organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 4-(3-chloro­phen­yl)-2,6-di­phenyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aPG & Research Department of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli-620 020, Tamilnadu, India, and bDepartment of Physics & Nano Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai-603 203 Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 November 2019; accepted 6 December 2019; online 10 December 2019)

In the title compound, C29H26ClNO4, the di­hydro­pyridine ring adopts a shallow boat conformation. The mean plane of the di­hydro­pyridine ring (all atoms) subtends dihedral angles of 66.54 (1), 73.71 (1) and 79.47 (1)° with the two phenyl rings and the chloro­phenyl ring, respectively. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into [001] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The geometric parameters of the title mol­ecule (Fig. 1[link]) agree well with those of reported similar structures (Wang et al., 2013[Wang, K., Wang, Y., Yao, M. & Xu, D. (2013). Acta Cryst. E69, o785.]; Ahamed et al., 2016[Ahamed, F. M. M., Padusha, M. S. A. & Gunasekaran, B. (2016). IUCrData, 1, x160155.]). The di­hydro­pyridine ring adopts a flattened boat conformation: atoms N1 and C12 are displaced out of the C7/C8/C19/C23 plane (r.m.s. deviation = 0.019 Å) by 0.124 (1) and 0.220 (2) Å, respectively. The mean plane of the pyridine ring (all atoms) subtends dihedral angles of 66.54 (1), 73.71 (1) and 79.47 (1)° with the 2- and 6-phenyl rings and the chloro­phenyl ring, respectively. In the crystal, N—H⋯O hydrogen bonds (Fig. 2[link], Table 1[link]) link the mol­ecules into [001] chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.10 2.910 (2) 158
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure, with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The packing viewed down [100]. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

To an ethano­lic solution of ammonium acetate (7.7 g, 0.1 mol), was added ethyl benzoyl­acetate (17.3 ml, 0.1 mol) followed by 3-chloro benzaldehyde (14 g, 0.1 mol). The reaction mixture was refluxed for 8 h and the turbid solution obtained was stirred for 10 min. The product separated out was washed, filtered and recrystallized from ethanol solution as yellow blocks (m.p. = 144°C, yield = 98%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C29H26ClNO4
Mr 487.96
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 10.519 (5), 22.059 (5), 11.246 (5)
β (°) 97.867 (5)
V3) 2584.9 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.968, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 24505, 6384, 3478
Rint 0.029
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.192, 1.06
No. of reflections 6384
No. of parameters 318
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Diethyl 4-(3-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C29H26ClNO4F(000) = 1024
Mr = 487.96Dx = 1.254 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.519 (5) ÅCell parameters from 6384 reflections
b = 22.059 (5) Åθ = 1.9–28.4°
c = 11.246 (5) ŵ = 0.18 mm1
β = 97.867 (5)°T = 295 K
V = 2584.9 (18) Å3Block, yellow
Z = 40.20 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3478 reflections with I > 2σ(I)
ω and φ scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.4°, θmin = 1.9°
Tmin = 0.968, Tmax = 0.975h = 1413
24505 measured reflectionsk = 2922
6384 independent reflectionsl = 1014
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.5988P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6384 reflectionsΔρmax = 0.28 e Å3
318 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were positioned geometrically (N—H = 0.86, C—H = 0.93–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3290 (2)0.12025 (10)0.47589 (19)0.0522 (5)
H10.3649700.1565920.4550410.063*
C20.4059 (2)0.07648 (12)0.5367 (2)0.0707 (7)
H20.4934450.0833580.5566140.085*
C30.3535 (3)0.02293 (13)0.5679 (2)0.0757 (8)
H30.4058750.0069160.6070980.091*
C40.2245 (3)0.01329 (11)0.5414 (2)0.0722 (7)
H40.1888500.0227280.5644050.087*
C50.1469 (2)0.05674 (10)0.4807 (2)0.0582 (6)
H50.0590710.0499970.4631430.070*
C60.19914 (19)0.11043 (9)0.44583 (17)0.0428 (5)
C70.11605 (18)0.15741 (9)0.37990 (17)0.0420 (5)
C80.0443 (2)0.15097 (9)0.27198 (18)0.0463 (5)
C90.0366 (2)0.09426 (11)0.2012 (2)0.0582 (6)
C100.1382 (3)0.00161 (12)0.1628 (3)0.0837 (9)
H10A0.1140870.0046090.0765990.100*
H10B0.0752770.0232920.1953520.100*
C110.2675 (4)0.02572 (15)0.1905 (4)0.1229 (14)
H11A0.3279920.0023170.1529830.184*
H11B0.2656460.0665090.1605250.184*
H11C0.2927920.0260270.2757770.184*
C120.0380 (2)0.20264 (10)0.21539 (18)0.0519 (5)
H120.1224090.1859460.1843740.062*
C130.0185 (3)0.22981 (12)0.1105 (2)0.0680 (7)
C140.0232 (3)0.21119 (17)0.0070 (2)0.1011 (12)
H140.0859040.1813960.0217090.121*
C150.0287 (5)0.2370 (3)0.1013 (3)0.145 (2)
H150.0009010.2239830.1791770.173*
C160.1202 (6)0.2813 (2)0.0823 (5)0.144 (3)
H160.1537300.2989480.1464680.173*
C170.1613 (4)0.29910 (15)0.0329 (4)0.1202 (16)
C180.1107 (3)0.27333 (12)0.1287 (3)0.0807 (8)
H180.1402640.2859920.2064140.097*
C190.05774 (18)0.25090 (9)0.30708 (16)0.0436 (5)
C200.1629 (2)0.29297 (10)0.26751 (18)0.0472 (5)
C210.2648 (3)0.38644 (12)0.3016 (2)0.0739 (8)
H21A0.3446650.3683460.3178690.089*
H21B0.2737290.3976710.2175020.089*
C220.2347 (5)0.43973 (18)0.3772 (4)0.155 (2)
H22A0.2393000.4293770.4593850.232*
H22B0.2952440.4713440.3523800.232*
H22C0.1496120.4535240.3694640.232*
C230.02010 (18)0.25477 (8)0.41280 (17)0.0406 (4)
C240.0185 (2)0.30256 (9)0.50681 (18)0.0441 (5)
C250.0794 (3)0.30666 (11)0.5760 (2)0.0629 (6)
H250.1464130.2788680.5647510.075*
C260.0796 (3)0.35092 (14)0.6608 (2)0.0842 (9)
H260.1473380.3533690.7058110.101*
C270.0169 (4)0.39077 (16)0.6798 (3)0.0992 (11)
H270.0148640.4212350.7366490.119*
C280.1178 (4)0.38710 (14)0.6167 (4)0.1079 (12)
H280.1860470.4140510.6317680.129*
C290.1177 (3)0.34263 (12)0.5293 (3)0.0770 (8)
H290.1863630.3401100.4853860.092*
N10.11284 (16)0.21111 (7)0.44327 (14)0.0462 (4)
H1A0.1707000.2174680.5037670.055*
O10.14323 (16)0.06147 (7)0.21670 (14)0.0619 (4)
O20.0565 (2)0.07963 (10)0.1336 (2)0.1071 (8)
O30.24413 (15)0.28243 (7)0.18351 (14)0.0628 (4)
O40.16058 (17)0.34422 (8)0.32941 (14)0.0711 (5)
Cl10.28030 (17)0.35347 (5)0.05870 (16)0.1984 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0512 (13)0.0519 (13)0.0526 (13)0.0048 (10)0.0046 (10)0.0055 (10)
C20.0581 (15)0.0794 (18)0.0730 (17)0.0181 (13)0.0034 (12)0.0111 (14)
C30.092 (2)0.0653 (17)0.0690 (17)0.0340 (15)0.0064 (15)0.0140 (13)
C40.102 (2)0.0452 (14)0.0692 (17)0.0037 (14)0.0108 (15)0.0105 (12)
C50.0644 (14)0.0484 (13)0.0596 (14)0.0065 (11)0.0007 (11)0.0016 (11)
C60.0506 (12)0.0378 (11)0.0388 (11)0.0021 (9)0.0020 (9)0.0025 (8)
C70.0449 (11)0.0408 (11)0.0385 (11)0.0007 (8)0.0001 (8)0.0020 (9)
C80.0507 (12)0.0455 (12)0.0403 (11)0.0044 (9)0.0022 (9)0.0040 (9)
C90.0644 (15)0.0546 (14)0.0524 (13)0.0029 (12)0.0039 (11)0.0124 (11)
C100.104 (2)0.0551 (15)0.092 (2)0.0035 (15)0.0138 (17)0.0272 (15)
C110.159 (4)0.082 (2)0.128 (3)0.041 (2)0.021 (3)0.018 (2)
C120.0555 (13)0.0601 (13)0.0364 (11)0.0111 (10)0.0068 (9)0.0072 (10)
C130.0911 (18)0.0708 (15)0.0426 (13)0.0412 (11)0.0110 (12)0.0098 (12)
C140.118 (3)0.143 (3)0.0401 (15)0.069 (2)0.0038 (15)0.0026 (17)
C150.185 (5)0.209 (6)0.0444 (18)0.129 (4)0.033 (3)0.029 (3)
C160.199 (5)0.150 (4)0.106 (4)0.124 (4)0.101 (4)0.076 (3)
C170.168 (4)0.078 (2)0.138 (3)0.066 (2)0.104 (3)0.053 (2)
C180.111 (2)0.0641 (16)0.0769 (18)0.0324 (12)0.0474 (17)0.0209 (14)
C190.0483 (11)0.0482 (12)0.0327 (10)0.0067 (9)0.0002 (8)0.0019 (9)
C200.0525 (12)0.0559 (13)0.0328 (10)0.0070 (10)0.0050 (9)0.0042 (10)
C210.0843 (19)0.0685 (16)0.0691 (16)0.0350 (14)0.0107 (14)0.0115 (14)
C220.221 (5)0.117 (3)0.110 (3)0.104 (3)0.036 (3)0.041 (2)
C230.0440 (11)0.0396 (10)0.0373 (10)0.0006 (8)0.0022 (8)0.0002 (8)
C240.0490 (12)0.0406 (11)0.0389 (11)0.0031 (9)0.0072 (9)0.0024 (9)
C250.0761 (17)0.0670 (15)0.0465 (13)0.0036 (12)0.0120 (12)0.0082 (11)
C260.113 (2)0.094 (2)0.0462 (15)0.024 (2)0.0122 (15)0.0156 (15)
C270.120 (3)0.084 (2)0.083 (2)0.030 (2)0.025 (2)0.0421 (18)
C280.097 (2)0.0656 (19)0.149 (3)0.0134 (17)0.027 (2)0.042 (2)
C290.0648 (16)0.0627 (16)0.103 (2)0.0076 (13)0.0079 (15)0.0216 (15)
N10.0510 (10)0.0421 (9)0.0407 (9)0.0060 (8)0.0105 (7)0.0062 (7)
O10.0737 (11)0.0501 (9)0.0595 (10)0.0076 (8)0.0005 (8)0.0173 (7)
O20.0845 (14)0.0985 (15)0.1233 (17)0.0145 (12)0.0388 (13)0.0616 (14)
O30.0619 (10)0.0706 (11)0.0497 (9)0.0097 (8)0.0143 (8)0.0042 (8)
O40.0870 (12)0.0666 (11)0.0532 (10)0.0368 (9)0.0139 (8)0.0104 (8)
Cl10.2676 (17)0.0805 (7)0.2945 (19)0.0159 (8)0.2084 (16)0.0452 (8)
Geometric parameters (Å, º) top
C1—C61.379 (3)C15—C161.369 (7)
C1—C21.380 (3)C15—H150.9300
C1—H10.9300C16—C171.366 (7)
C2—C31.369 (4)C16—H160.9300
C2—H20.9300C17—C181.387 (4)
C3—C41.366 (4)C17—Cl11.729 (5)
C3—H30.9300C18—H180.9300
C4—C51.378 (3)C19—C231.351 (3)
C4—H40.9300C19—C201.465 (3)
C5—C61.385 (3)C20—O31.207 (2)
C5—H50.9300C20—O41.326 (3)
C6—C71.487 (3)C21—O41.440 (3)
C7—C81.346 (3)C21—C221.460 (5)
C7—N11.385 (2)C21—H21A0.9700
C8—C91.479 (3)C21—H21B0.9700
C8—C121.518 (3)C22—H22A0.9600
C9—O21.199 (3)C22—H22B0.9600
C9—O11.326 (3)C22—H22C0.9600
C10—O11.451 (3)C23—N11.380 (2)
C10—C111.481 (4)C23—C241.495 (3)
C10—H10A0.9700C24—C291.365 (3)
C10—H10B0.9700C24—C251.375 (3)
C11—H11A0.9600C25—C261.366 (4)
C11—H11B0.9600C25—H250.9300
C11—H11C0.9600C26—C271.338 (5)
C12—C131.516 (3)C26—H260.9300
C12—C191.516 (3)C27—C281.357 (5)
C12—H120.9800C27—H270.9300
C13—C181.360 (4)C28—C291.389 (4)
C13—C141.395 (4)C28—H280.9300
C14—C151.380 (6)C29—H290.9300
C14—H140.9300N1—H1A0.8600
C6—C1—C2120.4 (2)C17—C16—C15118.5 (4)
C6—C1—H1119.8C17—C16—H16120.8
C2—C1—H1119.8C15—C16—H16120.8
C3—C2—C1120.1 (3)C16—C17—C18120.9 (5)
C3—C2—H2119.9C16—C17—Cl1119.1 (3)
C1—C2—H2119.9C18—C17—Cl1120.0 (4)
C4—C3—C2120.1 (2)C13—C18—C17120.9 (4)
C4—C3—H3120.0C13—C18—H18119.5
C2—C3—H3120.0C17—C18—H18119.5
C3—C4—C5120.2 (2)C23—C19—C20124.64 (18)
C3—C4—H4119.9C23—C19—C12121.34 (18)
C5—C4—H4119.9C20—C19—C12113.96 (16)
C4—C5—C6120.3 (2)O3—C20—O4122.37 (19)
C4—C5—H5119.8O3—C20—C19122.7 (2)
C6—C5—H5119.8O4—C20—C19114.95 (18)
C1—C6—C5118.9 (2)O4—C21—C22107.3 (2)
C1—C6—C7120.52 (18)O4—C21—H21A110.3
C5—C6—C7120.57 (19)C22—C21—H21A110.3
C8—C7—N1120.27 (17)O4—C21—H21B110.3
C8—C7—C6126.50 (18)C22—C21—H21B110.3
N1—C7—C6113.18 (16)H21A—C21—H21B108.5
C7—C8—C9123.88 (19)C21—C22—H22A109.5
C7—C8—C12121.08 (18)C21—C22—H22B109.5
C9—C8—C12115.03 (17)H22A—C22—H22B109.5
O2—C9—O1122.6 (2)C21—C22—H22C109.5
O2—C9—C8123.3 (2)H22A—C22—H22C109.5
O1—C9—C8114.02 (19)H22B—C22—H22C109.5
O1—C10—C11107.6 (2)C19—C23—N1119.80 (17)
O1—C10—H10A110.2C19—C23—C24127.08 (17)
C11—C10—H10A110.2N1—C23—C24113.12 (16)
O1—C10—H10B110.2C29—C24—C25117.7 (2)
C11—C10—H10B110.2C29—C24—C23120.3 (2)
H10A—C10—H10B108.5C25—C24—C23121.89 (19)
C10—C11—H11A109.5C26—C25—C24121.0 (3)
C10—C11—H11B109.5C26—C25—H25119.5
H11A—C11—H11B109.5C24—C25—H25119.5
C10—C11—H11C109.5C27—C26—C25120.5 (3)
H11A—C11—H11C109.5C27—C26—H26119.8
H11B—C11—H11C109.5C25—C26—H26119.8
C13—C12—C19110.89 (19)C26—C27—C28120.5 (3)
C13—C12—C8111.17 (18)C26—C27—H27119.7
C19—C12—C8111.44 (16)C28—C27—H27119.7
C13—C12—H12107.7C27—C28—C29119.2 (3)
C19—C12—H12107.7C27—C28—H28120.4
C8—C12—H12107.7C29—C28—H28120.4
C18—C13—C14118.4 (3)C24—C29—C28120.9 (3)
C18—C13—C12120.7 (2)C24—C29—H29119.5
C14—C13—C12121.0 (3)C28—C29—H29119.5
C15—C14—C13120.0 (4)C23—N1—C7122.35 (16)
C15—C14—H14120.0C23—N1—H1A118.8
C13—C14—H14120.0C7—N1—H1A118.8
C16—C15—C14121.2 (5)C9—O1—C10117.38 (19)
C16—C15—H15119.4C20—O4—C21118.62 (19)
C14—C15—H15119.4
C6—C1—C2—C30.1 (4)C16—C17—C18—C130.2 (5)
C1—C2—C3—C41.6 (4)Cl1—C17—C18—C13179.0 (2)
C2—C3—C4—C51.6 (4)C13—C12—C19—C23106.0 (2)
C3—C4—C5—C60.2 (4)C8—C12—C19—C2318.4 (3)
C2—C1—C6—C51.8 (3)C13—C12—C19—C2071.5 (2)
C2—C1—C6—C7179.8 (2)C8—C12—C19—C20164.12 (18)
C4—C5—C6—C11.9 (3)C23—C19—C20—O3166.5 (2)
C4—C5—C6—C7179.7 (2)C12—C19—C20—O316.2 (3)
C1—C6—C7—C8120.3 (2)C23—C19—C20—O414.9 (3)
C5—C6—C7—C861.3 (3)C12—C19—C20—O4162.47 (18)
C1—C6—C7—N162.4 (2)C20—C19—C23—N1177.24 (18)
C5—C6—C7—N1116.0 (2)C12—C19—C23—N15.6 (3)
N1—C7—C8—C9176.6 (2)C20—C19—C23—C242.3 (3)
C6—C7—C8—C90.5 (3)C12—C19—C23—C24174.84 (19)
N1—C7—C8—C122.0 (3)C19—C23—C24—C29111.8 (3)
C6—C7—C8—C12179.1 (2)N1—C23—C24—C2968.6 (3)
C7—C8—C9—O2150.2 (3)C19—C23—C24—C2570.4 (3)
C12—C8—C9—O228.4 (4)N1—C23—C24—C25109.2 (2)
C7—C8—C9—O131.4 (3)C29—C24—C25—C262.6 (4)
C12—C8—C9—O1150.0 (2)C23—C24—C25—C26179.5 (2)
C7—C8—C12—C13107.7 (2)C24—C25—C26—C271.1 (4)
C9—C8—C12—C1373.6 (3)C25—C26—C27—C281.3 (5)
C7—C8—C12—C1916.6 (3)C26—C27—C28—C292.1 (5)
C9—C8—C12—C19162.14 (18)C25—C24—C29—C281.8 (4)
C19—C12—C13—C1839.7 (3)C23—C24—C29—C28179.7 (3)
C8—C12—C13—C1884.9 (3)C27—C28—C29—C240.4 (5)
C19—C12—C13—C14139.9 (2)C19—C23—N1—C711.5 (3)
C8—C12—C13—C1495.6 (3)C24—C23—N1—C7168.13 (17)
C18—C13—C14—C150.2 (4)C8—C7—N1—C2313.4 (3)
C12—C13—C14—C15179.3 (3)C6—C7—N1—C23164.10 (17)
C13—C14—C15—C160.6 (6)O2—C9—O1—C109.3 (4)
C14—C15—C16—C171.0 (7)C8—C9—O1—C10172.2 (2)
C15—C16—C17—C180.6 (6)C11—C10—O1—C9179.2 (3)
C15—C16—C17—Cl1178.1 (3)O3—C20—O4—C215.3 (3)
C14—C13—C18—C170.7 (4)C19—C20—O4—C21176.1 (2)
C12—C13—C18—C17178.9 (2)C22—C21—O4—C20176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.102.910 (2)158
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the college management and the Principal for their support and providing the necessary facilities.

References

First citationAhamed, F. M. M., Padusha, M. S. A. & Gunasekaran, B. (2016). IUCrData, 1, x160155.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Wang, Y., Yao, M. & Xu, D. (2013). Acta Cryst. E69, o785.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds