metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ3-chlorido-tetra-μ2-chlorido-di­chlorido­tetra­kis­(N,N-di­ethyl­ethane-1,2-di­amine-κ2N,N′)tetra­cadmium(II)

aDepartment of Chemistry, College of Science for Women, University of Baghdad, Iraq, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, UK
*Correspondence e-mail: kariukib@cardiff.ac.uk

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 November 2019; accepted 2 December 2019; online 6 December 2019)

In the title compound, [Cd4Cl8(C6H16N2)4], the Cd2+ cations and Cl anions form M4Cl8 clusters with six of the Cl ions bridging Cd2+ cations and two being pendant. Each Cd2+ cation has distorted octa­hedral coordination completed by four Cl ions and two N atoms of the asymmetrical bidentate amino ligand. The cluster consists of pairs of face-sharing hexa­hedra linked by a shared edge.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The coordination chemistry of cadmium is of inter­est to a wide range of disciplines ranging from toxicology to catalysis (Melnik et al., 2009[Melnik, M., Valent, A. & Kohutova, M. (2009). Main Group Met. Chem. 32, 269-295.]; Andersen et al., 1984[Andersen, O. (1984). EHP, Environ. Health Perspect. 54, 249-266.]).

In the crystal structure, each complex unit has four amino ligands with two nitro­gen atoms of each ligand coordinating to one Cd2+ ion (Fig. 1[link]). The complex is centrosymmetric with the asymmetric unit consisting of half of the complex unit. One ligand of the asymmetric unit is disordered with two components of 0.553 (13) and 0.447 (13) occupancy.

[Figure 1]
Figure 1
An ORTEP representation of the complex showing 50% probability ellipsoids (only the major component of the disordered ligand is shown). Symmetry code: (i) 1 − x, 1 − y, −z.

The Cd2+ cations and Cl ions form Cd4Cl8 clusters with six bridging and two pendant Cl ions. Cd⋯Cl distances range from 2.5158 (19) to 2.8227 (18) Å in the cluster. A similar M4Cl8 core has been reported for an NiII complex (Kermagoret et al., 2007[Kermagoret, A., Pattacini, R., Chavez Vasquez, P., Rogez, G., Welter, R. & Braunstein, P. (2007). Angew. Chem. Int. Ed. 46, 6438-6441.]). Each Cd2+ cation has a distorted octa­hedral coordination completed by four Cl ions and two nitro­gen atoms of the bidentate amino ligand. The cluster consists of pairs of face-sharing hexa­hedra linked by a shared edge. The complex units are linked by inter­molecular N—H⋯Cl contacts with N⋯Cl distances in the range 3.407 (6) to 3.548 (6) Å and N—H⋯Cl angles in the range 140.5 to 146.3° (Fig. 2[link], Table 1[link]). Each complex unit donates four and accepts four N—H⋯Cl contacts with each pendant Cl accepting two bonds from different units.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl4i 0.89 2.82 3.548 (6) 141
N2—H2D⋯Cl4ii 0.89 2.63 3.407 (6) 146
N4—H4D⋯Cl4iii 0.89 2.71 3.463 (6) 143
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) -x+2, -y, -z.
[Figure 2]
Figure 2
A segment of the crystal packing showing inter­molecular N—H⋯Cl contacts as red dotted lines.

Synthesis and crystallization

The cadmium complex was prepared by direct reaction of equimolar amounts of cadmium dichloride and N-di­ethyl­amino­ethyl­amine in ethanol at room temperature. The white solid obtained was separated by filtration after three hours, washed with 5 ml cold ethanol and then three times (5 ml each) with diethyl ether. Based on the cadmium dichloride used, the yield was 85%. Crystallization from warm methanol solution in open air produced colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The geometry and displacement parameters associated with the disordered atoms of the ligand were restrained during refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Cd2Cl4(C6H16N2)2]
Mr 599.01
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.3622 (10), 9.4023 (10), 12.4248 (9)
α, β, γ (°) 87.667 (7), 86.171 (7), 81.993 (9)
V3) 1080.08 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.46
Crystal size (mm) 0.26 × 0.17 × 0.06
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.498, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15671, 5120, 3897
Rint 0.042
(sin θ/λ)max−1) 0.701
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.131, 1.07
No. of reflections 5120
No. of parameters 247
No. of restraints 390
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −1.42
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012).

Di-µ3-chlorido-tetra-µ2-chlorido-dichloridotetrakis(N,N-diethylethane-1,2-diamine-κ2N,N')tetracadmium(II) top
Crystal data top
[Cd2Cl4(C6H16N2)2]Z = 2
Mr = 599.01F(000) = 592
Triclinic, P1Dx = 1.842 Mg m3
a = 9.3622 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4023 (10) ÅCell parameters from 3382 reflections
c = 12.4248 (9) Åθ = 4.3–29.0°
α = 87.667 (7)°µ = 2.46 mm1
β = 86.171 (7)°T = 293 K
γ = 81.993 (9)°Plate, colourless
V = 1080.08 (18) Å30.26 × 0.17 × 0.06 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3897 reflections with I > 2σ(I)
ω scansRint = 0.042
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
θmax = 29.9°, θmin = 2.2°
Tmin = 0.498, Tmax = 1.000h = 1212
15671 measured reflectionsk = 1311
5120 independent reflectionsl = 1617
Refinement top
Refinement on F2390 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0348P)2 + 6.2177P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5120 reflectionsΔρmax = 1.01 e Å3
247 parametersΔρmin = 1.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C). C—H distances for methylene groups were set to 0.97 Å and their Uiso(H) set to 1.2 times the Ueq(C). N—H distances for methylene groups were set to 0.89 Å and their Uiso(H) set to 1.2 times the Ueq(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3866 (10)0.7344 (10)0.3329 (9)0.082 (3)
H1A0.4658140.6969640.2844230.123*
H1B0.4074950.7043300.4055910.123*
H1C0.3727390.8374550.3269140.123*
C20.2507 (8)0.6784 (7)0.3041 (7)0.0558 (19)
H2A0.1739330.7085690.3581270.067*
H2B0.2219370.7220910.2354350.067*
C30.2355 (13)0.4747 (12)0.4994 (6)0.089 (3)
H3A0.1422360.4442580.4960160.133*
H3B0.2239620.5759860.5112360.133*
H3C0.2848210.4236470.5576140.133*
C40.3231 (8)0.4433 (8)0.3941 (5)0.0545 (18)
H4A0.4197400.4663180.4013860.065*
H4B0.3315690.3409560.3826220.065*
C50.1245 (7)0.4757 (8)0.2735 (5)0.0514 (17)
H5A0.1325280.3719300.2815720.062*
H5B0.0511700.5160840.3268250.062*
C60.0763 (8)0.5190 (9)0.1657 (6)0.060 (2)
H6A0.0637210.6229810.1580220.073*
H6B0.0166000.4872900.1577110.073*
N10.2651 (5)0.5211 (5)0.2966 (4)0.0394 (12)
C70.714 (4)0.077 (3)0.4663 (12)0.073 (6)0.553 (13)
H7A0.6352990.0637200.5200530.110*0.553 (13)
H7B0.7306460.1763290.4465880.110*0.553 (13)
H7C0.7997200.0523130.4949310.110*0.553 (13)
C80.6775 (13)0.0172 (16)0.3676 (9)0.048 (3)0.553 (13)
H8A0.5888560.0075560.3417620.057*0.553 (13)
H8B0.6576840.1160190.3899340.057*0.553 (13)
C90.926 (2)0.1786 (15)0.3716 (14)0.072 (5)0.553 (13)
H9A1.0217300.1887220.3902210.108*0.553 (13)
H9B0.8896630.2587840.3261830.108*0.553 (13)
H9C0.8638550.1756570.4361480.108*0.553 (13)
C100.9295 (11)0.0413 (15)0.3123 (12)0.060 (4)0.553 (13)
H10A0.9692930.0382120.3583380.072*0.553 (13)
H10B0.9950390.0447160.2486370.072*0.553 (13)
C110.8223 (14)0.1326 (11)0.2264 (10)0.056 (3)0.553 (13)
H11A0.9229800.1423330.2000690.067*0.553 (13)
H11B0.8134890.2065900.2822000.067*0.553 (13)
C120.7378 (10)0.1610 (8)0.1385 (7)0.064 (2)0.553 (13)
H12A0.7858310.2468720.1039180.076*0.553 (13)
H12B0.6448110.1824970.1690540.076*0.553 (13)
N30.7854 (6)0.0103 (6)0.2774 (4)0.0485 (13)0.553 (13)
C7A0.717 (5)0.036 (4)0.4747 (16)0.086 (10)0.447 (13)
H7D0.6603680.0082510.5348890.129*0.447 (13)
H7E0.6824840.1240360.4597860.129*0.447 (13)
H7F0.8163790.0553820.4916730.129*0.447 (13)
C8A0.703 (2)0.0650 (18)0.3765 (11)0.054 (4)0.447 (13)
H8C0.6019010.0861660.3617230.065*0.447 (13)
H8D0.7355260.1546810.3935460.065*0.447 (13)
C9A1.006 (2)0.109 (2)0.320 (2)0.086 (6)0.447 (13)
H9D1.1085610.0844510.3241110.129*0.447 (13)
H9E0.9870380.1864740.2674800.129*0.447 (13)
H9F0.9630540.1386410.3889360.129*0.447 (13)
C10A0.9423 (11)0.0202 (18)0.2858 (17)0.066 (4)0.447 (13)
H10C0.9875620.0507710.2164650.079*0.447 (13)
H10D0.9635710.0986190.3379600.079*0.447 (13)
C11A0.7214 (17)0.1211 (14)0.2495 (9)0.049 (3)0.447 (13)
H11C0.7647200.2017950.2928930.059*0.447 (13)
H11D0.6189800.1057110.2706660.059*0.447 (13)
C12A0.7378 (10)0.1610 (8)0.1385 (7)0.064 (2)0.447 (13)
H12C0.6730300.2310030.1292590.076*0.447 (13)
H12D0.8355340.2091660.1251440.076*0.447 (13)
N3A0.7854 (6)0.0103 (6)0.2774 (4)0.0485 (13)0.447 (13)
N20.1805 (6)0.4578 (6)0.0801 (4)0.0433 (13)
H2C0.1747670.5151620.0213060.052*
H2D0.1594410.3723770.0630230.052*
N40.7120 (7)0.0498 (6)0.0565 (5)0.0477 (14)
H4C0.6276210.0545940.0286900.057*
H4D0.7810240.0626640.0036130.057*
Cl10.41595 (19)0.15941 (18)0.19230 (15)0.0480 (4)
Cl20.44096 (18)0.68635 (17)0.04175 (13)0.0431 (4)
Cl30.66065 (18)0.41883 (19)0.21743 (14)0.0473 (4)
Cl40.9546 (2)0.2105 (2)0.04702 (19)0.0635 (5)
Cd10.40910 (5)0.43345 (5)0.13790 (4)0.03912 (14)
Cd20.70911 (5)0.17078 (5)0.12779 (4)0.04159 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.085 (7)0.066 (6)0.097 (7)0.025 (5)0.027 (6)0.028 (5)
C20.059 (5)0.041 (4)0.064 (4)0.002 (3)0.017 (4)0.010 (3)
C30.109 (8)0.107 (8)0.044 (5)0.001 (6)0.013 (5)0.000 (5)
C40.056 (4)0.064 (5)0.042 (4)0.005 (4)0.001 (3)0.002 (3)
C50.040 (4)0.064 (4)0.049 (4)0.008 (3)0.013 (3)0.005 (3)
C60.040 (4)0.068 (5)0.068 (5)0.007 (3)0.001 (4)0.001 (4)
N10.037 (3)0.043 (3)0.038 (3)0.007 (2)0.004 (2)0.002 (2)
C70.102 (12)0.076 (13)0.043 (9)0.022 (11)0.010 (9)0.023 (8)
C80.051 (6)0.051 (7)0.044 (6)0.018 (5)0.003 (5)0.005 (5)
C90.076 (11)0.056 (9)0.091 (12)0.023 (8)0.033 (9)0.003 (8)
C100.057 (7)0.059 (8)0.055 (7)0.024 (6)0.002 (6)0.016 (6)
C110.065 (6)0.039 (5)0.058 (6)0.007 (5)0.004 (5)0.001 (5)
C120.076 (5)0.047 (4)0.070 (4)0.014 (4)0.012 (4)0.000 (3)
N30.063 (3)0.039 (3)0.042 (3)0.001 (2)0.006 (3)0.001 (2)
C7A0.109 (16)0.080 (18)0.061 (13)0.007 (15)0.009 (12)0.006 (11)
C8A0.065 (8)0.049 (8)0.049 (7)0.011 (7)0.007 (7)0.005 (6)
C9A0.082 (14)0.087 (14)0.093 (14)0.018 (11)0.018 (12)0.005 (12)
C10A0.059 (7)0.058 (8)0.069 (8)0.019 (7)0.002 (7)0.014 (7)
C11A0.055 (6)0.039 (6)0.051 (6)0.008 (5)0.006 (6)0.001 (5)
C12A0.076 (5)0.047 (4)0.070 (4)0.014 (4)0.012 (4)0.000 (3)
N3A0.063 (3)0.039 (3)0.042 (3)0.001 (2)0.006 (3)0.001 (2)
N20.044 (3)0.043 (3)0.044 (3)0.008 (2)0.001 (2)0.001 (2)
N40.054 (4)0.045 (3)0.042 (3)0.001 (3)0.004 (3)0.005 (2)
Cl10.0453 (9)0.0411 (8)0.0549 (10)0.0014 (7)0.0034 (8)0.0047 (7)
Cl20.0476 (9)0.0430 (8)0.0370 (8)0.0030 (7)0.0026 (7)0.0002 (6)
Cl30.0386 (9)0.0483 (9)0.0544 (10)0.0014 (7)0.0098 (7)0.0096 (7)
Cl40.0472 (10)0.0562 (11)0.0829 (14)0.0023 (8)0.0150 (10)0.0002 (10)
Cd10.0324 (3)0.0429 (3)0.0388 (3)0.00378 (19)0.00272 (19)0.00057 (19)
Cd20.0398 (3)0.0354 (3)0.0466 (3)0.00223 (19)0.0016 (2)0.0013 (2)
Geometric parameters (Å, º) top
C1—C21.512 (10)C12—H12A0.9700
C1—H1A0.9600C12—H12B0.9700
C1—H1B0.9600N3—Cd22.427 (5)
C1—H1C0.9600C7A—C8A1.516 (11)
C2—N11.473 (7)C7A—H7D0.9600
C2—H2A0.9700C7A—H7E0.9600
C2—H2B0.9700C7A—H7F0.9600
C3—C41.514 (9)C8A—N3A1.479 (9)
C3—H3A0.9600C8A—H8C0.9700
C3—H3B0.9600C8A—H8D0.9700
C3—H3C0.9600C9A—C10A1.514 (12)
C4—N11.484 (8)C9A—H9D0.9600
C4—H4A0.9700C9A—H9E0.9600
C4—H4B0.9700C9A—H9F0.9600
C5—C61.465 (9)C10A—N3A1.467 (10)
C5—N11.488 (7)C10A—H10C0.9700
C5—H5A0.9700C10A—H10D0.9700
C5—H5B0.9700C11A—C12A1.436 (10)
C6—N21.473 (9)C11A—N3A1.508 (9)
C6—H6A0.9700C11A—H11C0.9700
C6—H6B0.9700C11A—H11D0.9700
N1—Cd12.419 (5)C12A—N41.437 (9)
C7—C81.516 (11)C12A—H12C0.9700
C7—H7A0.9600C12A—H12D0.9700
C7—H7B0.9600N3A—Cd22.427 (5)
C7—H7C0.9600N2—Cd12.282 (6)
C8—N31.455 (9)N2—H2C0.8900
C8—H8A0.9700N2—H2D0.8900
C8—H8B0.9700N4—Cd22.285 (6)
C9—C101.507 (12)N4—H4C0.8900
C9—H9A0.9600N4—H4D0.8900
C9—H9B0.9600Cl1—Cd12.6302 (17)
C9—H9C0.9600Cl1—Cd22.8227 (18)
C10—N31.514 (10)Cl2—Cd12.6625 (17)
C10—H10A0.9700Cl2—Cd1i2.7509 (16)
C10—H10B0.9700Cl2—Cd2i2.8027 (17)
C11—C121.445 (10)Cl3—Cd22.5952 (18)
C11—N31.495 (9)Cl3—Cd12.5983 (18)
C11—H11A0.9700Cl4—Cd22.5158 (19)
C11—H11B0.9700Cd1—Cd23.4713 (8)
C12—N41.437 (9)
C2—C1—H1A109.5C10A—C9A—H9D109.5
C2—C1—H1B109.5C10A—C9A—H9E109.5
H1A—C1—H1B109.5H9D—C9A—H9E109.5
C2—C1—H1C109.5C10A—C9A—H9F109.5
H1A—C1—H1C109.5H9D—C9A—H9F109.5
H1B—C1—H1C109.5H9E—C9A—H9F109.5
N1—C2—C1114.4 (6)N3A—C10A—C9A112.3 (11)
N1—C2—H2A108.7N3A—C10A—H10C109.1
C1—C2—H2A108.7C9A—C10A—H10C109.1
N1—C2—H2B108.7N3A—C10A—H10D109.1
C1—C2—H2B108.7C9A—C10A—H10D109.1
H2A—C2—H2B107.6H10C—C10A—H10D107.9
C4—C3—H3A109.5C12A—C11A—N3A116.9 (8)
C4—C3—H3B109.5C12A—C11A—H11C108.1
H3A—C3—H3B109.5N3A—C11A—H11C108.1
C4—C3—H3C109.5C12A—C11A—H11D108.1
H3A—C3—H3C109.5N3A—C11A—H11D108.1
H3B—C3—H3C109.5H11C—C11A—H11D107.3
N1—C4—C3116.0 (6)C11A—C12A—N4118.4 (8)
N1—C4—H4A108.3C11A—C12A—H12C107.7
C3—C4—H4A108.3N4—C12A—H12C107.7
N1—C4—H4B108.3C11A—C12A—H12D107.7
C3—C4—H4B108.3N4—C12A—H12D107.7
H4A—C4—H4B107.4H12C—C12A—H12D107.1
C6—C5—N1114.4 (6)C10A—N3A—C8A114.8 (10)
C6—C5—H5A108.7C10A—N3A—C11A112.0 (9)
N1—C5—H5A108.7C8A—N3A—C11A106.0 (8)
C6—C5—H5B108.7C10A—N3A—Cd2114.9 (9)
N1—C5—H5B108.7C8A—N3A—Cd2107.9 (8)
H5A—C5—H5B107.6C11A—N3A—Cd299.9 (6)
C5—C6—N2111.8 (6)C6—N2—Cd1109.8 (4)
C5—C6—H6A109.3C6—N2—H2C109.7
N2—C6—H6A109.3Cd1—N2—H2C109.7
C5—C6—H6B109.3C6—N2—H2D109.7
N2—C6—H6B109.3Cd1—N2—H2D109.7
H6A—C6—H6B107.9H2C—N2—H2D108.2
C2—N1—C4113.0 (5)C12A—N4—Cd2110.2 (4)
C2—N1—C5110.5 (5)C12—N4—Cd2110.2 (4)
C4—N1—C5110.6 (5)C12—N4—H4C109.6
C2—N1—Cd1112.9 (4)Cd2—N4—H4C109.6
C4—N1—Cd1109.5 (4)C12—N4—H4D109.6
C5—N1—Cd199.5 (4)Cd2—N4—H4D109.6
C8—C7—H7A109.5H4C—N4—H4D108.1
C8—C7—H7B109.5Cd1—Cl1—Cd278.99 (5)
H7A—C7—H7B109.5Cd1—Cl2—Cd1i93.97 (5)
C8—C7—H7C109.5Cd1—Cl2—Cd2i128.87 (7)
H7A—C7—H7C109.5Cd1i—Cl2—Cd2i77.36 (4)
H7B—C7—H7C109.5Cd2—Cl3—Cd183.89 (5)
N3—C8—C7117.1 (11)N2—Cd1—N178.02 (18)
N3—C8—H8A108.0N2—Cd1—Cl3175.17 (15)
C7—C8—H8A108.0N1—Cd1—Cl397.32 (13)
N3—C8—H8B108.0N2—Cd1—Cl194.40 (15)
C7—C8—H8B108.0N1—Cd1—Cl195.61 (12)
H8A—C8—H8B107.3Cl3—Cd1—Cl187.24 (6)
C10—C9—H9A109.5N2—Cd1—Cl288.67 (14)
C10—C9—H9B109.5N1—Cd1—Cl298.15 (12)
H9A—C9—H9B109.5Cl3—Cd1—Cl290.80 (6)
C10—C9—H9C109.5Cl1—Cd1—Cl2166.24 (5)
H9A—C9—H9C109.5N2—Cd1—Cl2i99.30 (14)
H9B—C9—H9C109.5N1—Cd1—Cl2i174.93 (12)
C9—C10—N3115.6 (9)Cl3—Cd1—Cl2i85.45 (5)
C9—C10—H10A108.4Cl1—Cd1—Cl2i80.24 (5)
N3—C10—H10A108.4Cl2—Cd1—Cl2i86.03 (5)
C9—C10—H10B108.4N2—Cd1—Cd2136.10 (14)
N3—C10—H10B108.4N1—Cd1—Cd2127.43 (12)
H10A—C10—H10B107.4Cl3—Cd1—Cd248.02 (4)
C12—C11—N3117.2 (7)Cl1—Cd1—Cd252.96 (4)
C12—C11—H11A108.0Cl2—Cd1—Cd2116.86 (4)
N3—C11—H11A108.0Cl2i—Cd1—Cd251.98 (4)
C12—C11—H11B108.0N4—Cd2—N378.04 (19)
N3—C11—H11B108.0N4—Cd2—N3A78.04 (19)
H11A—C11—H11B107.2N4—Cd2—Cl495.52 (17)
N4—C12—C11117.4 (8)N3—Cd2—Cl498.54 (15)
N4—C12—H12A108.0N3A—Cd2—Cl498.54 (15)
C11—C12—H12A108.0N4—Cd2—Cl3170.42 (17)
N4—C12—H12B108.0N3—Cd2—Cl3102.29 (13)
C11—C12—H12B108.0N3A—Cd2—Cl3102.29 (13)
H12A—C12—H12B107.2Cl4—Cd2—Cl393.90 (6)
C8—N3—C11115.9 (8)N4—Cd2—Cl2i93.02 (15)
C8—N3—C10111.3 (8)N3—Cd2—Cl2i164.69 (14)
C11—N3—C10103.2 (7)Cl4—Cd2—Cl2i94.66 (6)
C8—N3—Cd2112.4 (7)Cl3—Cd2—Cl2i84.45 (5)
C11—N3—Cd2103.4 (5)N4—Cd2—Cl187.06 (16)
C10—N3—Cd2110.0 (6)N3—Cd2—Cl190.86 (14)
C8A—C7A—H7D109.5N3A—Cd2—Cl190.86 (14)
C8A—C7A—H7E109.5Cl4—Cd2—Cl1170.58 (6)
H7D—C7A—H7E109.5Cl3—Cd2—Cl183.36 (5)
C8A—C7A—H7F109.5Cl2i—Cd2—Cl176.14 (5)
H7D—C7A—H7F109.5N4—Cd2—Cd1123.88 (16)
H7E—C7A—H7F109.5N3—Cd2—Cd1124.95 (13)
N3A—C8A—C7A115.2 (11)N3A—Cd2—Cd1124.95 (13)
N3A—C8A—H8C108.5Cl4—Cd2—Cd1124.18 (5)
C7A—C8A—H8C108.5Cl3—Cd2—Cd148.10 (4)
N3A—C8A—H8D108.5Cl2i—Cd2—Cd150.65 (3)
C7A—C8A—H8D108.5Cl1—Cd2—Cd148.05 (4)
H8C—C8A—H8D107.5
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl4i0.892.823.548 (6)141
N2—H2D···Cl4ii0.892.633.407 (6)146
N4—H4D···Cl4iii0.892.713.463 (6)143
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+2, y, z.
 

Acknowledgements

Continued support by Cardiff University is acknowledged.

References

First citationAndersen, O. (1984). EHP, Environ. Health Perspect. 54, 249–266.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKermagoret, A., Pattacini, R., Chavez Vasquez, P., Rogez, G., Welter, R. & Braunstein, P. (2007). Angew. Chem. Int. Ed. 46, 6438–6441.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelnik, M., Valent, A. & Kohutova, M. (2009). Main Group Met. Chem. 32, 269–295.  CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds