

ISSN 2414-3146

Received 21 February 2020 Accepted 26 March 2020

Edited by M. Zeller, Purdue University, USA

‡ Current address: Institute of Marine Sciences, Department of Oceanography, Middle East Technical University, Erdemli, Mersin, Turkey.

Keywords: crystal structure; protodeboronation; Suzuki coupling.

CCDC reference: 1984328

Structural data: full structural data are available from iucrdata.iucr.org

data reports

Melvin J. G. Lesley,^a* Koray Ozhan,^a‡ Herman H.-Y. Sung^b and Ian D. Williams^b

^aDepartment of Chemistry, Southern Connecticut State University, 501 Crescent, Street, New Haven, CT, 06515-1355, USA, and ^bDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong. *Correspondence e-mail: lesleym1@southernct.edu

The title compound, $C_{26}H_{22}O_6$, is formed as the major product from the reaction between *syn*-1,2-bis(pinacolatoboron)-1,2-bis(4-methylcarboxyphenyl)ethene and excess methyl 4-iodobenzoate in basic DMSO using a palladium catalyst at 80°C *via* Suzuki coupling followed by protodeboronation. Crystals were grown by slow evaporation of a hexanes solution at room temperature.

Structure description

Protodeboronation is a well-known side reaction resulting in the replacement of boryl groups with hydrogen (Lee & Cheon, 2016). Initial studies of reductive deboronation have been reported for alkene (Brown & Murray, 1959, 1986) and alkyne (Brown & Zweifel, 1961; Zweifel et al., 1971) derivatives under acidic conditions as an alternative method to the hydrogenation of π -bonds. More recent studies have focused on the beneficial outcomes of protodeboronation for the control of regioselectivity in reactions with arylboronic acid or arylboronate ester derivatives and heteroatomic ring structures utilizing both acidic (Beckett et al., 1993; Kuivila & Nahabedian, 1961; Nahabedian & Kuivila, 1961) and basic (Lozada et al., 2014) reaction conditions. Protodeboronation has also been reported for reactions involving metal catalysis employing copper (Liu et al., 2014), gold (Barker et al., 2015) and palladium (Lai et al., 2006; Brown & Armstrong, 1996). The palladium-catalyzed Suzuki coupling reaction (Lennox & Lloyd-Jones, 2014; Suzuki, 2011; Miyaura & Suzuki, 1995) commonly employs basic conditions in hygroscopic solvents such as DMSO and DMF in addition to water for the dissolution of the base. These reactions are therefore prone to protodeboronation especially when elevated temperatures are employed. The title compound, (I), was the major product isolated in the attempted synthesis of 1,1',2,2'-tetrakis(4-methylcarboxyphenyl)ethene via the Pdcatalyzed double Suzuki coupling reaction (Ishiyama et al., 1993; Ishiyama, Yamamoto et al., 1996) between syn-1,2-bis(pinacolatoboron)-1,2-bis(4-methylcarboxyphenyl)ethene

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C10-H10\cdots O5^{i}$	0.95	2.51	3.4082 (18)	159
$C18-H18B\cdots O4^{ii}$	0.98	2.72	3.5520 (19)	144
$C28-H28C\cdots O6^{iii}$	0.98	2.85	3.769 (2)	156
$C38-H38A\cdotsO1^{iv}$	0.98	2.79	3.275 (2)	111
$C38-H38B\cdots O3^{v}$	0.98	2.57	3.339 (2)	135
$C38-H38C\cdots O2^{vi}$	0.98	2.66	3.595 (2)	159

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x + 3, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) -x + 1, -y + 1, -z.

(Ishiyama, Matsuda *et al.*, 1996) and methyl 4-iodobenzoate. The molecular structure of (I) is shown in Fig. 1.

The title compound (I) contains four molecules in the unit cell. The three methyl 4-carboxyphenyl rings 1 (C11–C16), 2 (C21–C26), and 3 (C31–C36) form dihedral angles of 23.37 (6), 65.95 (4), and 33.72 (7)°, respectively, with the plane including the alkene vector (C10/C11) made up from the atoms C1, C10, C11, C21 and C31. The angles between the methoxy groups and the phenyl rings were calculated and indicate the groups are close to coplanar with angles of 6.3 (1)° for the mean planes defined by (C11–C16) and (C17, O2, C18); 12.5 (1)° for the mean planes defined by (C21–C26) and (C27, O4, C28); and 6.7 (2)° for the mean planes defined by (C21–C26) and angles conform to typical value ranges (Allen *et al.*, 1987). There are a number of short C–O···H–C intermolecular interactions (Table 1) observed in the crystal packing as shown in Fig. 2.

Synthesis and crystallization

A 100-ml Schlenk flask was equipped with a magnetic stir bar and charged with *syn*-1,2-bis(pinacolatoboron)-1,2-bis(4-

Figure 1

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level.

methylcarboxyphenyl)ethene (3.710 g, 6.77 mmol), methyl 4-iodobenzoate (3.723 g, 14.2 mmol), Pd₂(dba)₃ (0.155 g, 2.5 mol%), and $P(o-tolyl)_3$ (0.108 g, 5.25 mol%). The reaction flask was evacuated for a period of 30 minutes and placed under a dry N_2 (g) atmosphere. An aqueous solution of degassed K₂CO₃ (2.42 ml, 7 M, 2.5 equiv.) was added via syringe followed by the addition of degassed DME (50 ml). A condenser was attached and the reaction was heated to reflux under an N₂ atmosphere for 24 h. The reaction mixture was cooled to room temperature and water and diethyl ether were added. The orange ether layer was isolated and dried in vacuo. Recrystallization from ether/hexanes gave a white precipitate that was isolated by filtration and washed with hexane (2 \times 10 ml) yielding a white solid (2.345 g, 81%; m.p. 397 K). The hexane layers were combined and slow evaporation in air gave a crop of colorless crystals of (I). Analytical data for $C_{26}H_{22}O_6$; calculated (found): %C: 72.55 (71.28); %H: 5.15 (5.16); HRMS (EI: $m + 1^+$) calculated (found): 431.142 (431.149); ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: 8.01 (d, J = 7.8 Hz, 2H, Ar - H), 7.99 (d, J =7.8 Hz, 2H, Ar-H), 7.81 (*d*, *J* = 6.3 Hz, 2H, Ar-H), 7.36 (*d*, *J* = 7.8 Hz, 2H, Ar-H), 7.25 (d, J = 7.8 Hz, 2H, Ar-H), 7.12 (s, 1H, =CH), 7.07 (d, J = 6.3 Hz, 2H, Ar-H), 3.94 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃); ¹³C[¹H] (75 MHz, CDCl₃): 166.71(1 C, C=O), 166.70 (1 C, C=O), 166.64 (1 C, C=O), 146.6 (1 C, C₄-Ar), 144.1 (1 C, C₄-Ar), 143.0 (1 C, C₄-Ar), 141.0 (1 C, Ph(Ph)-C=), 130.4 (2 C, Ar-C-H), 130.1 (2 C, Ar-C-H), 129.8 (1 C, C_1 -Ar), 129.7 (overlapped 2 C, Ar-C-H and 1 C, =CH), 129.6 (1 C, C₁-Ar), 129.5 (2 C, Ar-C--H) 129.4 (2 C, Ar-C-H), 128.8 (1 C, C₁-Ar), 127.6 (2 C, Ar-C-H), 52.22 (1 C, OCH₃), 52.18 (1 C, OCH₃), 52.08 (1 C, OCH₃).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

MJGL thanks IDW and HKUST for hosting a sabbatical leave used to complete this work.

Funding information

Funding for this research was provided by: CSU Faculty Research Grant (grant to MJGL); CSU Faculty Travel Grant (grant to MJGL).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–S19.
- Barker, G., Webster, S., Johnson, D. G., Curley, R., Andrews, M., Young, P. C., Macgregor, S. A. & Lee, A.-L. (2015). J. Org. Chem. 80, 9807–9816.
- Beckett, M. A., Gilmore, R. J. & Idrees, K. (1993). J. Organomet. Chem. 455, 47–49.
- Brown, H. C. & Murray, K. J. (1959). J. Am. Chem. Soc. 81, 4108–4109.
- Brown, H. C. & Murray, K. J. (1986). Tetrahedron, 42, 5497-5504.
- Brown, H. C. & Zweifel, G. (1961). J. Am. Chem. Soc. 83, 3834-3840.
- Brown, S. D. & Armstrong, R. W. (1996). J. Am. Chem. Soc. 118, 6331–6332.
- Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ishiyama, T., Matsuda, N., Miyaura, N. & Suzuki, A. (1993). J. Am. Chem. Soc. 115, 11018–11019.
- Ishiyama, T., Matsuda, N., Murata, M., Ozawa, F., Suzuki, A. & Miyaura, N. (1996). Organometallics, 15, 713–720.
- Ishiyama, T., Yamamoto, M. & Miyaura, N. (1996). Chem. Lett. 25, 1117–1118.
- Kuivila, H. G. & Nahabedian, K. V. (1961). J. Am. Chem. Soc. 83, 2159–2163.
- Lai, R.-Y., Chen, C.-L. & Liu, S.-T. (2006). Jnl Chin. Chem. Soc. 53, 979–985.
- Lee, C.-Y. & Cheon, C.-H. (2016). Development of Organic Transformations Based on Protodeboronation. In Boron Reagents

Table 2
Experimental details.

Crystal data	
Chemical formula	$C_{26}H_{22}O_{6}$
M _r	430.43
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	6.1631 (6), 19.253 (2), 18.0743 (19)
β (°)	96.830 (1)
$V(\dot{A}^3)$	2129.5 (4)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.10
Crystal size (mm)	$0.4\times0.12\times0.06$
Data collection	
Diffractometer	Bruker SMART APEX CCD area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
Tmine Tmax	0.964, 1.00
No. of measured, independent and	19788, 5132, 4358
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.021
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.125, 1.02
No. of reflections	5132
No. of parameters	292
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.42, -0.23

Computer programs: *SMART* and *SAINT* (Bruker, 2006), *SHELXS* (Sheldrick, 2008), *SHELXL* (Sheldrick, 2015) and *OLEX2* (Dolomanov *et al.*, 2009).

in Synthesis, ACS Symposium Series Vol. 1236, edited by A. Coca, pp. 483–523. Washington: ACS.

- Lennox, A. J. J. & Lloyd-Jones, G. C. (2014). Chem. Soc. Rev. 43, 412–443.
- Liu, C., Li, X., Wu, Y. & Qiu, J. (2014). RSC Adv. 4, 54307-54311.
- Lozada, J., Liu, Z. & Perrin, D. M. (2014). J. Org. Chem. 79, 5365– 5368.
- Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.
- Nahabedian, K. V. & Kuivila, H. G. (1961). J. Am. Chem. Soc. 83, 2167–2174.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722-6737.
- Zweifel, G., Clark, G. M. & Polston, N. L. (1971). J. Am. Chem. Soc. 93, 3395–3399.

full crystallographic data

IUCrData (2020). **5**, x200417 [https://doi.org/10.1107/S2414314620004174]

Trimethyl 4,4',4''-(ethene-1,1,2-triyl)tribenzoate

Melvin J. G. Lesley, Koray Ozhan, Herman H.-Y. Sung and Ian D. Williams

F(000) = 904

 $\theta = 2.3 - 28.2^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.021$

 $h = -8 \rightarrow 7$

 $k = -25 \longrightarrow 25$ $l = -24 \longrightarrow 20$

 $D_{\rm x} = 1.343 {\rm Mg m^{-3}}$

Needle, colourless

 $0.4 \times 0.12 \times 0.06 \text{ mm}$

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$

5132 independent reflections

4358 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 6842 reflections

Trimethyl 4,4',4"-(ethene-1,1,2-triyl)tribenzoate

Crystal data

C₂₆H₂₂O₆ $M_r = 430.43$ Monoclinic, $P2_1/c$ a = 6.1631 (6) Å b = 19.253 (2) Å c = 18.0743 (19) Å $\beta = 96.830$ (1)° V = 2129.5 (4) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area detector diffractometer ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.964, T_{\max} = 1.00$ 19788 measured reflections

Refinement

Primary atom site location: structure-invariant
direct methods
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0603P)^2 + 1.2194P]$
where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.42$ e Å ⁻³
$\Delta ho_{\min} = -0.23 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed geometrically and treated with riding constraints and thermal parameters derived from the C atoms to which they were attached. All –CH and CH₂ groups had H— U_{iso} fixed at 1.2 times the C atom. Methyls were idealized as freely rotating CH₃ groups with H— U_{iso} fixed at 1.5 times that of the C atom.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.4240 (2)	0.76631 (7)	0.24887 (7)	0.0368 (3)	
02	1.39707 (17)	0.77704 (6)	0.12488 (6)	0.0271 (2)	
03	0.73744 (19)	0.41585 (6)	0.52402 (6)	0.0316 (3)	
04	1.06230 (17)	0.40164 (6)	0.48215 (6)	0.0276 (2)	
05	-0.37892 (18)	0.37535 (6)	0.03473 (6)	0.0307 (3)	
06	-0.20613 (18)	0.28543 (6)	0.09445 (6)	0.0286 (3)	
C1	0.5152 (2)	0.52320 (7)	0.18403 (8)	0.0195 (3)	
C10	0.5799 (2)	0.57397 (7)	0.14079 (8)	0.0209 (3)	
H10	0.4962	0.5785	0.0934	0.025*	
C11	0.7611 (2)	0.62360 (7)	0.15587 (8)	0.0204 (3)	
C12	0.8586 (2)	0.64214 (8)	0.22724 (8)	0.0251 (3)	
H12	0.7998	0.6249	0.2699	0.030*	
C13	1.0391 (2)	0.68521 (8)	0.23623 (9)	0.0260 (3)	
H13	1.1035	0.6972	0.2849	0.031*	
C14	1.1273 (2)	0.71115 (7)	0.17448 (8)	0.0219 (3)	
C15	1.0257 (2)	0.69628 (7)	0.10334 (8)	0.0216 (3)	
H15	1.0810	0.7155	0.0609	0.026*	
C16	0.8438 (2)	0.65346 (7)	0.09441 (8)	0.0215 (3)	
H16	0.7739	0.6442	0.0457	0.026*	
C17	1.3300 (2)	0.75414 (8)	0.18812 (9)	0.0236 (3)	
C18	1.5992 (2)	0.81570 (8)	0.13491 (10)	0.0286 (3)	
H18A	1.5806	0.8571	0.1650	0.043*	
H18B	1.6390	0.8297	0.0862	0.043*	
H18C	1.7152	0.7865	0.1604	0.043*	
C21	0.6187 (2)	0.50418 (7)	0.26047 (8)	0.0189 (3)	
C22	0.4967 (2)	0.51013 (7)	0.32031 (8)	0.0201 (3)	
H22	0.3573	0.5318	0.3132	0.024*	
C23	0.5766 (2)	0.48481 (7)	0.39003 (8)	0.0204 (3)	
H23	0.4915	0.4888	0.4303	0.024*	
C24	0.7814 (2)	0.45347 (7)	0.40100 (8)	0.0189 (3)	
C25	0.9079 (2)	0.44951 (8)	0.34232 (8)	0.0212 (3)	
H25	1.0498	0.4296	0.3501	0.025*	
C26	0.8270 (2)	0.47469 (8)	0.27240 (8)	0.0220 (3)	
H26	0.9139	0.4718	0.2325	0.026*	
C27	0.8533 (2)	0.42235 (7)	0.47540 (8)	0.0216 (3)	
C28	1.1394 (3)	0.36749 (9)	0.55144 (9)	0.0318 (4)	
H28A	1.0950	0.3944	0.5932	0.048*	
H28B	1.2992	0.3642	0.5564	0.048*	
H28C	1.0765	0.3208	0.5518	0.048*	
C31	0.3270 (2)	0.47814 (7)	0.15514 (8)	0.0188 (3)	
C32	0.3224 (2)	0.40802 (8)	0.17503 (8)	0.0207 (3)	
H32	0.4409	0.3891	0.2072	0.025*	
C33	0.1488 (2)	0.36576 (7)	0.14883 (8)	0.0216 (3)	
H33	0.1491	0.3181	0.1626	0.026*	
C34	-0.0268(2)	0.39329 (7)	0.10213 (8)	0.0200 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C35	-0.0243 (2)	0.46303 (8)	0.08209 (8)	0.0210 (3)	
H35	-0.1436	0.4820	0.0504	0.025*	
C36	0.1507 (2)	0.50481 (7)	0.10801 (8)	0.0205 (3)	
H36	0.1510	0.5523	0.0936	0.025*	
C37	-0.2229 (2)	0.35197 (8)	0.07316 (8)	0.0220 (3)	
C38	-0.3997 (3)	0.24411 (9)	0.07264 (10)	0.0312 (4)	
H38A	-0.5224	0.2627	0.0964	0.047*	
H38B	-0.3724	0.1959	0.0884	0.047*	
H38C	-0.4353	0.2458	0.0184	0.047*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0355 (6)	0.0451 (7)	0.0285 (6)	-0.0181 (5)	-0.0013 (5)	-0.0022 (5)
O2	0.0243 (5)	0.0288 (6)	0.0287 (6)	-0.0083 (4)	0.0056 (4)	-0.0029 (4)
O3	0.0357 (6)	0.0374 (6)	0.0231 (6)	0.0127 (5)	0.0088 (5)	0.0084 (5)
O4	0.0238 (5)	0.0371 (6)	0.0208 (5)	0.0077 (4)	-0.0018 (4)	0.0055 (4)
O5	0.0261 (6)	0.0356 (6)	0.0282 (6)	-0.0044 (5)	-0.0060(5)	0.0026 (5)
06	0.0270 (5)	0.0254 (5)	0.0320 (6)	-0.0065 (4)	-0.0029 (4)	-0.0014 (4)
C1	0.0184 (6)	0.0222 (7)	0.0178 (7)	0.0020 (5)	0.0010 (5)	-0.0010 (5)
C10	0.0200 (6)	0.0237 (7)	0.0184 (7)	0.0007 (5)	0.0000 (5)	-0.0005 (5)
C11	0.0176 (6)	0.0192 (7)	0.0241 (7)	0.0010 (5)	0.0015 (5)	0.0003 (5)
C12	0.0288 (7)	0.0271 (7)	0.0197 (7)	-0.0048 (6)	0.0042 (6)	0.0022 (6)
C13	0.0277 (7)	0.0282 (8)	0.0208 (7)	-0.0037 (6)	-0.0022 (6)	-0.0006 (6)
C14	0.0203 (6)	0.0190 (6)	0.0265 (7)	-0.0008 (5)	0.0026 (5)	-0.0009 (5)
C15	0.0229 (7)	0.0206 (7)	0.0220 (7)	0.0003 (5)	0.0050 (5)	0.0021 (5)
C16	0.0235 (7)	0.0211 (7)	0.0192 (7)	0.0016 (5)	-0.0011 (5)	-0.0009 (5)
C17	0.0241 (7)	0.0210 (7)	0.0254 (7)	-0.0014 (5)	0.0014 (6)	-0.0018 (6)
C18	0.0229 (7)	0.0262 (8)	0.0373 (9)	-0.0079 (6)	0.0067 (6)	-0.0047 (6)
C21	0.0191 (6)	0.0191 (6)	0.0180 (6)	-0.0007 (5)	0.0006 (5)	0.0005 (5)
C22	0.0171 (6)	0.0222 (7)	0.0206 (7)	0.0028 (5)	0.0007 (5)	0.0004 (5)
C23	0.0209 (6)	0.0223 (7)	0.0187 (7)	0.0017 (5)	0.0050 (5)	-0.0003 (5)
C24	0.0200 (6)	0.0184 (6)	0.0176 (6)	0.0005 (5)	-0.0002 (5)	-0.0001 (5)
C25	0.0166 (6)	0.0258 (7)	0.0206 (7)	0.0033 (5)	0.0006 (5)	0.0005 (5)
C26	0.0199 (6)	0.0282 (7)	0.0187 (7)	0.0026 (5)	0.0051 (5)	0.0009 (6)
C27	0.0248 (7)	0.0203 (7)	0.0192 (7)	0.0038 (5)	0.0004 (5)	0.0000 (5)
C28	0.0354 (8)	0.0336 (8)	0.0243 (8)	0.0096 (7)	-0.0056 (6)	0.0061 (6)
C31	0.0180 (6)	0.0218 (7)	0.0168 (6)	-0.0008 (5)	0.0035 (5)	-0.0014 (5)
C32	0.0192 (6)	0.0233 (7)	0.0190 (7)	0.0028 (5)	-0.0010 (5)	0.0023 (5)
C33	0.0255 (7)	0.0187 (6)	0.0207 (7)	-0.0003 (5)	0.0034 (5)	0.0010 (5)
C34	0.0199 (6)	0.0247 (7)	0.0155 (6)	-0.0028 (5)	0.0032 (5)	-0.0031 (5)
C35	0.0197 (6)	0.0270 (7)	0.0160 (6)	0.0022 (5)	0.0004 (5)	0.0028 (5)
C36	0.0226 (7)	0.0201 (6)	0.0189 (7)	0.0013 (5)	0.0028 (5)	0.0037 (5)
C37	0.0241 (7)	0.0259 (7)	0.0163 (7)	-0.0018 (6)	0.0038 (5)	-0.0025 (5)
C38	0.0295 (8)	0.0297 (8)	0.0331 (9)	-0.0109 (6)	-0.0017 (7)	-0.0055 (7)

Geometric parameters (Å, °)

01-C17	1.2021 (19)	C21—C22	1.3934 (19)
O2—C17	1.3356 (19)	C21—C26	1.3967 (19)
O2—C18	1.4439 (17)	C22—H22	0.9500
O3—C27	1.2030 (18)	C22—C23	1.3857 (19)
O4—C27	1.3400 (17)	C23—H23	0.9500
O4—C28	1.4439 (18)	C23—C24	1.3921 (19)
05—C37	1,2046 (18)	C24—C25	1.391 (2)
06-C37	1.3380 (19)	C24—C27	1.4905 (19)
06-C38	1 4491 (17)	C25—H25	0.9500
C1-C10	1.341(2)	C_{25} C_{25} C_{26}	1.390(2)
C1-C21	1 4968 (19)	C26—H26	0.9500
C1 - C31	1 4922 (19)	C28_H28A	0.9800
C10_H10	0.9500	C28—H28B	0.9800
	1,4704 (10)	C_{20} H_{20}	0.9800
C_{11} C_{12}	1.4704(19) 1.403(2)	$C_{20} = 1120C$	1.308(2)
C_{11} C_{12}	1.403(2)	C_{21} C_{26}	1.396(2) 1.2062(10)
	1.599 (2)	C_{22} U_{22}	1.5905 (19)
C12—H12	0.9500	C32—H32	0.9500
C12—C13	1.382 (2)	C32—C33	1.382 (2)
С13—Н13	0.9500	C33—H33	0.9500
C13—C14	1.391 (2)	C33—C34	1.396 (2)
C14—C15	1.391 (2)	C34—C35	1.391 (2)
C14—C17	1.495 (2)	C34—C37	1.4891 (19)
C15—H15	0.9500	С35—Н35	0.9500
C15—C16	1.386 (2)	C35—C36	1.382 (2)
C16—H16	0.9500	С36—Н36	0.9500
C18—H18A	0.9800	C38—H38A	0.9800
C18—H18B	0.9800	C38—H38B	0.9800
C18—H18C	0.9800	C38—H38C	0.9800
C17—O2—C18	114.39 (12)	C23—C24—C27	118.03 (12)
C27—O4—C28	115.36 (12)	C25—C24—C23	119.75 (13)
C37—O6—C38	114.49 (12)	C25—C24—C27	122.17 (12)
C10-C1-C21	126.32 (13)	С24—С25—Н25	120.0
C10-C1-C31	119.49 (13)	C26—C25—C24	120.08 (13)
C31—C1—C21	114.16 (12)	С26—С25—Н25	120.0
C1-C10-H10	115.2	C21—C26—H26	119.8
C1-C10-C11	129.60 (13)	C25—C26—C21	120.40 (13)
C11—C10—H10	115.2	С25—С26—Н26	119.8
C12—C11—C10	124.65 (13)	O3—C27—O4	123.37 (13)
C16—C11—C10	117.39 (13)	O3—C27—C24	124.22 (13)
C16—C11—C12	117.95 (13)	O4—C27—C24	112.41 (12)
C11—C12—H12	119.6	O4—C28—H28A	109.5
C13—C12—C11	120.77 (14)	O4—C28—H28B	109.5
C13—C12—H12	119.6	O4—C28—H28C	109.5
C12—C13—H13	119.8	H28A—C28—H28B	109.5
C12—C13—C14	120.47 (14)	H28A—C28—H28C	109.5

119.8	H28B—C28—H28C	109.5
119.48 (13)	C32—C31—C1	120.65 (12)
117.72 (13)	C36—C31—C1	121.06 (13)
122.80 (13)	C36—C31—C32	118.29 (12)
120.0	С31—С32—Н32	119.4
119.93 (13)	C33—C32—C31	121.24 (13)
120.0	С33—С32—Н32	119.4
119.4	С32—С33—Н33	120.1
121.20 (13)	C32—C33—C34	119.78 (13)
119.4	С34—С33—Н33	120.1
123.56 (14)	C33—C34—C37	123.26 (13)
124.15 (14)	C35—C34—C33	119.49 (13)
112.30 (12)	C35—C34—C37	117.24 (13)
109.5	С34—С35—Н35	119.8
109.5	C36—C35—C34	120.39 (13)
109.5	С36—С35—Н35	119.8
109.5	С31—С36—Н36	119.6
109.5	C35—C36—C31	120.81 (13)
109.5	С35—С36—Н36	119.6
119.09 (12)	O5—C37—O6	123.55 (13)
118.98 (13)	O5—C37—C34	124.19 (14)
121.67 (12)	O6—C37—C34	112.26 (12)
119.6	O6—C38—H38A	109.5
120.73 (13)	O6—C38—H38B	109.5
119.6	O6—C38—H38C	109.5
120.0	H38A—C38—H38B	109.5
119.99 (13)	H38A—C38—H38C	109.5
120.0	H38B—C38—H38C	109.5
	119.8 $119.48 (13)$ $117.72 (13)$ $122.80 (13)$ 120.0 $119.93 (13)$ 120.0 119.4 $121.20 (13)$ 119.4 $123.56 (14)$ $124.15 (14)$ $112.30 (12)$ 109.5 $109.5 (12)$ $118.98 (13)$ $121.67 (12)$ 119.6 $120.73 (13)$ 119.6 120.0	119.8 $H28B-C28-H28C$ 119.48 (13) $C32-C31-C1$ 117.72 (13) $C36-C31-C1$ 122.80 (13) $C36-C31-C32$ 120.0 $C31-C32-H32$ 119.93 (13) $C33-C32-C31$ 120.0 $C33-C32-H32$ 119.4 $C32-C33-H33$ 121.20 (13) $C32-C33-C34$ 119.4 $C34-C33-H33$ 123.56 (14) $C35-C34-C37$ 124.15 (14) $C35-C34-C37$ 109.5 $C36-C35-H35$ 109.5 $C36-C35-H35$ 109.5 $C36-C35-H35$ 109.5 $C36-C35-H36$ 109.5 $C35-C34-C31$ 109.5 $C35-C36-C31$ 109.5 $C35-C36-C31$ 109.5 $C35-C36-C31$ 109.5 $C35-C37-C34$ 119.09 (12) $O5-C37-C34$ 119.6 $O6-C38-H38A$ 120.0 $H38A-C38-H38B$ 119.99 (13) $H38A-C38-H38C$ 120.0 $H38B-C38-H38C$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C10—H10…O5 ⁱ	0.95	2.51	3.4082 (18)	159
C18—H18 <i>B</i> ····O4 ⁱⁱ	0.98	2.72	3.5520 (19)	144
C28—H28C···O6 ⁱⁱⁱ	0.98	2.85	3.769 (2)	156
C38—H38A····O1 ^{iv}	0.98	2.79	3.275 (2)	111
C38—H38 <i>B</i> ····O3 ^v	0.98	2.57	3.339 (2)	135
C38—H38C····O2 ^{vi}	0.98	2.66	3.595 (2)	159

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+3, *y*+1/2, -*z*+1/2; (iii) *x*+1, -*y*+1/2, *z*+1/2; (iv) -*x*+1, *y*-1/2, -*z*+1/2; (v) *x*-1, -*y*+1/2, *z*-1/2; (vi) -*x*+1, -*y*+1, -*z*.