organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl-2-(2-methyl­anilino)benzoic acid

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by R. J. Butcher, Howard University, USA (Received 15 May 2023; accepted 7 July 2023; online 14 July 2023)

The title compound, C15H15NO2, was obtained by the reaction of 2-chloro-4-methyl-benzoic acid and o-toluidine using 2-eth­oxy­ethanol as solvent. Crystals of the title compounds were obtained from crystallization in acetone. The mol­ecule in the crystal is twisted with a dihedral angle between the aromatic rings of 50.86 (5)°. In the crystal structure, the mol­ecules associate to form acid–acid hydrogen-bonded dimers linked by pairwise O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Anthranilic acids are compounds with great medicinal value. They play an important role in non-steroidal anti-inflammatory (Masubuchi et al., 1998[Masubuchi, Y., Saito, H. & Horie, T. (1998). J. Pharmacol. Exp. Ther. 287, 208-213.]), anti­bacterial (Abdulkarem et al., 2019[Abdulkarem, L. K. & Mahdi, S. H. (2019). J. Phys. Conf. Ser. 1234, 012089-012101.]) and anti­viral agents (Inglot 1969[Inglot, A. D. (1969). J. Gen. Virol. 4, 203-214.]) and other drugs. The title compound has a methyl group on both aromatic rings (Fig. 1[link]). As a result of steric repulsion, the aromatic rings are not coplanar with a dihedral angle of 50.86 (5)°. In the crystal, two mol­ecules pair up to form a carb­oxy­lic acid–carb­oxy­lic acid hydrogen-bonded dimer. An intra­molecular N1—H1A⋯O2 hydrogen bond (Table 1[link], Fig. 2[link]) is also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.84 2.6570 (17) 174
N1—H1A⋯O2 0.86 2.01 2.6942 (17) 136
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing of the mol­ecules in the title compound (for clarity, H atoms not involved in hydrogen bonding are omitted). Hydrogen bonds are indicated by dashed lines.

Synthesis and crystallization

The title compound was prepared by reacting 2-chloro-4-methyl-benzoic acid and o-toluidine in the presence of a catalyst at 403 K (Fig. 3[link]). The product was purified by column chromatography. Single crystals were obtained by slowly evaporating an acetone solution of the compound (Fig. 4[link]).

[Figure 3]
Figure 3
Reaction scheme.
[Figure 4]
Figure 4
A representative crystal of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H15NO2
Mr 241.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.6678 (8), 10.9294 (11), 11.7231 (8)
β (°) 93.395 (7)
V3) 1236.53 (18)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.08 × 0.04 × 0.02
 
Data collection
Diffractometer SuperNova, Dual, Cu at zero, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.])
Tmin, Tmax 0.919, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4437, 2285, 1828
Rint 0.019
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.04
No. of reflections 2285
No. of parameters 166
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.38.43f (Rigaku OD, 2015); cell refinement: CrysAlis PRO 1.171.38.43f (Rigaku OD, 2015); data reduction: CrysAlis PRO 1.171.38.43f (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

4-Methyl-2-(2-methylanilino)benzoic acid top
Crystal data top
C15H15NO2F(000) = 512
Mr = 241.28Dx = 1.296 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.6678 (8) ÅCell parameters from 1387 reflections
b = 10.9294 (11) Åθ = 9.3–69.0°
c = 11.7231 (8) ŵ = 0.69 mm1
β = 93.395 (7)°T = 293 K
V = 1236.53 (18) Å3Plate, clear light colourless
Z = 40.08 × 0.04 × 0.02 mm
Data collection top
SuperNova, Dual, Cu at zero, Eos
diffractometer
2285 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1828 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 16.0733 pixels mm-1θmax = 70.0°, θmin = 4.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1213
Tmin = 0.919, Tmax = 1.000l = 1310
4437 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.2398P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2285 reflectionsΔρmax = 0.25 e Å3
166 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of H atoms in N1 and O1 were obtained from the difference Fourier map. Other H atoms were positioned geometrically with C—H = 0.93 for aromatic, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x=1.5 for all H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32010 (13)0.52719 (14)0.45925 (9)0.0527 (4)
H10.3965730.5092950.4374740.079*
O20.44087 (12)0.53328 (13)0.62639 (9)0.0487 (4)
N10.30228 (14)0.58797 (15)0.81250 (11)0.0434 (4)
H1A0.3776660.5641780.7839570.052*
C10.19420 (15)0.61667 (15)0.73583 (13)0.0332 (4)
C20.20410 (16)0.59559 (14)0.61709 (13)0.0333 (4)
C30.09126 (17)0.62616 (17)0.54234 (13)0.0409 (4)
H30.0968930.6115570.4646020.049*
C40.02712 (18)0.67684 (17)0.57997 (15)0.0455 (4)
H40.1008260.6953480.5282720.055*
C50.03698 (17)0.70070 (16)0.69615 (15)0.0405 (4)
C60.07217 (16)0.66986 (16)0.77176 (13)0.0375 (4)
H60.0645810.6848620.8492310.045*
C70.33051 (17)0.54979 (15)0.57000 (13)0.0365 (4)
C80.1651 (2)0.7593 (2)0.73824 (18)0.0614 (6)
H8A0.2380180.6997470.7390250.092*
H8B0.1935830.8255460.6883830.092*
H8C0.1456280.7901870.8141640.092*
C90.30353 (16)0.59315 (16)0.93298 (13)0.0357 (4)
C100.41723 (16)0.64529 (16)0.99389 (13)0.0370 (4)
C110.41862 (18)0.64593 (17)1.11262 (14)0.0452 (4)
H110.4946770.6787811.1542210.054*
C120.3104 (2)0.59922 (19)1.17011 (14)0.0492 (5)
H120.3125620.6025991.2494600.059*
C130.19886 (19)0.54745 (18)1.10961 (15)0.0475 (5)
H130.1251870.5162291.1480580.057*
C140.19640 (18)0.54187 (17)0.99152 (14)0.0426 (4)
H140.1228530.5036930.9510430.051*
C170.53483 (18)0.69949 (18)0.93333 (16)0.0495 (5)
H17A0.5828180.6357650.8954810.074*
H17B0.5976910.7394720.9877730.074*
H17C0.4993700.7579760.8779310.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0452 (7)0.0860 (11)0.0276 (6)0.0073 (7)0.0069 (5)0.0103 (6)
O20.0421 (7)0.0745 (9)0.0299 (6)0.0147 (6)0.0058 (5)0.0046 (6)
N10.0337 (7)0.0716 (11)0.0253 (7)0.0098 (7)0.0055 (5)0.0038 (6)
C10.0326 (8)0.0379 (8)0.0294 (8)0.0023 (6)0.0041 (6)0.0010 (6)
C20.0350 (8)0.0363 (8)0.0288 (8)0.0023 (6)0.0046 (6)0.0002 (6)
C30.0455 (9)0.0493 (10)0.0279 (8)0.0026 (8)0.0019 (7)0.0000 (7)
C40.0381 (9)0.0576 (11)0.0403 (9)0.0025 (8)0.0021 (7)0.0065 (8)
C50.0374 (9)0.0438 (9)0.0407 (9)0.0020 (7)0.0076 (7)0.0061 (7)
C60.0388 (9)0.0450 (9)0.0295 (8)0.0025 (7)0.0082 (6)0.0001 (7)
C70.0419 (9)0.0422 (9)0.0260 (7)0.0010 (7)0.0066 (6)0.0007 (6)
C80.0493 (11)0.0798 (15)0.0563 (12)0.0212 (11)0.0120 (9)0.0121 (11)
C90.0347 (8)0.0457 (9)0.0269 (7)0.0108 (7)0.0038 (6)0.0002 (7)
C100.0364 (8)0.0400 (9)0.0347 (8)0.0094 (7)0.0029 (6)0.0011 (7)
C110.0490 (10)0.0497 (10)0.0361 (9)0.0095 (8)0.0051 (7)0.0046 (8)
C120.0610 (11)0.0618 (12)0.0251 (8)0.0175 (9)0.0044 (8)0.0031 (8)
C130.0463 (10)0.0587 (11)0.0390 (9)0.0109 (9)0.0151 (8)0.0124 (8)
C140.0363 (8)0.0560 (11)0.0358 (9)0.0029 (8)0.0046 (7)0.0026 (8)
C170.0411 (9)0.0543 (11)0.0531 (11)0.0015 (8)0.0036 (8)0.0009 (9)
Geometric parameters (Å, º) top
O1—C71.3196 (18)C5—C61.379 (2)
O2—C71.235 (2)C5—C81.504 (2)
N1—C11.374 (2)C9—C101.396 (2)
N1—C91.4129 (19)C9—C141.394 (2)
C1—C21.420 (2)C10—C111.391 (2)
C1—C61.402 (2)C10—C171.498 (2)
C2—C31.399 (2)C11—C121.376 (3)
C2—C71.459 (2)C12—C131.377 (3)
C3—C41.368 (2)C13—C141.385 (2)
C4—C51.396 (2)
C1—N1—C9127.31 (13)O1—C7—C2114.81 (14)
N1—C1—C2120.78 (14)O2—C7—O1120.84 (14)
N1—C1—C6121.27 (14)O2—C7—C2124.35 (14)
C6—C1—C2117.94 (14)C10—C9—N1119.17 (14)
C1—C2—C7122.22 (14)C14—C9—N1120.90 (15)
C3—C2—C1118.69 (14)C14—C9—C10119.86 (15)
C3—C2—C7118.99 (14)C9—C10—C17121.04 (15)
C4—C3—C2122.08 (15)C11—C10—C9118.32 (15)
C3—C4—C5119.82 (15)C11—C10—C17120.64 (16)
C4—C5—C8120.33 (16)C12—C11—C10121.71 (17)
C6—C5—C4119.19 (15)C11—C12—C13119.69 (16)
C6—C5—C8120.47 (16)C12—C13—C14119.98 (16)
C5—C6—C1122.24 (15)C13—C14—C9120.36 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.842.6570 (17)174
N1—H1A···O20.862.012.6942 (17)136
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

CL and SL thank the Natural Science Foundation of Hubie Province for financial support (2014CFB787).

References

First citationAbdulkarem, L. K. & Mahdi, S. H. (2019). J. Phys. Conf. Ser. 1234, 012089–012101.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInglot, A. D. (1969). J. Gen. Virol. 4, 203–214.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasubuchi, Y., Saito, H. & Horie, T. (1998). J. Pharmacol. Exp. Ther. 287, 208–213.  Web of Science CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146