organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(5-Methyl­thio­phen-2-yl)-N-(4-nitro­phen­yl)methanimine

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 November 2019; accepted 27 November 2019; online 3 December 2019)

The title compound, C12H10N2O2S, was synthesized via the acid-catalyzed condensation of 4-nitro­aniline and 5-methyl-2-thio­phene­carboxaldehyde in a methanol–water solution. The dihedral angle between the benzene and thio­phene rings is 54.62 (3)°. No directional inter­actions could be identified in the extended structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The methyl­thio­phene group makes a dihedral angle of 54.62 (3)° with respect to the plane defined by the nitro­aniline ring. Within the aniline ring, the nitro group is nearly coplanar with the phenyl ring [C9—C10—N2—O2 = 3.47 (4)°]. This slight twist of the nitro group is not as large as the 9.0 (3)° angle in (E)-N-(4-nitro­phen­yl)-1-(thio­phen-2-yl)methanimine (Asiri et al., 2012[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2288.]). In the extended structure, no significant inter­molecular inter­actions occur. A view of the unit cell along [010] is shown in Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the unit-cell packing along [010].

Synthesis and crystallization

In a 50-ml Erlenmeyer flask, 1.26 g of 5-methyl-2-thio­phene carboxaldehyde (10.0 mmol) were added to a solution of 10 ml of H2O and 20 ml of a 2.5 mmol l−1 solution of NH4HF2 in methanol (Lassagne et al., 2015[Lassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680-2689.]). After swirling the solution to mix the liquids, 1.38 g (10.0 mmol) of 4-nitro­aniline were added. The solution was stirred for 24 h even though a yellow precipitate had formed after 4 h. The resulting solid was filtered and washed with cold water then dried (2.03 g; 82%). Crystals were grown from CH2Cl2 solutions. Data: m.p. 429 K; 1H NMR (CDCl3, 300 MHz): δ = 2.59 (s, 3H), 6.86 (dd, 1H), 7.26 (m, 2H), 7.39 (d, 1H), 8.26 (m, 2H), 8.46 (s, 1H); 13C NMR (CDCl3, 300 MHz): δ = 16.1, 121.5, 125.0, 126.7, 134.6, 139.8, 145.4, 148.1, 155.1, 157.4; ATR FTIR (cm−1): 3398 (w), 2438 (s), 1610 (s), 1598 (s), 1503 (s), 1406 (s), 1198 (s), 1163 (s), 1106 (s), 1054 (s), 967 (s), 870 (s), 856 (s).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C12H10N2O2S
Mr 246.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 13.5979 (7), 7.3148 (3), 12.5931 (6)
β (°) 112.763 (5)
V3) 1155.04 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.34 × 0.32 × 0.19
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO.])
Tmin, Tmax 0.796, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28914, 4318, 3467
Rint 0.029
(sin θ/λ)max−1) 0.781
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.07
No. of reflections 4318
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.33
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and OLEX2 (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Bourhis et al., 2015).

(E)-1-(5-Methylthiophen-2-yl)-N-(4-nitrophenyl)methanimine top
Crystal data top
C12H10N2O2SDx = 1.416 Mg m3
Mr = 246.28Melting point: 429 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5979 (7) ÅCell parameters from 8567 reflections
b = 7.3148 (3) Åθ = 4.5–32.7°
c = 12.5931 (6) ŵ = 0.27 mm1
β = 112.763 (5)°T = 293 K
V = 1155.04 (9) Å3Plate, yellow
Z = 40.34 × 0.32 × 0.19 mm
F(000) = 512
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4318 independent reflections
Radiation source: Enhance (Mo) X-ray Source3467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.1790 pixels mm-1θmax = 33.7°, θmin = 4.3°
ω scansh = 2021
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.796, Tmax = 1.000l = 1919
28914 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.056P)2 + 0.2252P]
where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were included in calculated positions with C—H distances of 0.93 Å and 0.96 Å based upon type of carbon atom and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.86901 (12)0.5813 (3)0.40834 (15)0.0629 (4)
H1A0.90870.62470.48500.094*
H1B0.90030.62800.35740.094*
H1C0.87060.45010.40770.094*
C20.75619 (10)0.64523 (16)0.36931 (11)0.0420 (2)
C30.70532 (11)0.71403 (19)0.43482 (11)0.0472 (3)
H30.73810.72830.51420.057*
C40.59850 (11)0.76142 (18)0.37063 (11)0.0454 (3)
H40.55320.80950.40310.054*
C50.56820 (9)0.72928 (16)0.25515 (10)0.0383 (2)
C60.46547 (10)0.76359 (16)0.16459 (11)0.0399 (2)
H60.40910.80030.18400.048*
C70.34681 (10)0.76957 (16)0.02564 (10)0.0387 (2)
C80.25773 (11)0.68505 (19)0.01918 (11)0.0450 (3)
H80.26490.61530.04520.054*
C90.15877 (11)0.7036 (2)0.10729 (12)0.0485 (3)
H90.09910.64710.10310.058*
C100.15028 (11)0.80772 (18)0.20170 (11)0.0449 (3)
C110.23669 (12)0.89611 (19)0.20981 (11)0.0485 (3)
H110.22850.96840.27340.058*
C120.33524 (11)0.87551 (18)0.12212 (12)0.0465 (3)
H120.39450.93240.12710.056*
N10.44994 (9)0.74494 (15)0.05856 (9)0.0433 (2)
N20.04664 (11)0.8230 (2)0.29732 (11)0.0588 (3)
O10.04178 (11)0.9053 (2)0.38389 (10)0.0808 (4)
O20.03044 (10)0.7504 (3)0.28855 (12)0.0869 (4)
S10.67202 (2)0.63767 (4)0.22616 (3)0.04172 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (7)0.0756 (10)0.0608 (9)0.0099 (7)0.0119 (6)0.0015 (8)
C20.0425 (6)0.0397 (6)0.0415 (6)0.0008 (4)0.0138 (5)0.0025 (4)
C30.0525 (7)0.0503 (7)0.0366 (6)0.0037 (5)0.0149 (5)0.0031 (5)
C40.0483 (6)0.0487 (6)0.0429 (6)0.0010 (5)0.0217 (5)0.0063 (5)
C50.0395 (5)0.0359 (5)0.0411 (5)0.0014 (4)0.0173 (4)0.0012 (4)
C60.0392 (5)0.0362 (5)0.0448 (6)0.0008 (4)0.0167 (5)0.0014 (4)
C70.0429 (6)0.0353 (5)0.0384 (5)0.0025 (4)0.0163 (4)0.0003 (4)
C80.0466 (6)0.0471 (6)0.0396 (6)0.0020 (5)0.0150 (5)0.0058 (5)
C90.0444 (6)0.0545 (7)0.0451 (6)0.0036 (5)0.0154 (5)0.0009 (6)
C100.0472 (6)0.0467 (6)0.0360 (5)0.0078 (5)0.0108 (5)0.0034 (5)
C110.0618 (8)0.0446 (6)0.0391 (6)0.0066 (6)0.0196 (6)0.0059 (5)
C120.0517 (7)0.0456 (6)0.0450 (6)0.0013 (5)0.0218 (5)0.0047 (5)
N10.0415 (5)0.0451 (5)0.0427 (5)0.0026 (4)0.0157 (4)0.0029 (4)
N20.0564 (7)0.0685 (8)0.0422 (6)0.0143 (6)0.0088 (5)0.0060 (6)
O10.0834 (9)0.0975 (10)0.0456 (6)0.0223 (7)0.0075 (6)0.0146 (6)
O20.0499 (7)0.1314 (13)0.0642 (8)0.0002 (8)0.0054 (6)0.0030 (8)
S10.04364 (17)0.04606 (17)0.03761 (15)0.00209 (12)0.01807 (12)0.00092 (11)
Geometric parameters (Å, º) top
C1—H1A0.9600C7—C81.3901 (18)
C1—H1B0.9600C7—C121.3977 (17)
C1—H1C0.9600C7—N11.4045 (16)
C1—C21.4935 (19)C8—H80.9300
C2—C31.3616 (19)C8—C91.3801 (18)
C2—S11.7222 (13)C9—H90.9300
C3—H30.9300C9—C101.3788 (19)
C3—C41.405 (2)C10—C111.379 (2)
C4—H40.9300C10—N21.4612 (18)
C4—C51.3698 (17)C11—H110.9300
C5—C61.4429 (17)C11—C121.376 (2)
C5—S11.7246 (12)C12—H120.9300
C6—H60.9300N2—O11.2247 (19)
C6—N11.2760 (17)N2—O21.218 (2)
H1A—C1—H1B109.5C8—C7—N1122.47 (11)
H1A—C1—H1C109.5C12—C7—N1118.10 (11)
H1B—C1—H1C109.5C7—C8—H8119.7
C2—C1—H1A109.5C9—C8—C7120.66 (12)
C2—C1—H1B109.5C9—C8—H8119.7
C2—C1—H1C109.5C8—C9—H9120.7
C1—C2—S1121.10 (11)C10—C9—C8118.54 (12)
C3—C2—C1127.90 (13)C10—C9—H9120.7
C3—C2—S1111.01 (10)C9—C10—C11122.24 (12)
C2—C3—H3123.3C9—C10—N2119.02 (13)
C2—C3—C4113.39 (12)C11—C10—N2118.73 (13)
C4—C3—H3123.3C10—C11—H11120.6
C3—C4—H4123.6C12—C11—C10118.84 (12)
C5—C4—C3112.81 (12)C12—C11—H11120.6
C5—C4—H4123.6C7—C12—H12119.8
C4—C5—C6127.64 (12)C11—C12—C7120.37 (13)
C4—C5—S1110.91 (10)C11—C12—H12119.8
C6—C5—S1121.45 (9)C6—N1—C7119.28 (11)
C5—C6—H6119.1O1—N2—C10118.28 (15)
N1—C6—C5121.75 (11)O2—N2—C10118.78 (14)
N1—C6—H6119.1O2—N2—O1122.91 (14)
C8—C7—C12119.33 (11)C2—S1—C591.88 (6)
 

Acknowledgements

This research was funded by a CCSU-AAUP research grant.

References

First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2288.  CSD CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680–2689.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PROGoogle Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds