organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(3-Chloro­anilino)benzoic acid

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 15 May 2023; accepted 7 July 2023; online 14 July 2023)

The title compound, C13H10ClNO2, was synthesized by a Buchwald–Hartwig reaction and its crystal structure was investigated for the first time. Crystallization in a variety of solvents led to the discovery of one crystal form. High-quality single crystals were obtained by slow evaporation and the crystal structure was determined by single-crystal X-ray diffraction. The mol­ecules in the crystal structures are highly twisted [the dihedral angle between the aromatic rings is 34.66 (6)°] and pair up to form acid–acid dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) was first synthesized by Adeniji et al. (2011[Adeniji, A. O., Twenter, B. M., Byrns, M. C., Jin, Y., Winkler, J. D. & Penning, T. M. (2011). Bioorg. Med. Chem. Lett. 21, 1464-1468.]). It is a potent and selective aldo-keto reductase AKR1C2 and AKR1C3 inhibitor, which is efficacious in a prostate cancer model and is a potential therapeutic agent for the treatment of castration-resistant prostate cancer (CRPC) (Adeniji et al., 2012[Adeniji, A. O., Twenter, B. M., Byrns, M. C., Jin, Y., Chen, M., Winkler, J. D. & Penning, T. M. (2012). J. Med. Chem. 55, 2311-2323.]). There is only one mol­ecule in the asymmetric unit of the crystal structure. As a result of the repulsion between the carbon-bonded H atoms ortho to NH on both aromatic rings, the mol­ecule is twisted as evidenced by the dihedral angle between the two aromatic rings [34.66 (6)°]. In the crystal, the mol­ecules form acid–acid dimers via O—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.90 (4) 1.78 (4) 2.6359 (19) 160 (4)
Symmetry code: (i) [-x+1, -y+1, -z+2].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound generated with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing of the mol­ecules of the title compound. For clarity, H atoms bonded to C are omitted.

Synthesis and crystallization

In this work, the title compound was successfully prepared by a Buchwald–Hartwig reaction (Fig. 3[link]) (Hou et al., 2015[Hou, J., Zhao, W., Huang, Z., Yang, S., Wang, L., Jiang, Y., Zhou, Z., Zheng, M., Jiang, J., Li, S. & Li, F. N. (2015). Chem. Biol. Drug Des. 86, 223-231.]) using 4-chloro­benzoic acid and 3-chloro­aniline as starting materials. Crystallization was conducted by slow evaporation in avariety of solvents in a clean fume hood. Crystals suitable for single-crystal X-ray diffraction (Fig. 4[link]) were obtained by slow evaporation of an aceto­nitrile solution.

[Figure 3]
Figure 3
Synthesis of the title compound.
[Figure 4]
Figure 4
A representative crystal of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H10ClNO2
Mr 247.67
Crystal system, space group Monoclinic, P21/c
Temperature (K) 288
a, b, c (Å) 10.8865 (2), 10.31441 (18), 11.0885 (2)
β (°) 113.817 (3)
V3) 1139.08 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.88
Crystal size (mm) 0.15 × 0.13 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction, Synergy Custom system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Meyer, 2015[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.375, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7087, 2278, 2045
Rint 0.025
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.08
No. of reflections 2278
No. of parameters 162
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.37
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2022); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

4-(3-Chloroanilino)benzoic acid top
Crystal data top
C13H10ClNO2F(000) = 512
Mr = 247.67Dx = 1.444 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.8865 (2) ÅCell parameters from 5783 reflections
b = 10.31441 (18) Åθ = 4.3–77.1°
c = 11.0885 (2) ŵ = 2.88 mm1
β = 113.817 (3)°T = 288 K
V = 1139.08 (5) Å3Block, clear light colourless
Z = 40.15 × 0.13 × 0.09 mm
Data collection top
Rigaku Oxford Diffraction, Synergy Custom system, HyPix
diffractometer
2278 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2045 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.0000 pixels mm-1θmax = 77.4°, θmin = 4.4°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1212
Tmin = 0.375, Tmax = 1.000l = 1314
7087 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.085P)2 + 0.1891P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2278 reflectionsΔρmax = 0.35 e Å3
162 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of all H atoms were obtained from the difference Fourier map. H atoms bonded to N1 and O1 were freely refined. Other H atoms were positioned geometrically with C—H = 0.93 Å and constraioned to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.08885 (6)0.18033 (6)0.52451 (6)0.0806 (3)
O10.56772 (18)0.39086 (13)0.91797 (17)0.0746 (4)
H10.553 (4)0.394 (4)0.992 (4)0.150 (15)*
O20.53662 (16)0.60395 (13)0.90499 (15)0.0729 (4)
N10.72634 (17)0.52920 (19)0.43865 (17)0.0663 (4)
C10.69502 (16)0.51613 (18)0.54768 (17)0.0547 (4)
C20.69426 (18)0.39841 (17)0.60907 (19)0.0583 (4)
H20.7189840.3227200.5790690.070*
C30.65700 (18)0.39349 (16)0.71420 (19)0.0566 (4)
H30.6583160.3145880.7552930.068*
C40.61751 (16)0.50519 (15)0.75936 (17)0.0511 (4)
C50.61631 (19)0.62229 (17)0.69628 (19)0.0594 (4)
H50.5888150.6975470.7244220.071*
C60.6552 (2)0.62786 (19)0.5931 (2)0.0634 (5)
H60.6550650.7070790.5529660.076*
C70.57147 (17)0.50230 (15)0.86682 (18)0.0542 (4)
C80.80918 (17)0.4555 (2)0.39658 (17)0.0577 (4)
C90.89546 (17)0.3606 (2)0.47289 (16)0.0573 (4)
H90.8979220.3400340.5554860.069*
C100.97786 (19)0.2970 (2)0.42486 (18)0.0612 (5)
C110.9792 (2)0.3250 (2)0.3038 (2)0.0717 (6)
H111.0359950.2810790.2737240.086*
C120.8938 (2)0.4199 (3)0.22921 (19)0.0781 (6)
H120.8934320.4412470.1475750.094*
C130.8084 (2)0.4843 (2)0.27326 (19)0.0710 (5)
H130.7501260.5471610.2204910.085*
H1A0.707 (3)0.599 (2)0.404 (2)0.076 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0851 (4)0.0895 (4)0.0837 (4)0.0171 (3)0.0512 (3)0.0098 (2)
O10.1076 (11)0.0517 (7)0.0901 (10)0.0001 (7)0.0662 (9)0.0001 (6)
O20.0978 (10)0.0509 (7)0.0929 (10)0.0024 (6)0.0623 (9)0.0109 (6)
N10.0644 (9)0.0749 (11)0.0663 (10)0.0075 (8)0.0333 (8)0.0120 (8)
C10.0453 (8)0.0623 (10)0.0569 (9)0.0007 (7)0.0212 (7)0.0001 (7)
C20.0618 (10)0.0515 (9)0.0731 (11)0.0036 (7)0.0390 (9)0.0076 (7)
C30.0606 (9)0.0455 (8)0.0723 (10)0.0027 (7)0.0358 (8)0.0023 (7)
C40.0475 (8)0.0486 (9)0.0595 (9)0.0019 (6)0.0240 (7)0.0047 (6)
C50.0633 (10)0.0486 (9)0.0721 (11)0.0066 (7)0.0332 (9)0.0002 (7)
C60.0666 (10)0.0548 (10)0.0750 (11)0.0087 (8)0.0351 (9)0.0136 (8)
C70.0550 (9)0.0467 (9)0.0659 (10)0.0043 (6)0.0296 (8)0.0070 (7)
C80.0507 (8)0.0720 (11)0.0533 (9)0.0104 (8)0.0242 (7)0.0046 (8)
C90.0551 (9)0.0723 (11)0.0502 (8)0.0082 (8)0.0273 (7)0.0039 (7)
C100.0599 (9)0.0727 (11)0.0584 (10)0.0078 (8)0.0316 (8)0.0064 (8)
C110.0725 (12)0.0946 (15)0.0601 (10)0.0076 (10)0.0392 (9)0.0102 (10)
C120.0794 (13)0.1123 (18)0.0515 (10)0.0099 (12)0.0357 (9)0.0001 (10)
C130.0648 (11)0.0932 (15)0.0552 (10)0.0058 (10)0.0244 (8)0.0064 (9)
Geometric parameters (Å, º) top
Cl1—C101.746 (2)C4—C71.468 (2)
O1—H10.90 (4)C5—H50.9300
O1—C71.290 (2)C5—C61.372 (3)
O2—C71.246 (2)C6—H60.9300
N1—C11.389 (2)C8—C91.383 (3)
N1—C81.396 (3)C8—C131.396 (3)
N1—H1A0.80 (3)C9—H90.9300
C1—C21.394 (3)C9—C101.380 (3)
C1—C61.395 (3)C10—C111.379 (3)
C2—H20.9300C11—H110.9300
C2—C31.381 (3)C11—C121.374 (3)
C3—H30.9300C12—H120.9300
C3—C41.392 (2)C12—C131.383 (3)
C4—C51.393 (2)C13—H130.9300
C7—O1—H1115 (3)O1—C7—C4117.19 (15)
C1—N1—C8131.05 (18)O2—C7—O1122.19 (16)
C1—N1—H1A113.1 (18)O2—C7—C4120.62 (15)
C8—N1—H1A114.2 (19)C9—C8—N1123.47 (16)
N1—C1—C2124.18 (17)C9—C8—C13118.95 (18)
N1—C1—C6117.08 (17)C13—C8—N1117.50 (19)
C2—C1—C6118.66 (16)C8—C9—H9120.4
C1—C2—H2119.8C10—C9—C8119.14 (16)
C3—C2—C1120.39 (16)C10—C9—H9120.4
C3—C2—H2119.8C9—C10—Cl1118.36 (14)
C2—C3—H3119.6C11—C10—Cl1118.92 (16)
C2—C3—C4120.79 (16)C11—C10—C9122.7 (2)
C4—C3—H3119.6C10—C11—H11121.2
C3—C4—C5118.60 (16)C12—C11—C10117.70 (19)
C3—C4—C7122.12 (15)C12—C11—H11121.2
C5—C4—C7119.22 (15)C11—C12—H12119.4
C4—C5—H5119.6C11—C12—C13121.21 (18)
C6—C5—C4120.76 (17)C13—C12—H12119.4
C6—C5—H5119.6C8—C13—H13119.8
C1—C6—H6119.6C12—C13—C8120.3 (2)
C5—C6—C1120.78 (17)C12—C13—H13119.8
C5—C6—H6119.6
Cl1—C10—C11—C12178.04 (17)C4—C5—C6—C10.9 (3)
N1—C1—C2—C3177.58 (17)C5—C4—C7—O1176.54 (17)
N1—C1—C6—C5176.83 (17)C5—C4—C7—O22.8 (3)
N1—C8—C9—C10177.07 (18)C6—C1—C2—C31.1 (3)
N1—C8—C13—C12176.3 (2)C7—C4—C5—C6178.23 (17)
C1—N1—C8—C910.4 (3)C8—N1—C1—C228.5 (3)
C1—N1—C8—C13172.68 (19)C8—N1—C1—C6155.0 (2)
C1—C2—C3—C41.1 (3)C8—C9—C10—Cl1178.49 (14)
C2—C1—C6—C50.1 (3)C8—C9—C10—C110.8 (3)
C2—C3—C4—C50.0 (3)C9—C8—C13—C120.7 (3)
C2—C3—C4—C7177.14 (16)C9—C10—C11—C120.4 (3)
C3—C4—C5—C61.0 (3)C10—C11—C12—C130.7 (3)
C3—C4—C7—O10.6 (3)C11—C12—C13—C81.2 (3)
C3—C4—C7—O2179.92 (17)C13—C8—C9—C100.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.90 (4)1.78 (4)2.6359 (19)160 (4)
Symmetry code: (i) x+1, y+1, z+2.
 

References

First citationAdeniji, A. O., Twenter, B. M., Byrns, M. C., Jin, Y., Winkler, J. D. & Penning, T. M. (2011). Bioorg. Med. Chem. Lett. 21, 1464–1468.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAdeniji, A. O., Twenter, B. M., Byrns, M. C., Jin, Y., Chen, M., Winkler, J. D. & Penning, T. M. (2012). J. Med. Chem. 55, 2311–2323.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHou, J., Zhao, W., Huang, Z., Yang, S., Wang, L., Jiang, Y., Zhou, Z., Zheng, M., Jiang, J., Li, S. & Li, F. N. (2015). Chem. Biol. Drug Des. 86, 223–231.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146