organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[5-(2,3-Di­meth­­oxy­naphthalen-1-yl)-4,5-di­hydro-1H-pyrazol-3-yl]-3-meth­­oxy­phenol

crossmark logo

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dddklab@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 July 2023; accepted 1 August 2023; online 10 August 2023)

In the title compound, C22H22N2O4, the central pyrazoline ring exhibits a nearly planar structure (r.m.s. deviation = 0.025 Å) despite having two sp3 carbon atoms. The pyrazoline ring subtends dihedral angles of 4.61 (1) and 87.31 (1)° with the pendant benzene ring and naphthalene ring system, respectively. The dihedral angle between the planes of the benzene ring and the naphthalene ring system is 89.76 (2)°. An intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, inversion dimers formed by pairwise weak N—H⋯N hydrogen bonds generate R22(4) loops and the dimers are linked by pairwise C—H⋯O hydrogen bonds [which generate R22(8) loops] into [100] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolines have been reported to show a broad spectrum of biological activities including anti­cancer (Haider, et al., 2022[Haider, K., Shafeeque, M., Yahya, S. & Shahar Yar, M. (2022). Eur. J. Med. Chem. Rep. 100042.]), anti­microbial (Bano et al., 2015[Bano, S., Alam, M. S., Javed, K., Dudeja, M., Das, A. K. & Dhulap, A. (2015). Eur. J. Med. Chem. 95, 96-103.]), anti-inflammatory (Viveka et al., 2015[Viveka, S., Dinesha, Shama, P., Nagaraja, G. K., Ballav, S. & Kerkar, S. (2015). Eur. J. Med. Chem. 101, 442-451.]), anti­malarial (Kumar et al., 2018[Kumar, G., Tanwar, O., Kumar, J., Akhter, M., Sharma, S., Pillai, C. R., Alam, M. M. & Zama, M. S. (2018). Eur. J. Med. Chem. 149, 139-147.]) and anti-Parkinsonian effects (Singh et al., 2018[Singh, R., Thota, S. & Bansal, R. (2018). ACS Chem. Neurosci. 9, 272-283.]). Pyrazoline is generally synthesized from chalcone, and various synthetic methods have been reported in the literature (Praceka et al., 2021[Praceka, M. S., Megantara, S., Maharani, R. & Muchtaridi, M. J. (2021). J. Adv. Pharm. Technol. Res. 12, 321-326.]). Chalcones are key precursors for the synthesis of a various flavonoids when they have a hydroxyl group at the β-position of the ketone group. The single-crystal structures of various flavonoids synthesized from chalcones have previously been reported by our group (Sung, 2020[Sung, J. (2020). IUCrData, 5, x201209.]). In a continuation of our research inter­est in broadening the application range of β-hydroxyl chalcone, the title pyrazoline compound was synthesized and its crystal structure was determined.

The title mol­ecule, C22H22N2O2, crystallizes in space group P21/n with one mol­ecule in the asymmetric unit (Fig. 1[link]). The central pyrazoline ring contains two sp3 carbon atoms (C9 and C10), but it has a nearly planar structure (r.m.s. deviation = 0.025 Å). The benzene ring and naphthalene ring system are attached at positions C8 and C10 of the pyrazoline ring, and they are tilted by 4.61 (1) and 87.31 (1)°, respectively, with respect to the mean plane of the pyrazoline ring. The dihedral angle between the planes of the benzene ring and naphthalene ring system is 89.76 (2)°. The meth­oxy groups at the 3-position of naphthalene ring and the ortho position of the benzene ring are almost coplanar with the rings to which they are bound [C—O—C—C = −7.9 (5) and −0.4 (4)°, respectively], whereas the meth­oxy group at the 2-position of the naphthalene ring system is twisted from the ring [C—O—C—C = 112.5 (3)°]. The hydroxyl group at the ortho position of the benzene ring makes an intra­molecular O1—H10⋯N1 hydrogen bond, forming an S(6) ring motif. In the crystal, inversion dimers linked by pairwise N2—H2A⋯N2 hydrogen bonds generate R22(4) loops and these dimers are linked by pairwise C6—H6⋯O1 hydrogen bonds [which generate R22(8) loops] into [100] chains (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.81 2.556 (3) 148
N2—H2A⋯N2i 0.88 2.68 3.196 (5) 118
C6—H6⋯O1ii 0.95 2.50 3.433 (5) 166
Symmetry codes: (i) [-x+1, -y+2, -z]; (ii) [-x+2, -y+3, -z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
A partial view of the crystal structure of the title compound showing dimer chains of mol­ecules formed along [010]. Inter­molecular C—H⋯·O hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

The starting chalcone, (E)-3-(2,3-di­meth­oxy­naphthalen-1-yl)-1-(2-hy­droxy-6-meth­oxy­phen­yl)prop-2-en-1-one, was prep­ared by the previously reported method (Sung, 2019[Sung, J. (2019). IUCrData, 4, x191281.]). Pyrazoline was synthesized by a cyclization reaction of the chalcone with NH2NH2 (Fig. 3[link]). To a solution of 6-meth­oxy-2-hy­droxy­aceto­phenone (10 mmol, 1.66 g) in 50 ml of ethanol was added 2,3-dimeth­oxy-1-naphthaldehyde (10 mmol, 1.56 g) and the temperature was adjusted to around 276–277 K in an ice bath. To the reaction mixture were added 8 ml of 40% (w/v) aqueous KOH solution and reaction mixture was stirred at room temperature for 20 h. At the end of the reaction, ice water was added to the mixture and acidified with 6 N HCl (pH = 3–4). The resulting precipitate was filtered and washed with water and ethanol. The crude solid was purified by recrystallization from ethanol solution to give the pure chalcone. Excess hydrazine monohydrate (1 ml of 64–65% solution, 13 mmol) was added to a solution of the chalcone compound (5 mmol, 1.52 g) in 30 ml of anhydrous ethanol and the solution was refluxed at 360 K for 5 h. The reaction mixture was cooled to room temperature to yield a solid that was then filtered. The crude solids were purified by recrystallization from ethanol solution to afford the title compound.

[Figure 3]
Figure 3
Synthetic scheme for preparation of the title pyrazoline compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H22N2O4
Mr 378.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 9.6536 (9), 9.0435 (9), 21.599 (2)
β (°) 94.473 (2)
V3) 1879.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.26 × 0.21 × 0.08
 
Data collection
Diffractometer Bruker SMART CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 11235, 3687, 1933
Rint 0.055
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.184, 0.92
No. of reflections 3687
No. of parameters 257
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.28
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[5-(2,3-Dimethoxynaphthalen-1-yl)-4,5-dihydro-1H-pyrazol-3-yl]-3-methoxyphenol top
Crystal data top
C22H22N2O4F(000) = 800
Mr = 378.42Dx = 1.337 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2685 reflections
a = 9.6536 (9) Åθ = 2.3–25.9°
b = 9.0435 (9) ŵ = 0.09 mm1
c = 21.599 (2) ÅT = 200 K
β = 94.473 (2)°Block, colorless
V = 1879.9 (3) Å30.26 × 0.21 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1933 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
phi and ω scansh = 1111
11235 measured reflectionsk = 1110
3687 independent reflectionsl = 2126
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.093P)2]
where P = (Fo2 + 2Fc2)/3
3687 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8751 (3)1.3353 (3)0.02640 (12)0.0694 (7)
H10.80351.28490.03100.104*
C10.9888 (3)1.2574 (4)0.04692 (14)0.0506 (8)
C20.9795 (3)1.1101 (3)0.06640 (12)0.0398 (7)
C31.1048 (3)1.0390 (4)0.08642 (13)0.0501 (8)
C41.2308 (3)1.1127 (5)0.08911 (15)0.0671 (11)
H41.31381.06330.10380.080*
C51.2350 (4)1.2572 (6)0.07051 (17)0.0747 (13)
H51.32161.30760.07260.090*
C61.1167 (4)1.3309 (4)0.04891 (17)0.0701 (11)
H61.12151.43060.03540.084*
O21.0935 (2)0.8949 (3)0.10310 (11)0.0653 (7)
C71.2171 (3)0.8106 (5)0.11670 (17)0.0791 (13)
H7A1.27480.81540.08140.119*
H7B1.19240.70740.12430.119*
H7C1.26890.85110.15370.119*
C80.8433 (3)1.0377 (3)0.06725 (11)0.0335 (6)
C90.8141 (3)0.8850 (3)0.09064 (13)0.0373 (7)
H9A0.84460.87500.13530.045*
H9B0.86100.80860.06690.045*
C100.6550 (3)0.8726 (3)0.07970 (12)0.0345 (7)
H100.63310.80090.04510.041*
N10.7304 (2)1.1080 (3)0.04944 (10)0.0396 (6)
N20.6126 (2)1.0220 (3)0.05752 (11)0.0441 (6)
H2A0.52621.05220.05050.053*
C110.5866 (2)0.8181 (3)0.13617 (11)0.0320 (6)
C120.5293 (3)0.6788 (3)0.13404 (12)0.0364 (7)
C130.4716 (3)0.6134 (3)0.18643 (13)0.0405 (7)
C140.4723 (3)0.6915 (3)0.23996 (13)0.0442 (8)
H140.43540.64780.27510.053*
C150.5264 (3)0.8358 (3)0.24460 (12)0.0401 (7)
C160.5249 (3)0.9182 (4)0.30062 (14)0.0544 (9)
H160.48530.87580.33540.065*
C170.5787 (3)1.0556 (4)0.30515 (15)0.0596 (9)
H170.57341.11030.34240.072*
C180.6427 (3)1.1186 (4)0.25521 (15)0.0561 (9)
H180.68411.21370.25950.067*
C190.6453 (3)1.0430 (3)0.20025 (14)0.0473 (8)
H190.68751.08760.16660.057*
C200.5872 (3)0.9015 (3)0.19266 (12)0.0361 (7)
O30.51575 (19)0.5996 (2)0.07876 (9)0.0458 (6)
C210.6160 (4)0.4843 (4)0.07440 (16)0.0641 (10)
H21A0.70970.52680.07790.096*
H21B0.59980.43410.03430.096*
H21C0.60730.41290.10800.096*
O40.4194 (2)0.4742 (2)0.17676 (10)0.0552 (6)
C220.3611 (4)0.4043 (4)0.22780 (17)0.0702 (11)
H22A0.43240.39480.26240.105*
H22B0.32690.30590.21520.105*
H22C0.28390.46410.24090.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0720 (17)0.0475 (15)0.0932 (19)0.0040 (13)0.0345 (15)0.0078 (13)
C10.053 (2)0.054 (2)0.0474 (19)0.0117 (17)0.0242 (15)0.0107 (16)
C20.0361 (16)0.055 (2)0.0295 (15)0.0084 (15)0.0084 (12)0.0068 (14)
C30.0368 (18)0.079 (3)0.0350 (17)0.0054 (17)0.0065 (13)0.0057 (16)
C40.0354 (19)0.121 (4)0.045 (2)0.014 (2)0.0082 (15)0.011 (2)
C50.054 (2)0.120 (4)0.053 (2)0.042 (3)0.0256 (18)0.036 (2)
C60.079 (3)0.072 (3)0.064 (2)0.034 (2)0.037 (2)0.024 (2)
O20.0289 (12)0.096 (2)0.0708 (16)0.0136 (12)0.0008 (10)0.0202 (14)
C70.0374 (19)0.132 (4)0.067 (2)0.027 (2)0.0023 (17)0.014 (2)
C80.0325 (15)0.0428 (17)0.0259 (14)0.0002 (13)0.0057 (11)0.0012 (12)
C90.0307 (15)0.0443 (17)0.0373 (16)0.0040 (13)0.0057 (12)0.0031 (13)
C100.0331 (15)0.0417 (17)0.0288 (15)0.0007 (13)0.0035 (11)0.0003 (13)
N10.0344 (13)0.0459 (15)0.0393 (14)0.0032 (12)0.0074 (10)0.0079 (11)
N20.0241 (12)0.0538 (16)0.0536 (16)0.0054 (11)0.0020 (10)0.0145 (12)
C110.0213 (13)0.0447 (17)0.0297 (15)0.0025 (12)0.0001 (11)0.0004 (12)
C120.0302 (15)0.0444 (18)0.0349 (16)0.0035 (13)0.0050 (12)0.0011 (13)
C130.0355 (16)0.0420 (18)0.0438 (18)0.0007 (14)0.0028 (13)0.0044 (14)
C140.0360 (16)0.059 (2)0.0376 (18)0.0008 (15)0.0018 (13)0.0097 (15)
C150.0308 (15)0.061 (2)0.0281 (15)0.0051 (14)0.0006 (12)0.0056 (14)
C160.0481 (19)0.077 (3)0.0387 (18)0.0045 (18)0.0085 (14)0.0060 (17)
C170.063 (2)0.074 (3)0.043 (2)0.004 (2)0.0132 (17)0.0211 (18)
C180.0483 (19)0.059 (2)0.060 (2)0.0057 (16)0.0004 (16)0.0177 (18)
C190.0406 (17)0.059 (2)0.0434 (18)0.0050 (16)0.0088 (14)0.0124 (16)
C200.0263 (14)0.0462 (18)0.0360 (16)0.0035 (13)0.0034 (12)0.0051 (13)
O30.0458 (12)0.0512 (13)0.0400 (12)0.0005 (10)0.0016 (9)0.0119 (10)
C210.065 (2)0.064 (2)0.063 (2)0.0168 (19)0.0026 (18)0.0185 (18)
O40.0632 (14)0.0494 (14)0.0546 (14)0.0158 (12)0.0142 (11)0.0026 (11)
C220.073 (2)0.062 (2)0.077 (3)0.016 (2)0.016 (2)0.016 (2)
Geometric parameters (Å, º) top
O1—C11.350 (4)C11—C121.376 (4)
O1—H10.8400C11—C201.434 (4)
C1—C61.400 (5)C12—O31.390 (3)
C1—C21.402 (4)C12—C131.428 (4)
C2—C31.407 (4)C13—C141.354 (4)
C2—C81.470 (4)C13—O41.365 (3)
C3—O21.358 (4)C14—C151.406 (4)
C3—C41.385 (4)C14—H140.9500
C4—C51.369 (5)C15—C161.422 (4)
C4—H40.9500C15—C201.435 (4)
C5—C61.372 (5)C16—C171.347 (4)
C5—H50.9500C16—H160.9500
C6—H60.9500C17—C181.405 (5)
O2—C71.427 (4)C17—H170.9500
C7—H7A0.9800C18—C191.372 (4)
C7—H7B0.9800C18—H180.9500
C7—H7C0.9800C19—C201.402 (4)
C8—N11.295 (3)C19—H190.9500
C8—C91.505 (4)O3—C211.431 (3)
C9—C101.539 (4)C21—H21A0.9800
C9—H9A0.9900C21—H21B0.9800
C9—H9B0.9900C21—H21C0.9800
C10—N21.481 (3)O4—C221.424 (4)
C10—C111.514 (4)C22—H22A0.9800
C10—H101.0000C22—H22B0.9800
N1—N21.400 (3)C22—H22C0.9800
N2—H2A0.8800
C1—O1—H1109.5C12—C11—C20119.0 (2)
O1—C1—C6117.1 (3)C12—C11—C10118.1 (2)
O1—C1—C2121.7 (3)C20—C11—C10122.8 (2)
C6—C1—C2121.2 (3)C11—C12—O3120.7 (2)
C1—C2—C3116.9 (3)C11—C12—C13122.3 (3)
C1—C2—C8120.3 (3)O3—C12—C13116.8 (2)
C3—C2—C8122.7 (3)C14—C13—O4126.1 (3)
O2—C3—C4122.6 (3)C14—C13—C12118.9 (3)
O2—C3—C2115.8 (3)O4—C13—C12115.0 (3)
C4—C3—C2121.6 (4)C13—C14—C15121.5 (3)
C5—C4—C3119.6 (4)C13—C14—H14119.3
C5—C4—H4120.2C15—C14—H14119.3
C3—C4—H4120.2C14—C15—C16121.2 (3)
C4—C5—C6121.4 (3)C14—C15—C20120.1 (3)
C4—C5—H5119.3C16—C15—C20118.7 (3)
C6—C5—H5119.3C17—C16—C15121.0 (3)
C5—C6—C1119.3 (4)C17—C16—H16119.5
C5—C6—H6120.4C15—C16—H16119.5
C1—C6—H6120.4C16—C17—C18120.6 (3)
C3—O2—C7119.0 (3)C16—C17—H17119.7
O2—C7—H7A109.5C18—C17—H17119.7
O2—C7—H7B109.5C19—C18—C17120.1 (3)
H7A—C7—H7B109.5C19—C18—H18120.0
O2—C7—H7C109.5C17—C18—H18120.0
H7A—C7—H7C109.5C18—C19—C20121.4 (3)
H7B—C7—H7C109.5C18—C19—H19119.3
N1—C8—C2120.7 (3)C20—C19—H19119.3
N1—C8—C9112.0 (2)C19—C20—C11123.7 (3)
C2—C8—C9127.2 (2)C19—C20—C15118.1 (3)
C8—C9—C10103.1 (2)C11—C20—C15118.2 (3)
C8—C9—H9A111.1C12—O3—C21114.4 (2)
C10—C9—H9A111.1O3—C21—H21A109.5
C8—C9—H9B111.1O3—C21—H21B109.5
C10—C9—H9B111.1H21A—C21—H21B109.5
H9A—C9—H9B109.1O3—C21—H21C109.5
N2—C10—C11115.5 (2)H21A—C21—H21C109.5
N2—C10—C9103.3 (2)H21B—C21—H21C109.5
C11—C10—C9113.1 (2)C13—O4—C22117.0 (3)
N2—C10—H10108.2O4—C22—H22A109.5
C11—C10—H10108.2O4—C22—H22B109.5
C9—C10—H10108.2H22A—C22—H22B109.5
C8—N1—N2111.3 (2)O4—C22—H22C109.5
N1—N2—C10109.9 (2)H22A—C22—H22C109.5
N1—N2—H2A125.0H22B—C22—H22C109.5
C10—N2—H2A125.0
O1—C1—C2—C3179.5 (3)C9—C10—C11—C2065.6 (3)
C6—C1—C2—C31.6 (4)C20—C11—C12—O3174.4 (2)
O1—C1—C2—C82.4 (4)C10—C11—C12—O39.6 (4)
C6—C1—C2—C8176.5 (3)C20—C11—C12—C130.7 (4)
C1—C2—C3—O2177.9 (2)C10—C11—C12—C13175.3 (2)
C8—C2—C3—O24.1 (4)C11—C12—C13—C140.5 (4)
C1—C2—C3—C42.5 (4)O3—C12—C13—C14174.8 (2)
C8—C2—C3—C4175.6 (3)C11—C12—C13—O4179.7 (2)
O2—C3—C4—C5178.8 (3)O3—C12—C13—O45.0 (3)
C2—C3—C4—C51.6 (5)O4—C13—C14—C15178.7 (3)
C3—C4—C5—C60.3 (5)C12—C13—C14—C151.0 (4)
C4—C5—C6—C11.2 (5)C13—C14—C15—C16179.0 (3)
O1—C1—C6—C5178.8 (3)C13—C14—C15—C202.3 (4)
C2—C1—C6—C50.2 (5)C14—C15—C16—C17179.0 (3)
C4—C3—O2—C77.9 (4)C20—C15—C16—C170.3 (4)
C2—C3—O2—C7172.5 (3)C15—C16—C17—C182.5 (5)
C1—C2—C8—N10.8 (4)C16—C17—C18—C192.9 (5)
C3—C2—C8—N1178.8 (3)C17—C18—C19—C201.1 (5)
C1—C2—C8—C9175.6 (3)C18—C19—C20—C11179.7 (3)
C3—C2—C8—C92.4 (4)C18—C19—C20—C151.1 (4)
N1—C8—C9—C103.2 (3)C12—C11—C20—C19178.7 (2)
C2—C8—C9—C10179.8 (2)C10—C11—C20—C192.8 (4)
C8—C9—C10—N25.2 (3)C12—C11—C20—C150.5 (4)
C8—C9—C10—C11130.8 (2)C10—C11—C20—C15176.4 (2)
C2—C8—N1—N2176.4 (2)C14—C15—C20—C19177.3 (2)
C9—C8—N1—N20.5 (3)C16—C15—C20—C191.5 (4)
C8—N1—N2—C104.2 (3)C14—C15—C20—C112.0 (4)
C11—C10—N2—N1129.9 (2)C16—C15—C20—C11179.2 (2)
C9—C10—N2—N15.8 (3)C11—C12—O3—C21103.7 (3)
N2—C10—C11—C12130.9 (3)C13—C12—O3—C2180.9 (3)
C9—C10—C11—C12110.3 (3)C14—C13—O4—C220.4 (4)
N2—C10—C11—C2053.2 (3)C12—C13—O4—C22179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.812.556 (3)148
N2—H2A···N2i0.882.683.196 (5)118
C6—H6···O1ii0.952.503.433 (5)166
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+3, z.
 

Funding information

This work was supported by a Dongduk Women's University grant.

References

First citationBano, S., Alam, M. S., Javed, K., Dudeja, M., Das, A. K. & Dhulap, A. (2015). Eur. J. Med. Chem. 95, 96–103.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaider, K., Shafeeque, M., Yahya, S. & Shahar Yar, M. (2022). Eur. J. Med. Chem. Rep. 100042.  Google Scholar
First citationKumar, G., Tanwar, O., Kumar, J., Akhter, M., Sharma, S., Pillai, C. R., Alam, M. M. & Zama, M. S. (2018). Eur. J. Med. Chem. 149, 139–147.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPraceka, M. S., Megantara, S., Maharani, R. & Muchtaridi, M. J. (2021). J. Adv. Pharm. Technol. Res. 12, 321–326.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R., Thota, S. & Bansal, R. (2018). ACS Chem. Neurosci. 9, 272–283.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSung, J. (2019). IUCrData, 4, x191281.  Google Scholar
First citationSung, J. (2020). IUCrData, 5, x201209.  Google Scholar
First citationViveka, S., Dinesha, Shama, P., Nagaraja, G. K., Ballav, S. & Kerkar, S. (2015). Eur. J. Med. Chem. 101, 442–451.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146