metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis{2,6-bis­­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine}­nickel(II) dinitrate dihydrate

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS, 39212, USA, and bDepartment of Chemistry & Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
*Correspondence e-mail: alamgir.hossain@jsums.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 November 2019; accepted 17 December 2019; online 20 December 2019)

In the title hydrated salt, [Ni(C21H17F2N3)2](NO3)2·2H2O, the central NiII ion is coordinated by six N atoms from two tridentate chelating 2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine ligands. While the central NiII ion is six-coordinate, its environment is distorted from an octa­hedral structure because of the unequal Ni—N distances. The Ni—N bond lengths vary from 1.8642 (14) to 2.2131 (15) Å, while the N—Ni—N angles range from 79.98 (6) to 104.44 (6)°. Three coordinating sites of each chelating agent are almost coplanar with respect to the pyridine ring, and two pyridine moieties are perpendicular to each other. Two non-coordinating nitrate anions within the asymmetric unit balance the charges of the central metal ion, and are linked with two crystal water mol­ecules, forming a water–nitrate cyclic tetra­meric unit [O⋯O = 2.813 (2) to 3.062 (2) Å]. In an isolated mol­ecule, the fluoro­phenyl rings of one ligand are stacked with the central ring of the other ligand via ππ inter­actions, with the closest centroid-to-plane distances being 3.359 (6), 3.408 (5), 3.757 (6) and 3.659 (5) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases containing mol­ecular clefts with multiple donor atoms are attractive chelating ligands in the area of coordination chemistry. The incorporation of transition-metal ions within the Schiff base-derived mol­ecular frameworks can make them potentially useful in a number of biomedical allocations (Chaudhary & Guragain, 2019[Chaudhary, N. K. & Guragain, B. (2019). Asian J. Chem. 31, 951-959.]). Because of the excellent chelating properties of Schiff bases derived from multidentate ligands, they are widely used to coordinate transition-metal ions (Guerriero et al., 1992[Guerriero, P., Vigato, P. A., Fenton, D. E. & Hellier, P. C. (1992). Acta Chem. Scand. 46, 1025-1046.]; Vigato & Tamburini, 2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]; Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]; da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1-8.]). Such complexes have been extensively used in many chemical, biochemical and analytical and anti­microbial applications. Consequently, understanding the structural aspects of Schiff base-derived metal complexes could provide useful information to predict their applications (Skyrianou et al., 2010[Skyrianou, K. C., Perdih, F., Turel, I., Kessissoglou, D. P. & Psomas, G. (2010). J. Inorg. Biochem. 104, 161-170.]). Herein we report the crystal structure of an NiII complex with a Schiff base, bis­{2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine}­nickel(II) dinitrate dihydrate.

The asymmetric unit of the title compound contains one NiII ion, two 2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine ligands, two nitrate anions and two water mol­ecules. While the central Ni ion is six-coordinate (Fig. 1[link]), the environment is considerably distorted from an octa­hedral structure because of the unequal Ni—N bond lengths. The Ni—N bond lengths involving the pyridine rings range from 1.8647 (17) to 2.2131 (18) Å. The coordination sphere of Ni in this N-containing environment is, in comparison with other structures (Matthews et al., 2017[Matthews, M., Sendzik, M., Bruggeman, A., Kearns, C., Oliver, A. G. & Babbini, D. C. (2017). Acta Cryst. E73, 1167-1171.]; Basaran et al., 2015[Basaran, I., Rhaman, M. M., Powell, D. R. & Hossain, M. A. (2015). Acta Cryst. E71, m226-m227.]), in fact unusual. Such a distortion is rather characteristic for CuII or MnIII complexes (Salaudeen et al., 2008[Salaudeen, A. A., Kilner, C. A. & Halcrow, M. A. (2008). Chem. Commun. pp. 5200-5202.]; Halcrow, 2013[Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.]). However, chemical analysis unambiguously confirmed the presence of NiII in the title salt. The N—Ni—N angles range from 80.00 (7) to 104.44 (7)°. Three coordinating nitro­gen atoms and the pyridine ring (r.m.s. deviation = 0.004 Å) of each chelating group are nearly co-planar, with a dihedral angle of 3.14 (2)°. Two pyridine rings (r.m.s. deviation = 0.004 Å) are almost perpendicular to each other, with a dihedral angle of 89.53 (4)°, and coordinate to the metal ion through nitro­gen atoms, as seen in a closely related nickel(II) complex (Basaran et al., 2015[Basaran, I., Rhaman, M. M., Powell, D. R. & Hossain, M. A. (2015). Acta Cryst. E71, m226-m227.]).

[Figure 1]
Figure 1
Asymmetric unit of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; O—H⋯O hydrogen bonds are shown as light-blue lines.

Two nitrate anions within the asymmetric unit, that are located outside the coordination sphere to balance the charges of the central metal ion, are hydrogen-bonded with two crystal water mol­ecules via four hydrogen bonds [O⋯O = 2.811 (3)–3.061 (3) Å; Table 1[link]], forming an isolated anion–water unit with an R44(12) graph-set motif. In an isolated cationic complex mol­ecule, two fluoro­phenyl rings of one ligand sandwich the pyridine ring of the other ligand via ππ inter­actions, with the closest centroid-to-plane distances being 3.359 (6), 3.408 (5), 3.757 (6) and 3.659 (5) Å. Charge-assisted C—H⋯O inter­actions between the cationic complexes and the nitrate anions as well as C—H⋯F inter­actions between adjacent cationic complexes lead to the formation of a three-dimensional network structure. Fig. 2[link] shows a packing plot, displaying the hydrogen-bonded anionic units together with the packing of the mol­ecules in the unit cell.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O3C 0.83 (2) 2.00 (2) 2.814 (2) 167 (3)
O1S—H2S⋯O2D 0.86 (2) 1.96 (2) 2.813 (2) 174 (3)
O1T—H1T⋯O1C 0.87 (2) 2.03 (2) 2.876 (2) 166 (3)
O1T—H2T⋯O1D 0.85 (2) 2.21 (2) 3.062 (2) 178 (3)
C2—H2⋯O3Ci 0.95 2.41 3.303 (2) 157
C4—H4⋯O1Sii 0.95 2.40 3.185 (2) 140
C13—H13⋯F1iii 0.95 2.39 3.240 (3) 149
C14—H14⋯O1Si 0.95 2.33 3.227 (2) 158
C15—H15B⋯O1Div 0.99 2.55 3.487 (2) 158
C18—H18⋯F3v 0.95 2.48 3.373 (3) 156
C23—H23⋯O2C 0.95 2.45 3.239 (3) 140
C27—H27⋯O3Civ 0.95 2.41 3.343 (2) 166
C28—H28A⋯O2Dii 0.99 2.56 3.540 (3) 171
C33—H33⋯F4vi 0.95 2.47 3.320 (3) 150
C35—H35⋯F3vii 0.95 2.52 3.302 (2) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Crystal packing of the title compound showing hydrogen-bonded anionic units (light-blue lines) together with the packing of the mol­ecules in the unit cell, as viewed approximately along the a axis. For clarity, C—H⋯O and C—H⋯F hydrogen bonds are not shown.

Synthesis and crystallization

The synthesis of the Schiff base was performed following the method reported previously (Basaran et al., 2015[Basaran, I., Rhaman, M. M., Powell, D. R. & Hossain, M. A. (2015). Acta Cryst. E71, m226-m227.]). In a typical reaction, 2,6-di­formyl­pyridine (1.85 mmol) and 4-fluoro­benzyl­amine (3.70 mmol) were mixed in 20 ml of methanol, and the mixture was left overnight with constant stirring at room temperature. The solvent was evaporated to provide a colourless powder. Yield: 90%. 1H NMR (500 MHz, CDCl3, TMS): δ 8.51 (s, 2H, imine proton), 8.09 (d, 2H, J = 10 Hz, py—H), 7.81 (t, 1H, J = 10 Hz, py—H), 7.32 (m, J = 5 Hz, 4H, Bn—H), 7.04 (t, J = 5 Hz, 4H, Bn—H), 4.85 (s, 4H, NCH2). 13C NMR (125 MHz, CDCl3,): δ 163.04 (Bn—C), 162.45 (two py-C), 161.09 (Bn—C), 154.13 (two imine-C), 137.21 (py—CH), 134.26 (Bn—C) 134.24 (Bn—C), 129.76 (two Bn—CH), 129.70 (two Bn—CH), 122.65 (two py—CH), 115.49 (two Bn—CH), 115.32 (two Bn—CH), 64.14 (two CH2). ESI-MS: m/z (+) 350.21 [M + H]+. Analysis calculated for C21H17F2N3: C, 72.19; H, 4.90; N, 12.03. Found: C, 72.25; H, 4.92; N, 12.05.

The nickel complex was synthesized from the reaction of the ligand with 0.5 equiv. of nickel(II) nitrate in water. Single crystals suitable for X-ray analysis were obtained from the slow evaporation of the complex dissolved in water after two weeks. Analysis calculated for C42H34F4N6Ni(NO3)2(H2O)2; C, 54.98; H, 4.17; N, 12.21; Ni, 6.40. Found: C, 54.82; H, 4.21; N, 12.27; Ni, 6.34. Elemental analysis of C, H and N was carried out using an ECS 4010 Analytical Platform (Costech Instrument). The NiII ion was qu­anti­tatively determined from gravimetric analysis of the complex using di­methyl­glyoxime, confirming the presence of nickel(II) in the complex (Minster, 1946[Minster, J. T. (1946). Analyst, 71, 424-428.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C21H17F2N3)2](NO3)2·2H2O
Mr 917.51
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 17.0353 (13), 18.7759 (14), 25.4659 (18)
V3) 8145.3 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.56
Crystal size (mm) 0.52 × 0.40 × 0.24
 
Data collection
Diffractometer Bruker APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.685, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 161343, 8675, 7462
Rint 0.032
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.109, 1.01
No. of reflections 8675
No. of parameters 580
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.69
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, https://doi.org/10.1107/S1600576719014092]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Bis{2,6-bis[(E)-(4-fluorobenzylimino)methyl]pyridine}nickel(II) dinitrate dihydrate top
Crystal data top
[Ni(C21H17F2N3)2](NO3)2·2H2ODx = 1.496 Mg m3
Mr = 917.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9364 reflections
a = 17.0353 (13) Åθ = 2.3–26.7°
b = 18.7759 (14) ŵ = 0.56 mm1
c = 25.4659 (18) ÅT = 100 K
V = 8145.3 (10) Å3Block, bluish_black
Z = 80.52 × 0.40 × 0.24 mm
F(000) = 3792
Data collection top
Bruker APEX CCD
diffractometer
7462 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.8°, θmin = 1.6°
Tmin = 0.685, Tmax = 0.745h = 2121
161343 measured reflectionsk = 2323
8675 independent reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.064P)2 + 7.1P]
where P = (Fo2 + 2Fc2)/3
8675 reflections(Δ/σ)max = 0.003
580 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms of the water molecules were located from a difference Fourier map and were refined with distance restraints (O—H = 0.85 (2) Å) and with Uiso(H) = 1.2Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.56405 (2)0.28869 (2)0.64363 (2)0.01841 (8)
F10.63434 (12)0.22324 (10)0.89733 (6)0.0683 (5)
F20.36925 (9)0.03240 (7)0.57727 (6)0.0470 (4)
F30.89670 (8)0.41647 (8)0.50480 (5)0.0438 (3)
F40.31167 (8)0.55522 (6)0.61596 (5)0.0392 (3)
N10.52019 (8)0.34183 (7)0.69806 (5)0.0170 (3)
N20.55829 (8)0.38380 (8)0.60935 (6)0.0187 (3)
N30.55104 (9)0.21275 (7)0.69753 (6)0.0184 (3)
N40.61183 (9)0.23418 (8)0.58681 (6)0.0190 (3)
N50.69087 (9)0.29623 (8)0.66063 (6)0.0212 (3)
N60.46197 (9)0.25163 (8)0.59733 (6)0.0201 (3)
C10.49857 (10)0.30917 (9)0.74283 (7)0.0194 (3)
C20.46540 (11)0.34686 (10)0.78416 (7)0.0232 (4)
H20.4492860.3232630.8153460.028*
C30.45641 (11)0.42011 (10)0.77864 (8)0.0254 (4)
H30.4340320.4471910.8063630.030*
C40.48008 (11)0.45384 (10)0.73265 (7)0.0231 (4)
H40.4750520.5039760.7288840.028*
C50.51122 (10)0.41274 (9)0.69232 (7)0.0191 (3)
C60.53341 (10)0.43430 (9)0.63923 (7)0.0206 (3)
H60.5297330.4822430.6275700.025*
C70.57583 (11)0.40007 (10)0.55444 (7)0.0234 (4)
H7A0.5543870.4476120.5456650.028*
H7AB0.5496070.3646250.5316170.028*
C80.66288 (11)0.39936 (9)0.54347 (7)0.0227 (4)
C90.71632 (12)0.42861 (10)0.57875 (7)0.0260 (4)
H90.6981140.4460610.6115770.031*
C100.79573 (12)0.43276 (11)0.56685 (8)0.0302 (4)
H100.8323770.4511120.5915030.036*
C110.81964 (13)0.40936 (11)0.51810 (8)0.0321 (4)
C120.76922 (13)0.38008 (11)0.48242 (8)0.0338 (5)
H120.7877680.3641290.4492640.041*
C130.69037 (13)0.37403 (10)0.49549 (7)0.0288 (4)
H130.6549070.3524460.4715040.035*
C140.51882 (10)0.23369 (9)0.74059 (7)0.0203 (3)
H140.5088970.2021360.7689850.024*
C150.57673 (11)0.13819 (9)0.69424 (7)0.0218 (4)
H15A0.5803710.1179400.7300540.026*
H15B0.6295900.1361100.6781540.026*
C160.52024 (11)0.09422 (9)0.66190 (7)0.0213 (4)
C170.54625 (12)0.05882 (10)0.61703 (7)0.0254 (4)
H170.5991820.0641080.6059500.030*
C180.49532 (14)0.01572 (11)0.58828 (8)0.0326 (5)
H180.5128020.0087520.5577960.039*
C190.41938 (14)0.00969 (11)0.60527 (8)0.0330 (5)
C200.39085 (13)0.04347 (11)0.64916 (8)0.0318 (4)
H200.3376930.0379820.6596810.038*
C210.44252 (11)0.08608 (10)0.67776 (8)0.0253 (4)
H210.4244930.1098220.7084100.030*
C220.56689 (11)0.20617 (9)0.54884 (7)0.0206 (4)
C230.59935 (13)0.16824 (10)0.50687 (7)0.0278 (4)
H230.5668720.1498330.4797490.033*
C240.67990 (13)0.15809 (11)0.50567 (8)0.0327 (4)
H240.7033200.1317660.4779340.039*
C250.72610 (12)0.18666 (11)0.54530 (8)0.0297 (4)
H250.7813800.1800180.5451000.036*
C260.69029 (11)0.22510 (10)0.58523 (7)0.0229 (4)
C270.73211 (11)0.26043 (10)0.62806 (7)0.0245 (4)
H270.7874980.2569300.6315290.029*
C280.73112 (11)0.33406 (11)0.70322 (8)0.0283 (4)
H28A0.7185690.3854850.7014350.034*
H28B0.7886170.3284820.6993320.034*
C290.70543 (11)0.30453 (11)0.75535 (7)0.0264 (4)
C300.66522 (11)0.34672 (11)0.79102 (8)0.0285 (4)
H300.6540530.3949040.7824250.034*
C310.64102 (13)0.31965 (13)0.83910 (8)0.0368 (5)
H310.6134100.3485730.8635110.044*
C320.65816 (16)0.24988 (15)0.85031 (8)0.0434 (6)
C330.69808 (16)0.20601 (12)0.81624 (9)0.0423 (6)
H330.7088710.1578820.8252190.051*
C340.72215 (13)0.23395 (11)0.76841 (8)0.0339 (5)
H340.7502220.2048110.7443820.041*
C350.48277 (11)0.21748 (9)0.55641 (7)0.0218 (4)
H350.4452930.2001480.5319240.026*
C360.37800 (11)0.26274 (10)0.60653 (8)0.0272 (4)
H36A0.3625630.2397610.6399550.033*
H36B0.3474720.2404270.5778270.033*
C370.35948 (10)0.34148 (10)0.60900 (7)0.0217 (4)
C380.36431 (11)0.38280 (10)0.56371 (7)0.0238 (4)
H380.3787720.3612720.5313710.029*
C390.34813 (12)0.45525 (11)0.56546 (8)0.0278 (4)
H390.3512570.4839020.5347860.033*
C400.32736 (11)0.48422 (10)0.61331 (8)0.0265 (4)
C410.32144 (11)0.44549 (11)0.65888 (7)0.0257 (4)
H410.3065290.4672810.6910360.031*
C420.33817 (10)0.37303 (10)0.65607 (7)0.0242 (4)
H420.3349160.3447510.6869300.029*
N1C0.44870 (10)0.25225 (9)0.41568 (6)0.0270 (3)
O1C0.45857 (12)0.29359 (9)0.45374 (6)0.0453 (4)
O2C0.46221 (11)0.18737 (8)0.41992 (7)0.0447 (4)
O3C0.42413 (9)0.27623 (8)0.37264 (6)0.0321 (3)
N1D0.26557 (10)0.46087 (9)0.30779 (7)0.0300 (4)
O1D0.26571 (9)0.41323 (8)0.34230 (6)0.0378 (4)
O2D0.33011 (10)0.48588 (9)0.29188 (8)0.0479 (4)
O3D0.20287 (10)0.48652 (9)0.29197 (8)0.0516 (5)
O1S0.45995 (11)0.39752 (8)0.31231 (6)0.0382 (4)
H1S0.4519 (16)0.3656 (12)0.3342 (10)0.046*
H2S0.4180 (12)0.4219 (14)0.3062 (11)0.046*
O1T0.38587 (10)0.42834 (8)0.43101 (6)0.0362 (3)
H1T0.4134 (15)0.3897 (11)0.4336 (11)0.043*
H2T0.3526 (14)0.4229 (15)0.4063 (9)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01987 (13)0.01626 (13)0.01908 (13)0.00008 (8)0.00018 (8)0.00037 (8)
F10.0980 (14)0.0766 (12)0.0303 (8)0.0026 (10)0.0023 (8)0.0246 (7)
F20.0559 (9)0.0391 (7)0.0459 (8)0.0122 (6)0.0231 (7)0.0091 (6)
F30.0330 (7)0.0560 (8)0.0424 (7)0.0115 (6)0.0156 (6)0.0121 (6)
F40.0540 (8)0.0238 (6)0.0398 (7)0.0121 (6)0.0005 (6)0.0013 (5)
N10.0158 (7)0.0162 (7)0.0192 (7)0.0009 (5)0.0010 (5)0.0005 (5)
N20.0188 (7)0.0176 (7)0.0198 (7)0.0030 (5)0.0022 (5)0.0023 (6)
N30.0191 (7)0.0154 (7)0.0208 (7)0.0018 (5)0.0031 (6)0.0006 (5)
N40.0214 (7)0.0168 (7)0.0188 (7)0.0015 (6)0.0001 (6)0.0017 (5)
N50.0210 (7)0.0206 (7)0.0221 (7)0.0027 (6)0.0023 (6)0.0023 (6)
N60.0208 (7)0.0149 (7)0.0245 (7)0.0001 (5)0.0021 (6)0.0017 (6)
C10.0174 (8)0.0209 (8)0.0197 (8)0.0033 (6)0.0016 (6)0.0002 (6)
C20.0212 (9)0.0267 (9)0.0216 (8)0.0028 (7)0.0011 (7)0.0017 (7)
C30.0236 (9)0.0262 (9)0.0264 (9)0.0005 (7)0.0022 (7)0.0083 (7)
C40.0224 (9)0.0175 (8)0.0295 (9)0.0001 (7)0.0006 (7)0.0037 (7)
C50.0174 (8)0.0159 (8)0.0241 (8)0.0011 (6)0.0015 (6)0.0017 (6)
C60.0199 (8)0.0163 (8)0.0256 (9)0.0015 (6)0.0031 (7)0.0015 (6)
C70.0296 (9)0.0220 (9)0.0185 (8)0.0037 (7)0.0023 (7)0.0025 (7)
C80.0307 (10)0.0177 (8)0.0197 (8)0.0009 (7)0.0020 (7)0.0034 (6)
C90.0314 (10)0.0268 (9)0.0200 (8)0.0045 (8)0.0051 (7)0.0020 (7)
C100.0301 (10)0.0312 (10)0.0293 (10)0.0035 (8)0.0029 (8)0.0008 (8)
C110.0322 (10)0.0316 (10)0.0325 (10)0.0078 (8)0.0103 (8)0.0100 (8)
C120.0449 (12)0.0317 (10)0.0249 (9)0.0152 (9)0.0068 (9)0.0010 (8)
C130.0428 (11)0.0220 (9)0.0215 (9)0.0071 (8)0.0025 (8)0.0014 (7)
C140.0209 (8)0.0202 (8)0.0199 (8)0.0031 (7)0.0015 (7)0.0029 (6)
C150.0240 (9)0.0159 (8)0.0256 (9)0.0006 (7)0.0048 (7)0.0014 (7)
C160.0274 (9)0.0139 (8)0.0225 (8)0.0019 (7)0.0052 (7)0.0033 (6)
C170.0339 (10)0.0184 (8)0.0238 (9)0.0022 (7)0.0019 (8)0.0018 (7)
C180.0483 (13)0.0261 (10)0.0235 (9)0.0021 (9)0.0068 (9)0.0030 (8)
C190.0446 (12)0.0232 (9)0.0311 (10)0.0057 (9)0.0172 (9)0.0006 (8)
C200.0286 (10)0.0280 (10)0.0386 (11)0.0048 (8)0.0073 (8)0.0019 (8)
C210.0287 (10)0.0217 (9)0.0255 (9)0.0001 (7)0.0026 (7)0.0009 (7)
C220.0271 (9)0.0160 (8)0.0187 (8)0.0015 (6)0.0014 (7)0.0018 (6)
C230.0390 (11)0.0251 (9)0.0193 (8)0.0039 (8)0.0010 (8)0.0027 (7)
C240.0405 (11)0.0324 (10)0.0252 (9)0.0093 (9)0.0063 (8)0.0041 (8)
C250.0279 (10)0.0318 (10)0.0295 (10)0.0097 (8)0.0056 (8)0.0018 (8)
C260.0236 (9)0.0221 (9)0.0230 (9)0.0038 (7)0.0017 (7)0.0034 (7)
C270.0186 (8)0.0268 (9)0.0282 (9)0.0003 (7)0.0002 (7)0.0037 (8)
C280.0251 (9)0.0291 (10)0.0305 (10)0.0076 (8)0.0063 (8)0.0007 (8)
C290.0240 (9)0.0286 (9)0.0266 (9)0.0048 (8)0.0109 (7)0.0004 (7)
C300.0259 (9)0.0308 (10)0.0288 (9)0.0017 (8)0.0106 (8)0.0005 (8)
C310.0357 (11)0.0479 (13)0.0267 (10)0.0013 (10)0.0089 (9)0.0008 (9)
C320.0529 (14)0.0521 (14)0.0251 (10)0.0053 (12)0.0098 (10)0.0112 (10)
C330.0570 (15)0.0335 (11)0.0364 (12)0.0013 (10)0.0194 (11)0.0101 (9)
C340.0395 (12)0.0301 (11)0.0320 (10)0.0000 (9)0.0144 (9)0.0023 (8)
C350.0266 (9)0.0171 (8)0.0218 (8)0.0007 (7)0.0055 (7)0.0007 (6)
C360.0203 (9)0.0218 (9)0.0396 (11)0.0035 (7)0.0007 (8)0.0007 (8)
C370.0135 (8)0.0225 (9)0.0292 (9)0.0017 (6)0.0029 (7)0.0005 (7)
C380.0230 (9)0.0253 (9)0.0232 (8)0.0023 (7)0.0039 (7)0.0031 (7)
C390.0313 (10)0.0284 (10)0.0238 (9)0.0047 (8)0.0032 (8)0.0039 (7)
C400.0252 (9)0.0221 (9)0.0322 (10)0.0053 (7)0.0030 (8)0.0024 (7)
C410.0209 (9)0.0313 (10)0.0249 (9)0.0057 (7)0.0002 (7)0.0028 (7)
C420.0176 (8)0.0291 (9)0.0259 (9)0.0006 (7)0.0022 (7)0.0045 (7)
N1C0.0274 (8)0.0300 (9)0.0235 (8)0.0027 (7)0.0005 (6)0.0046 (6)
O1C0.0702 (12)0.0405 (9)0.0253 (8)0.0120 (8)0.0079 (8)0.0044 (6)
O2C0.0649 (11)0.0270 (8)0.0423 (9)0.0016 (8)0.0131 (8)0.0090 (7)
O3C0.0400 (8)0.0296 (7)0.0268 (7)0.0021 (6)0.0073 (6)0.0058 (6)
N1D0.0323 (9)0.0223 (8)0.0354 (9)0.0052 (7)0.0031 (7)0.0030 (7)
O1D0.0388 (9)0.0341 (8)0.0406 (8)0.0086 (7)0.0068 (7)0.0143 (7)
O2D0.0354 (9)0.0420 (9)0.0664 (12)0.0028 (7)0.0134 (8)0.0209 (8)
O3D0.0333 (9)0.0421 (9)0.0795 (13)0.0073 (7)0.0176 (9)0.0244 (9)
O1S0.0492 (10)0.0299 (8)0.0353 (8)0.0083 (7)0.0144 (7)0.0072 (6)
O1T0.0434 (9)0.0305 (8)0.0346 (8)0.0024 (7)0.0015 (7)0.0018 (6)
Geometric parameters (Å, º) top
Ni1—N11.8642 (14)C18—C191.369 (3)
Ni1—N41.9503 (15)C18—H180.9500
Ni1—N21.9901 (15)C19—C201.374 (3)
Ni1—N31.9916 (15)C20—C211.395 (3)
Ni1—N52.2079 (16)C20—H200.9500
Ni1—N62.2131 (15)C21—H210.9500
F1—C321.360 (3)C22—C231.398 (3)
F2—C191.365 (2)C22—C351.461 (3)
F3—C111.362 (2)C23—C241.386 (3)
F4—C401.361 (2)C23—H230.9500
N1—C11.346 (2)C24—C251.388 (3)
N1—C51.348 (2)C24—H240.9500
N2—C61.287 (2)C25—C261.388 (3)
N2—C71.462 (2)C25—H250.9500
N3—C141.288 (2)C26—C271.462 (3)
N3—C151.469 (2)C27—H270.9500
N4—C221.341 (2)C28—C291.504 (3)
N4—C261.348 (2)C28—H28A0.9900
N5—C271.278 (3)C28—H28B0.9900
N5—C281.467 (2)C29—C301.386 (3)
N6—C351.274 (2)C29—C341.396 (3)
N6—C361.464 (2)C30—C311.388 (3)
C1—C21.388 (2)C30—H300.9500
C1—C141.460 (2)C31—C321.372 (4)
C2—C31.391 (3)C31—H310.9500
C2—H20.9500C32—C331.376 (4)
C3—C41.391 (3)C33—C341.388 (3)
C3—H30.9500C33—H330.9500
C4—C51.390 (2)C34—H340.9500
C4—H40.9500C35—H350.9500
C5—C61.461 (2)C36—C371.513 (3)
C6—H60.9500C36—H36A0.9900
C7—C81.509 (3)C36—H36B0.9900
C7—H7A0.9900C37—C421.386 (3)
C7—H7AB0.9900C37—C381.392 (3)
C8—C91.392 (3)C38—C391.389 (3)
C8—C131.392 (3)C38—H380.9500
C9—C101.388 (3)C39—C401.380 (3)
C9—H90.9500C39—H390.9500
C10—C111.379 (3)C40—C411.373 (3)
C10—H100.9500C41—C421.392 (3)
C11—C121.366 (3)C41—H410.9500
C12—C131.388 (3)C42—H420.9500
C12—H120.9500N1C—O2C1.244 (2)
C13—H130.9500N1C—O1C1.253 (2)
C14—H140.9500N1C—O3C1.257 (2)
C15—C161.512 (2)N1D—O3D1.239 (2)
C15—H15A0.9900N1D—O1D1.254 (2)
C15—H15B0.9900N1D—O2D1.262 (2)
C16—C211.392 (3)O1S—H1S0.830 (17)
C16—C171.394 (3)O1S—H2S0.862 (17)
C17—C181.394 (3)O1T—H1T0.867 (17)
C17—H170.9500O1T—H2T0.853 (17)
N1—Ni1—N4178.87 (6)C19—C18—C17118.05 (19)
N1—Ni1—N279.98 (6)C19—C18—H18121.0
N4—Ni1—N299.56 (6)C17—C18—H18121.0
N1—Ni1—N379.99 (6)F2—C19—C18118.3 (2)
N4—Ni1—N3100.49 (6)F2—C19—C20118.1 (2)
N2—Ni1—N3159.92 (6)C18—C19—C20123.59 (19)
N1—Ni1—N5102.24 (6)C19—C20—C21117.8 (2)
N4—Ni1—N576.75 (6)C19—C20—H20121.1
N2—Ni1—N594.40 (6)C21—C20—H20121.1
N3—Ni1—N591.12 (6)C16—C21—C20120.77 (19)
N1—Ni1—N6104.44 (6)C16—C21—H21119.6
N4—Ni1—N676.57 (6)C20—C21—H21119.6
N2—Ni1—N690.56 (6)N4—C22—C23121.68 (17)
N3—Ni1—N693.13 (6)N4—C22—C35114.07 (16)
N5—Ni1—N6153.31 (6)C23—C22—C35124.23 (17)
C1—N1—C5120.71 (15)C24—C23—C22118.58 (18)
C1—N1—Ni1119.71 (12)C24—C23—H23120.7
C5—N1—Ni1119.58 (12)C22—C23—H23120.7
C6—N2—C7118.60 (15)C23—C24—C25119.51 (18)
C6—N2—Ni1114.70 (12)C23—C24—H24120.2
C7—N2—Ni1126.64 (12)C25—C24—H24120.2
C14—N3—C15117.80 (15)C24—C25—C26118.98 (19)
C14—N3—Ni1114.56 (12)C24—C25—H25120.5
C15—N3—Ni1127.58 (12)C26—C25—H25120.5
C22—N4—C26119.67 (15)N4—C26—C25121.55 (18)
C22—N4—Ni1120.17 (12)N4—C26—C27113.79 (16)
C26—N4—Ni1120.16 (12)C25—C26—C27124.64 (18)
C27—N5—C28118.53 (16)N5—C27—C26117.07 (17)
C27—N5—Ni1112.14 (12)N5—C27—H27121.5
C28—N5—Ni1129.31 (12)C26—C27—H27121.5
C35—N6—C36118.31 (16)N5—C28—C29109.76 (15)
C35—N6—Ni1112.05 (12)N5—C28—H28A109.7
C36—N6—Ni1129.61 (12)C29—C28—H28A109.7
N1—C1—C2121.42 (16)N5—C28—H28B109.7
N1—C1—C14110.15 (15)C29—C28—H28B109.7
C2—C1—C14128.36 (16)H28A—C28—H28B108.2
C1—C2—C3118.17 (17)C30—C29—C34119.16 (19)
C1—C2—H2120.9C30—C29—C28120.77 (18)
C3—C2—H2120.9C34—C29—C28120.07 (19)
C2—C3—C4120.22 (17)C29—C30—C31121.0 (2)
C2—C3—H3119.9C29—C30—H30119.5
C4—C3—H3119.9C31—C30—H30119.5
C5—C4—C3118.67 (17)C32—C31—C30118.0 (2)
C5—C4—H4120.7C32—C31—H31121.0
C3—C4—H4120.7C30—C31—H31121.0
N1—C5—C4120.77 (16)F1—C32—C31118.1 (2)
N1—C5—C6110.15 (15)F1—C32—C33118.8 (2)
C4—C5—C6128.96 (16)C31—C32—C33123.1 (2)
N2—C6—C5115.35 (15)C32—C33—C34118.2 (2)
N2—C6—H6122.3C32—C33—H33120.9
C5—C6—H6122.3C34—C33—H33120.9
N2—C7—C8112.08 (15)C33—C34—C29120.5 (2)
N2—C7—H7A109.2C33—C34—H34119.7
C8—C7—H7A109.2C29—C34—H34119.7
N2—C7—H7AB109.2N6—C35—C22116.99 (16)
C8—C7—H7AB109.2N6—C35—H35121.5
H7A—C7—H7AB107.9C22—C35—H35121.5
C9—C8—C13118.76 (18)N6—C36—C37110.46 (14)
C9—C8—C7121.31 (16)N6—C36—H36A109.6
C13—C8—C7119.74 (17)C37—C36—H36A109.6
C10—C9—C8121.23 (18)N6—C36—H36B109.6
C10—C9—H9119.4C37—C36—H36B109.6
C8—C9—H9119.4H36A—C36—H36B108.1
C11—C10—C9117.80 (19)C42—C37—C38119.60 (17)
C11—C10—H10121.1C42—C37—C36120.55 (17)
C9—C10—H10121.1C38—C37—C36119.85 (17)
F3—C11—C12118.69 (19)C39—C38—C37120.50 (17)
F3—C11—C10118.5 (2)C39—C38—H38119.8
C12—C11—C10122.8 (2)C37—C38—H38119.8
C11—C12—C13118.80 (18)C40—C39—C38117.72 (18)
C11—C12—H12120.6C40—C39—H39121.1
C13—C12—H12120.6C38—C39—H39121.1
C12—C13—C8120.53 (19)F4—C40—C41117.54 (17)
C12—C13—H13119.7F4—C40—C39118.68 (17)
C8—C13—H13119.7C41—C40—C39123.78 (18)
N3—C14—C1115.50 (15)C40—C41—C42117.34 (17)
N3—C14—H14122.3C40—C41—H41121.3
C1—C14—H14122.3C42—C41—H41121.3
N3—C15—C16111.20 (14)C37—C42—C41121.06 (17)
N3—C15—H15A109.4C37—C42—H42119.5
C16—C15—H15A109.4C41—C42—H42119.5
N3—C15—H15B109.4O2C—N1C—O1C120.96 (16)
C16—C15—H15B109.4O2C—N1C—O3C119.22 (17)
H15A—C15—H15B108.0O1C—N1C—O3C119.82 (17)
C21—C16—C17119.18 (17)O3D—N1D—O1D120.45 (18)
C21—C16—C15120.47 (17)O3D—N1D—O2D120.13 (17)
C17—C16—C15120.29 (17)O1D—N1D—O2D119.25 (17)
C16—C17—C18120.61 (19)H1S—O1S—H2S112 (3)
C16—C17—H17119.7H1T—O1T—H2T108 (3)
C18—C17—H17119.7
N2—Ni1—N1—C1175.88 (14)C18—C19—C20—C210.1 (3)
N3—Ni1—N1—C12.77 (13)C17—C16—C21—C200.4 (3)
N5—Ni1—N1—C191.74 (13)C15—C16—C21—C20177.62 (17)
N6—Ni1—N1—C187.91 (13)C19—C20—C21—C160.4 (3)
N2—Ni1—N1—C54.79 (13)C26—N4—C22—C230.9 (3)
N3—Ni1—N1—C5176.56 (14)Ni1—N4—C22—C23178.46 (13)
N5—Ni1—N1—C587.59 (13)C26—N4—C22—C35177.66 (15)
N6—Ni1—N1—C592.76 (13)Ni1—N4—C22—C353.0 (2)
C5—N1—C1—C21.0 (3)N4—C22—C23—C241.7 (3)
Ni1—N1—C1—C2179.72 (13)C35—C22—C23—C24176.63 (18)
C5—N1—C1—C14176.35 (15)C22—C23—C24—C251.2 (3)
Ni1—N1—C1—C142.98 (19)C23—C24—C25—C260.2 (3)
N1—C1—C2—C31.3 (3)C22—N4—C26—C250.6 (3)
C14—C1—C2—C3175.45 (17)Ni1—N4—C26—C25179.93 (14)
C1—C2—C3—C40.2 (3)C22—N4—C26—C27178.07 (15)
C2—C3—C4—C51.2 (3)Ni1—N4—C26—C271.3 (2)
C1—N1—C5—C40.6 (2)C24—C25—C26—N41.2 (3)
Ni1—N1—C5—C4178.77 (13)C24—C25—C26—C27177.37 (18)
C1—N1—C5—C6175.78 (15)C28—N5—C27—C26178.27 (16)
Ni1—N1—C5—C64.90 (19)Ni1—N5—C27—C263.0 (2)
C3—C4—C5—N11.6 (3)N4—C26—C27—N51.4 (2)
C3—C4—C5—C6173.93 (18)C25—C26—C27—N5177.20 (18)
C7—N2—C6—C5175.30 (15)C27—N5—C28—C29117.17 (19)
Ni1—N2—C6—C52.03 (19)Ni1—N5—C28—C2961.3 (2)
N1—C5—C6—N21.6 (2)N5—C28—C29—C30116.22 (19)
C4—C5—C6—N2177.54 (17)N5—C28—C29—C3464.0 (2)
C6—N2—C7—C8108.60 (18)C34—C29—C30—C310.5 (3)
Ni1—N2—C7—C874.43 (18)C28—C29—C30—C31179.69 (18)
N2—C7—C8—C941.1 (2)C29—C30—C31—C320.1 (3)
N2—C7—C8—C13143.91 (17)C30—C31—C32—F1179.8 (2)
C13—C8—C9—C100.0 (3)C30—C31—C32—C330.1 (4)
C7—C8—C9—C10175.08 (18)F1—C32—C33—C34179.9 (2)
C8—C9—C10—C112.4 (3)C31—C32—C33—C340.2 (4)
C9—C10—C11—F3176.66 (18)C32—C33—C34—C290.6 (3)
C9—C10—C11—C122.6 (3)C30—C29—C34—C330.7 (3)
F3—C11—C12—C13178.77 (18)C28—C29—C34—C33179.43 (19)
C10—C11—C12—C130.5 (3)C36—N6—C35—C22178.93 (15)
C11—C12—C13—C81.9 (3)Ni1—N6—C35—C222.81 (19)
C9—C8—C13—C122.2 (3)N4—C22—C35—N60.2 (2)
C7—C8—C13—C12172.98 (17)C23—C22—C35—N6178.24 (17)
C15—N3—C14—C1176.60 (14)C35—N6—C36—C37120.46 (18)
Ni1—N3—C14—C10.9 (2)Ni1—N6—C36—C3757.4 (2)
N1—C1—C14—N31.2 (2)N6—C36—C37—C42110.12 (19)
C2—C1—C14—N3178.26 (17)N6—C36—C37—C3869.5 (2)
C14—N3—C15—C16103.36 (19)C42—C37—C38—C390.2 (3)
Ni1—N3—C15—C1679.53 (18)C36—C37—C38—C39179.45 (17)
N3—C15—C16—C2161.9 (2)C37—C38—C39—C400.0 (3)
N3—C15—C16—C17120.90 (18)C38—C39—C40—F4179.65 (17)
C21—C16—C17—C180.0 (3)C38—C39—C40—C410.4 (3)
C15—C16—C17—C18177.22 (17)F4—C40—C41—C42179.48 (17)
C16—C17—C18—C190.4 (3)C39—C40—C41—C420.5 (3)
C17—C18—C19—F2179.97 (17)C38—C37—C42—C410.0 (3)
C17—C18—C19—C200.3 (3)C36—C37—C42—C41179.63 (17)
F2—C19—C20—C21179.65 (18)C40—C41—C42—C370.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O3C0.83 (2)2.00 (2)2.814 (2)167 (3)
O1S—H2S···O2D0.86 (2)1.96 (2)2.813 (2)174 (3)
O1T—H1T···O1C0.87 (2)2.03 (2)2.876 (2)166 (3)
O1T—H2T···O1D0.85 (2)2.21 (2)3.062 (2)178 (3)
C2—H2···O3Ci0.952.413.303 (2)157
C4—H4···O1Sii0.952.403.185 (2)140
C13—H13···F1iii0.952.393.240 (3)149
C14—H14···O1Si0.952.333.227 (2)158
C15—H15B···O1Div0.992.553.487 (2)158
C18—H18···F3v0.952.483.373 (3)156
C23—H23···O2C0.952.453.239 (3)140
C27—H27···O3Civ0.952.413.343 (2)166
C28—H28A···O2Dii0.992.563.540 (3)171
C33—H33···F4vi0.952.473.320 (3)150
C35—H35···F3vii0.952.523.302 (2)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1; (v) x+3/2, y1/2, z; (vi) x+1, y1/2, z+3/2; (vii) x1/2, y+1/2, z+1.
 

Funding information

The project described was supported by the US Department of Defense (grant No. W911NF-19–1-0006). The authors thank the National Science Foundation (grant CHE-0130835) and the University of Oklahoma for funds to purchase of the X-ray instrument and computers.

References

First citationBasaran, I., Rhaman, M. M., Powell, D. R. & Hossain, M. A. (2015). Acta Cryst. E71, m226–m227.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, N. K. & Guragain, B. (2019). Asian J. Chem. 31, 951–959.  CrossRef CAS Google Scholar
First citationGuerriero, P., Vigato, P. A., Fenton, D. E. & Hellier, P. C. (1992). Acta Chem. Scand. 46, 1025–1046.  CrossRef CAS Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationHalcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, https://doi.org/10.1107/S1600576719014092  CrossRef IUCr Journals Google Scholar
First citationMatthews, M., Sendzik, M., Bruggeman, A., Kearns, C., Oliver, A. G. & Babbini, D. C. (2017). Acta Cryst. E73, 1167–1171.  CSD CrossRef IUCr Journals Google Scholar
First citationMinster, J. T. (1946). Analyst, 71, 424–428.  CrossRef CAS PubMed Google Scholar
First citationSalaudeen, A. A., Kilner, C. A. & Halcrow, M. A. (2008). Chem. Commun. pp. 5200–5202.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationSkyrianou, K. C., Perdih, F., Turel, I., Kessissoglou, D. P. & Psomas, G. (2010). J. Inorg. Biochem. 104, 161–170.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds