organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Chloro-2-[1-(4-ethyl­phen­yl)-4,5-di­phenyl-1H-imidazol-2-yl]phenol

aDepartment of Studies in Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore 560 056, Karnataka, India
*Correspondence e-mail: noorsb05@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 28 November 2019; accepted 18 December 2019; online 3 January 2020)

In the title compound, C29H23ClN2O, the 5-chloro­phenol ring and the imidazole ring are nearly coplanar, with a dihedral angle of 15.76 (9)° between them. The ethyl­phenyl ring and the two phenyl rings subtend angles of 71.09 (7), 43.95 (5) and 36.53 (9)°, respectively, with the imidazole plane. An intra­molecular O—H⋯N hydrogen bond supports the mol­ecular conformation, and an inter­molecular C—H⋯O inter­action, originating from an ortho-phenyl H atom, stabilizes the packing arrangement. In addition, a weak C—H⋯π inter­action, also involving an ortho-phenyl H atom, is observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The imidazole moiety is known to play an important role in biological systems being a part of the histidyl residue in peptides and proteins (Sigel et al., 2000[Sigel, H., Saha, A., Saha, N., Carloni, P., Kapinos, L. E. & Griesser, R. (2000). J. Inorg. Biochem. 78, 129-137.]). Multi-substituted imidazoles are an important class of heterocyclic compounds that exhibit diverse biological activities such as anti-inflammatory (Gaonkar et al., 2009[Gaonkar, S. L., Rai, K. M. L. & Shetty, N. S. (2009). Med. Chem. Res. 18, 221-230.]), anti­leishmanial (Bhandari et al., 2010[Bhandari, K., Srinivas, N., Marrapu, V. K., Verma, A., Srivastava, S. & Gupta, S. (2010). Bioorg. Med. Chem. Lett. 20, 291-293.]) and anti­cancer (Ozkay et al., 2010[Özkay, Y., Işıkdağ, , İncesu, Z. & Akalın, G. (2010). Eur. J. Med. Chem. 45, 3320-3328.]) activities. As part of our ongoing studies in this area, we herein report the synthesis and crystal structure of the title compound, 4-chloro-2-(1-(4-ethyl­phen­yl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (Fig. 1[link]). The 5-chloro­phenol ring, two phenyl rings and the ethyl­phenyl ring are substituents on the central five-membered imidazole ring (C1/N2/C3/C2/N1). The imidazole and the 5-chloro­phenol rings are close to coplanar with a dihedral angle of 15.76 (9)° between them. The imidazole ring subtends at dihedral angles of 71.09 (7), 43.95 (5) and 36.53 (9)° with the ethyl­phenyl ring and the two phenyl rings (C18–C23 and C24–C29), respectively. A strong intra­molecular O1—H1⋯N1 hydrogen bond is formed between the O1 atom of the 5-chloro­phenol group and atom N1 of the imidazole ring (Fig. 2[link]), forming an S11(6) graph-set motif, which stabilizes the close to coplanar arrangement of the imidazole and phenol rings.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2]
Figure 2
Unit-cell packing of the title compound showing the intra­molecular O—H⋯N inter­actions, inter­molecular C—H⋯O inter­actions and inter­molecular C—H⋯π inter­actions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.

In the crystal, atom C19 of the phenyl ring and the hydroxyl O1 atom of the phenol group are involved in a weak C19—H19⋯O1i inter­action that links the mol­ecules along the a-axis direction (Fig. 2[link]). Thus the hydroxyl O atom acts as both a hydrogen-bond donor and an acceptor. The crystal structure is further consolidated by a C15—H15⋯Cgii inter­action with the aryl ring (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 aryl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.00 1.66 2.549 (1) 145
C19—H19⋯O1i 0.93 2.57 3.242 (3) 129
C15—H15⋯Cgii 0.93 2.72 3.527 (2) 146
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2.

Synthesis and crystallization

The title compound was synthesized by the one-pot reaction of benzil (10 mmol), 4-ethyl­aniline (10 mmol) and 5-chloro-2-hy­droxy­benzaldehyde (10 mmol) with ammonium acetate (10 mmol) in a glacial acetic acid (20 ml) medium. The mixture was refluxed for 5 h at 343 K, the progress of the reaction being monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and poured into 100 ml of ice-cold water. The resulting precipitate was filtered, dried and further purified by column chromatography (7:3 petroleum ether:ethyl acetate) and isolated in good yield (85%). The product was recrystallized from ethanol solution. IR (KBr) (cm−1): 3448.63 (OH), 1947.51 (C=C), 1601.84 (C=N). 1H NMR (CDCl3): δ 1.242 (t, J = 7.2 Hz, 2H), 2.64–2.68 (q, J = 7.2 Hz, 3H), 7.09–7.26 (m, 13H), 7.50–7.52 (m, 4H), 6.34–6.35 (s, 1H). GC–MS (EI, 70 eV): m/z: 450.95.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C29H23ClN2O
Mr 450.94
Crystal system, space group Monoclinic, P21/n
Temperature (K) 297
a, b, c (Å) 9.0627 (6), 10.7595 (8), 24.4636 (19)
β (°) 100.599 (3)
V3) 2344.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.45 × 0.38 × 0.35
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.821, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 34596, 4807, 3593
Rint 0.044
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.03
No. of reflections 4807
No. of parameters 301
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.29
Computer programs: SMARTand SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

4-Chloro-2-[1-(4-ethylphenyl)-4,5-diphenyl-1H-imidazol-2-yl]phenol top
Crystal data top
C29H23ClN2OF(000) = 944
Mr = 450.94Dx = 1.277 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0627 (6) ÅCell parameters from 4807 reflections
b = 10.7595 (8) Åθ = 2.6–26.5°
c = 24.4636 (19) ŵ = 0.19 mm1
β = 100.599 (3)°T = 297 K
V = 2344.7 (3) Å3Block, colorless
Z = 40.45 × 0.38 × 0.35 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3593 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.821, Tmax = 0.928k = 1313
34596 measured reflectionsl = 3030
4807 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0461P)2 + 1.5828P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4807 reflectionsΔρmax = 0.26 e Å3
301 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0135 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed at calculated positions in the riding-model approximation, with O—H = 1.00 Å and C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methine H atoms, respectively, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.10374 (7)0.46682 (6)1.17331 (2)0.0588 (2)
O10.67555 (18)0.23218 (14)0.99506 (7)0.0538 (4)
H10.647 (3)0.2890 (19)0.9625 (11)0.081*
N10.65078 (19)0.43455 (15)0.93998 (7)0.0412 (4)
N20.71390 (18)0.61739 (15)0.97832 (6)0.0367 (4)
C10.7255 (2)0.49090 (18)0.98494 (8)0.0374 (4)
C20.6291 (2)0.64067 (18)0.92560 (7)0.0365 (4)
C30.5904 (2)0.52542 (18)0.90324 (8)0.0372 (4)
C40.8032 (2)0.42008 (18)1.03298 (8)0.0369 (4)
C50.7687 (2)0.29210 (19)1.03599 (8)0.0404 (5)
C60.8346 (2)0.2226 (2)1.08197 (9)0.0451 (5)
H60.8088580.1393671.0842680.054*
C70.9371 (2)0.2747 (2)1.12404 (8)0.0453 (5)
H70.9800550.2274971.1546860.054*
C80.9756 (2)0.3984 (2)1.12027 (8)0.0407 (5)
C90.9117 (2)0.47049 (19)1.07553 (8)0.0401 (4)
H90.9406360.5530511.0735560.048*
C100.7779 (2)0.70811 (17)1.01924 (7)0.0343 (4)
C110.7207 (2)0.7207 (2)1.06745 (8)0.0410 (5)
H110.6340200.6785091.0717020.049*
C120.7936 (2)0.7967 (2)1.10933 (8)0.0465 (5)
H120.7557550.8044761.1420250.056*
C130.9217 (2)0.86161 (19)1.10368 (8)0.0431 (5)
C140.9724 (2)0.8518 (2)1.05376 (9)0.0483 (5)
H141.0559330.8973771.0486050.058*
C150.9012 (2)0.7755 (2)1.01134 (8)0.0428 (5)
H150.9363770.7699090.9780270.051*
C161.0063 (3)0.9367 (2)1.15138 (10)0.0616 (7)
H16A0.9362470.9898761.1659580.074*
H16B1.0782510.9896141.1377680.074*
C171.0880 (4)0.8561 (3)1.19769 (13)0.0940 (11)
H17A1.1399620.9077841.2270080.141*
H17B1.0170210.8046721.2118670.141*
H17C1.1590050.8044101.1836810.141*
C180.6046 (2)0.76627 (18)0.90155 (8)0.0372 (4)
C190.5629 (3)0.8667 (2)0.93102 (9)0.0504 (5)
H190.5499540.8558680.9675640.061*
C200.5404 (3)0.9826 (2)0.90656 (11)0.0641 (7)
H200.5139161.0494260.9268590.077*
C210.5569 (3)0.9994 (2)0.85245 (12)0.0686 (8)
H210.5406901.0772610.8359390.082*
C220.5975 (3)0.9009 (2)0.82270 (10)0.0639 (7)
H220.6081190.9123050.7859410.077*
C230.6226 (2)0.7851 (2)0.84696 (9)0.0475 (5)
H230.6517510.7193740.8266570.057*
C240.4960 (2)0.48681 (18)0.85017 (8)0.0376 (4)
C250.3671 (2)0.5502 (2)0.82669 (9)0.0490 (5)
H250.3412560.6231450.8430450.059*
C260.2763 (3)0.5057 (3)0.77900 (10)0.0602 (6)
H260.1900350.5491940.7635270.072*
C270.3123 (3)0.3978 (3)0.75417 (9)0.0599 (6)
H270.2502980.3680550.7223020.072*
C280.4405 (3)0.3347 (2)0.77687 (9)0.0568 (6)
H280.4660970.2623410.7600370.068*
C290.5316 (3)0.3779 (2)0.82458 (8)0.0471 (5)
H290.6176700.3339290.8398170.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0561 (3)0.0675 (4)0.0446 (3)0.0094 (3)0.0121 (2)0.0065 (3)
O10.0686 (10)0.0383 (8)0.0474 (9)0.0101 (7)0.0079 (7)0.0039 (7)
N10.0487 (10)0.0358 (9)0.0348 (8)0.0001 (7)0.0034 (7)0.0022 (7)
N20.0440 (9)0.0315 (8)0.0318 (8)0.0011 (7)0.0006 (7)0.0009 (6)
C10.0424 (10)0.0343 (10)0.0326 (9)0.0000 (8)0.0008 (8)0.0025 (8)
C20.0400 (10)0.0363 (10)0.0311 (9)0.0031 (8)0.0011 (8)0.0010 (8)
C30.0414 (10)0.0362 (10)0.0316 (9)0.0025 (8)0.0006 (8)0.0026 (8)
C40.0421 (10)0.0335 (10)0.0336 (9)0.0027 (8)0.0027 (8)0.0030 (8)
C50.0450 (11)0.0380 (10)0.0372 (10)0.0005 (9)0.0043 (8)0.0021 (8)
C60.0543 (12)0.0377 (11)0.0433 (11)0.0023 (9)0.0086 (9)0.0089 (9)
C70.0515 (12)0.0488 (12)0.0347 (10)0.0112 (10)0.0051 (9)0.0110 (9)
C80.0416 (10)0.0466 (12)0.0320 (10)0.0096 (9)0.0020 (8)0.0016 (9)
C90.0441 (11)0.0364 (10)0.0370 (10)0.0052 (8)0.0001 (8)0.0020 (8)
C100.0372 (9)0.0331 (9)0.0304 (9)0.0013 (8)0.0004 (7)0.0011 (7)
C110.0377 (10)0.0483 (12)0.0373 (10)0.0013 (9)0.0076 (8)0.0021 (9)
C120.0518 (12)0.0558 (13)0.0321 (10)0.0068 (10)0.0083 (9)0.0040 (9)
C130.0497 (12)0.0388 (11)0.0368 (10)0.0045 (9)0.0024 (9)0.0023 (9)
C140.0479 (12)0.0486 (12)0.0478 (12)0.0126 (10)0.0073 (9)0.0018 (10)
C150.0477 (11)0.0466 (12)0.0355 (10)0.0050 (9)0.0109 (9)0.0023 (9)
C160.0747 (16)0.0534 (14)0.0492 (13)0.0026 (12)0.0083 (12)0.0121 (11)
C170.113 (3)0.083 (2)0.0662 (18)0.0077 (19)0.0367 (17)0.0015 (16)
C180.0393 (10)0.0357 (10)0.0337 (9)0.0006 (8)0.0007 (8)0.0013 (8)
C190.0603 (14)0.0431 (12)0.0457 (12)0.0093 (10)0.0038 (10)0.0019 (10)
C200.0767 (17)0.0389 (12)0.0701 (17)0.0139 (12)0.0044 (13)0.0034 (12)
C210.0850 (19)0.0389 (13)0.0733 (18)0.0027 (12)0.0085 (14)0.0181 (12)
C220.0799 (17)0.0586 (15)0.0495 (14)0.0013 (13)0.0021 (12)0.0194 (12)
C230.0583 (13)0.0450 (12)0.0377 (11)0.0030 (10)0.0047 (9)0.0056 (9)
C240.0414 (10)0.0391 (10)0.0307 (9)0.0038 (8)0.0025 (8)0.0006 (8)
C250.0476 (12)0.0532 (13)0.0431 (11)0.0037 (10)0.0000 (9)0.0028 (10)
C260.0478 (13)0.0774 (18)0.0484 (13)0.0038 (12)0.0092 (10)0.0020 (12)
C270.0625 (15)0.0707 (17)0.0408 (12)0.0156 (13)0.0060 (11)0.0064 (12)
C280.0792 (17)0.0480 (13)0.0403 (12)0.0074 (12)0.0030 (11)0.0107 (10)
C290.0577 (13)0.0409 (11)0.0391 (11)0.0029 (10)0.0009 (9)0.0013 (9)
Geometric parameters (Å, º) top
Cl1—C81.738 (2)C14—H140.9300
O1—C51.349 (2)C15—H150.9300
O1—H11.00 (3)C16—C171.509 (4)
N1—C11.327 (2)C16—H16A0.9700
N1—C31.372 (2)C16—H16B0.9700
N2—C11.372 (2)C17—H17A0.9600
N2—C21.397 (2)C17—H17B0.9600
N2—C101.441 (2)C17—H17C0.9600
C1—C41.468 (3)C18—C231.390 (3)
C2—C31.375 (3)C18—C191.390 (3)
C2—C181.474 (3)C19—C201.382 (3)
C3—C241.477 (3)C19—H190.9300
C4—C91.403 (3)C20—C211.371 (4)
C4—C51.417 (3)C20—H200.9300
C5—C61.391 (3)C21—C221.373 (4)
C6—C71.373 (3)C21—H210.9300
C6—H60.9300C22—C231.381 (3)
C7—C81.383 (3)C22—H220.9300
C7—H70.9300C23—H230.9300
C8—C91.379 (3)C24—C251.383 (3)
C9—H90.9300C24—C291.394 (3)
C10—C151.376 (3)C25—C261.383 (3)
C10—C111.379 (3)C25—H250.9300
C11—C121.380 (3)C26—C271.377 (4)
C11—H110.9300C26—H260.9300
C12—C131.384 (3)C27—C281.372 (4)
C12—H120.9300C27—H270.9300
C13—C141.386 (3)C28—C291.381 (3)
C13—C161.507 (3)C28—H280.9300
C14—C151.386 (3)C29—H290.9300
C5—O1—H1109.5C14—C15—H15120.5
C1—N1—C3107.38 (16)C13—C16—C17112.5 (2)
C1—N2—C2107.68 (15)C13—C16—H16A109.1
C1—N2—C10125.28 (15)C17—C16—H16A109.1
C2—N2—C10127.04 (16)C13—C16—H16B109.1
N1—C1—N2109.82 (16)C17—C16—H16B109.1
N1—C1—C4121.54 (17)H16A—C16—H16B107.8
N2—C1—C4128.64 (17)C16—C17—H17A109.5
C3—C2—N2105.22 (16)C16—C17—H17B109.5
C3—C2—C18131.25 (17)H17A—C17—H17B109.5
N2—C2—C18123.34 (17)C16—C17—H17C109.5
N1—C3—C2109.88 (16)H17A—C17—H17C109.5
N1—C3—C24118.18 (17)H17B—C17—H17C109.5
C2—C3—C24131.90 (18)C23—C18—C19118.45 (19)
C9—C4—C5117.94 (17)C23—C18—C2118.78 (18)
C9—C4—C1124.14 (17)C19—C18—C2122.77 (18)
C5—C4—C1117.91 (17)C20—C19—C18120.6 (2)
O1—C5—C6117.42 (18)C20—C19—H19119.7
O1—C5—C4122.68 (17)C18—C19—H19119.7
C6—C5—C4119.88 (19)C21—C20—C19120.2 (2)
C7—C6—C5121.2 (2)C21—C20—H20119.9
C7—C6—H6119.4C19—C20—H20119.9
C5—C6—H6119.4C20—C21—C22119.8 (2)
C6—C7—C8119.18 (18)C20—C21—H21120.1
C6—C7—H7120.4C22—C21—H21120.1
C8—C7—H7120.4C21—C22—C23120.5 (2)
C9—C8—C7121.29 (19)C21—C22—H22119.8
C9—C8—Cl1118.69 (17)C23—C22—H22119.8
C7—C8—Cl1120.00 (15)C22—C23—C18120.4 (2)
C8—C9—C4120.42 (19)C22—C23—H23119.8
C8—C9—H9119.8C18—C23—H23119.8
C4—C9—H9119.8C25—C24—C29118.41 (19)
C15—C10—C11120.72 (18)C25—C24—C3122.32 (19)
C15—C10—N2119.52 (17)C29—C24—C3119.12 (18)
C11—C10—N2119.63 (17)C26—C25—C24120.3 (2)
C10—C11—C12119.32 (19)C26—C25—H25119.8
C10—C11—H11120.3C24—C25—H25119.8
C12—C11—H11120.3C27—C26—C25120.8 (2)
C11—C12—C13121.36 (19)C27—C26—H26119.6
C11—C12—H12119.3C25—C26—H26119.6
C13—C12—H12119.3C28—C27—C26119.4 (2)
C12—C13—C14118.03 (19)C28—C27—H27120.3
C12—C13—C16120.6 (2)C26—C27—H27120.3
C14—C13—C16121.3 (2)C27—C28—C29120.4 (2)
C13—C14—C15121.4 (2)C27—C28—H28119.8
C13—C14—H14119.3C29—C28—H28119.8
C15—C14—H14119.3C28—C29—C24120.7 (2)
C10—C15—C14119.03 (19)C28—C29—H29119.6
C10—C15—H15120.5C24—C29—H29119.6
C3—N1—C1—N20.4 (2)C15—C10—C11—C123.6 (3)
C3—N1—C1—C4179.45 (17)N2—C10—C11—C12172.22 (18)
C2—N2—C1—N11.1 (2)C10—C11—C12—C130.8 (3)
C10—N2—C1—N1178.44 (17)C11—C12—C13—C142.3 (3)
C2—N2—C1—C4179.94 (19)C11—C12—C13—C16175.5 (2)
C10—N2—C1—C40.5 (3)C12—C13—C14—C152.6 (3)
C1—N2—C2—C31.3 (2)C16—C13—C14—C15175.1 (2)
C10—N2—C2—C3178.22 (17)C11—C10—C15—C143.3 (3)
C1—N2—C2—C18174.15 (18)N2—C10—C15—C14172.56 (18)
C10—N2—C2—C186.3 (3)C13—C14—C15—C100.1 (3)
C1—N1—C3—C20.4 (2)C12—C13—C16—C1771.3 (3)
C1—N1—C3—C24177.67 (17)C14—C13—C16—C17106.4 (3)
N2—C2—C3—N11.1 (2)C3—C2—C18—C2340.4 (3)
C18—C2—C3—N1173.9 (2)N2—C2—C18—C23133.8 (2)
N2—C2—C3—C24176.7 (2)C3—C2—C18—C19139.0 (2)
C18—C2—C3—C248.4 (4)N2—C2—C18—C1946.8 (3)
N1—C1—C4—C9164.28 (19)C23—C18—C19—C200.2 (3)
N2—C1—C4—C916.9 (3)C2—C18—C19—C20179.6 (2)
N1—C1—C4—C514.4 (3)C18—C19—C20—C211.0 (4)
N2—C1—C4—C5164.4 (2)C19—C20—C21—C220.7 (4)
C9—C4—C5—O1174.41 (19)C20—C21—C22—C230.4 (4)
C1—C4—C5—O14.4 (3)C21—C22—C23—C181.1 (4)
C9—C4—C5—C64.1 (3)C19—C18—C23—C220.8 (3)
C1—C4—C5—C6177.12 (19)C2—C18—C23—C22178.6 (2)
O1—C5—C6—C7176.40 (19)N1—C3—C24—C25140.6 (2)
C4—C5—C6—C72.2 (3)C2—C3—C24—C2537.0 (3)
C5—C6—C7—C80.3 (3)N1—C3—C24—C2934.8 (3)
C6—C7—C8—C90.9 (3)C2—C3—C24—C29147.5 (2)
C6—C7—C8—Cl1179.40 (16)C29—C24—C25—C260.1 (3)
C7—C8—C9—C41.1 (3)C3—C24—C25—C26175.4 (2)
Cl1—C8—C9—C4177.38 (15)C24—C25—C26—C270.1 (4)
C5—C4—C9—C83.6 (3)C25—C26—C27—C280.6 (4)
C1—C4—C9—C8177.71 (19)C26—C27—C28—C290.8 (4)
C1—N2—C10—C15107.0 (2)C27—C28—C29—C240.6 (4)
C2—N2—C10—C1573.5 (3)C25—C24—C29—C280.1 (3)
C1—N2—C10—C1168.8 (3)C3—C24—C29—C28175.8 (2)
C2—N2—C10—C11110.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 aryl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.001.662.549 (1)145
C19—H19···O1i0.932.573.242 (3)129
C15—H15···Cgii0.932.723.527 (2)146
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2.
 

References

First citationBhandari, K., Srinivas, N., Marrapu, V. K., Verma, A., Srivastava, S. & Gupta, S. (2010). Bioorg. Med. Chem. Lett. 20, 291–293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaonkar, S. L., Rai, K. M. L. & Shetty, N. S. (2009). Med. Chem. Res. 18, 221–230.  Web of Science CrossRef CAS Google Scholar
First citationÖzkay, Y., Işıkdağ, , İncesu, Z. & Akalın, G. (2010). Eur. J. Med. Chem. 45, 3320–3328.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSigel, H., Saha, A., Saha, N., Carloni, P., Kapinos, L. E. & Griesser, R. (2000). J. Inorg. Biochem. 78, 129–137.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds