—Gd2—O2v101.69 (19)O5—Si2—Gd2x112.2 (3)
O5—Gd2—O6vi84.4 (3)O6ix—Si2—Gd2x125.5 (3)
O2v—Gd2—O6vi82.3 (3)O7—Si2—Gd2x48.4 (3)
O5—Gd2—O7vii72.5 (2)O4—Si2—Gd2x55.0 (2)
O2v—Gd2—O7vii170.8 (2)Gd1ix—Si2—Gd2x81.32 (6)
O6vi—Gd2—O7vii89.9 (3)Gd1viii—Si2—Gd2x80.91 (6)
O5—Gd2—O181.0 (3)Si1—O1—Gd1i130.8 (3)
O2v—Gd2—O180.8 (2)Si1—O1—Gd296.6 (2)
O6vi—Gd2—O1154.8 (2)Gd1i—O1—Gd2131.5 (3)
O7vii—Gd2—O1104.9 (3)Si1—O2—Gd2xi142.9 (5)
O5—Gd2—O3vi172.35 (19)Si1—O2—Gd1102.9 (4)
O2v—Gd2—O3vi73.0 (2)Gd2xi—O2—Gd1108.3 (2)
O6vi—Gd2—O3vi89.4 (3)Si1—O3—Gd1xii132.2 (4)
O7vii—Gd2—O3vi112.04 (17)Si1—O3—Gd2vi101.6 (4)
O1—Gd2—O3vi103.2 (3)Gd1xii—O3—Gd2vi106.4 (2)
O5—Gd2—O3115.4 (3)Si1—O3—Gd292.6 (3)
O2v—Gd2—O3119.4 (2)Gd1xii—O3—Gd2114.0 (3)
O6vi—Gd2—O3143.85 (18)Gd2vi—O3—Gd2107.8 (3)
O7vii—Gd2—O369.9 (3)Si1viii—O4—Si2161.3 (3)
O1—Gd2—O361.35 (18)Si1viii—O4—Gd1viii97.7 (3)
O3vi—Gd2—O372.2 (3)Si2—O4—Gd1viii94.7 (3)
O5—Gd2—O4vii121.6 (2)Si1viii—O4—Gd2x96.1 (3)
O2v—Gd2—O4vii119.9 (2)Si2—O4—Gd2x94.2 (3)
O6vi—Gd2—O4vii64.64 (16)Gd1viii—O4—Gd2x104.97 (18)
O7vii—Gd2—O4vii60.2 (2)Si2—O5—Gd2142.3 (4)
O1—Gd2—O4vii140.50 (18)Si2—O5—Gd1viii103.7 (4)
O3vi—Gd2—O4vii58.9 (2)Gd2—O5—Gd1viii108.4 (2)
O3—Gd2—O4vii79.25 (17)Si2iv—O6—Gd2vi131.8 (3)
O5—Gd2—Si1104.65 (16)Si2iv—O6—Gd1101.7 (3)
O2v—Gd2—Si195.40 (16)Gd2vi—O6—Gd1126.0 (2)
O6vi—Gd2—Si1171.0 (2)Si2—O7—Gd1i136.3 (4)
O7vii—Gd2—Si193.06 (15)Si2—O7—Gd2x101.8 (4)
O1—Gd2—Si131.07 (14)Gd1i—O7—Gd2x105.7 (2)
O3vi—Gd2—Si181.58 (15)Si2—O7—Gd1ix89.1 (3)
O3—Gd2—Si131.75 (14)Gd1i—O7—Gd1ix114.0 (3)
O4vii—Gd2—Si1109.70 (12)Gd2x—O7—Gd1ix106.8 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z+1; (vii) x+1/2, y1/2, z+3/2; (viii) x1/2, y+1/2, z+1/2; (ix) x, y, z+1; (x) x+1/2, y+1/2, z+3/2; (xi) x1/2, y+1/2, z1/2; (xii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank Dr Falk Lissner for the single-crystal X-ray diffraction measurements.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFelsche, J. (1970). J. Less-Common Met. 21, 1–14.  CrossRef CAS Web of Science Google Scholar
First citationHartenbach, I., Meier, S. F. & Schleid, T. (2006). Z. Naturforsch. Teil B, 61, 1054–1060.  Web of Science CrossRef CAS Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140.  Web of Science CrossRef CAS Google Scholar
First citationLocke, R. J. C. (2023). Planned doctoral thesis, University of Stuttgart, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStrobel, S., Schäfer, M. C. & Schleid, T. (2009). Z. Kristallogr. Suppl. 29, 40.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146