metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[Oxybis(ethane-1,2-di­yl)]bis­­(di­methyl­ammonium) octa­molybdate dihydrate

aEntegris, Inc., 7 Commerce Dr., Danbury, CT, 06810, USA, and bDepartment of Chemistry, University of California, 9500 Gilman Drive, La Jolla, CA, 92093, USA
*Correspondence e-mail: David.Ermert@entegris.com

Edited by A. J. Lough, University of Toronto, Canada (Received 1 August 2019; accepted 13 November 2019; online 19 November 2019)

The title compound, (C8H22N2O)2[Mo8O26]·H2O, (cis-H2L)2[β-Mo8O26]·H2O, where L = (bis­[2-N,N-di­methyl­amino)­eth­yl] ether), was synthesized from bis­[2-(di­methyl­amino)­eth­yl] ether and MoO3 under solvothermal conditions and characterized by multinuclear NMR and single-crystal X-ray diffraction techniques. The structure displays two [oxybis(ethane-1,2-di­yl)]bis­(di­methyl­ammonium), or [cis-H2L]2+, cations, a central [β-Mo8O26]4− anionic cluster consisting of eight distorted MoO6 octa­hedra, and two water mol­ecules in their deuterated form. The central anion lies across an inversion center. The [cis-H2L]2+ cations are hydrogen bonded to the central [β-Mo8O26]4− cluster via bridging water mol­ecules. In the crystal, O—H⋯O hydrogen bonds link the components into chains along [010]. Weak C—H⋯O hydrogen bonds link these chains into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polyoxometalates (POMs) are self-assembled metal clusters finding broad application in coatings, the pulp and paper industry, catalysis, microelectronics, and medicine (Katsoulis, 1998[Katsoulis, D. E. (1998). Chem. Rev. 98, 359-388.]; Chaidogiannos et al., 2004[Chaidogiannos, G., Velessiotis, D., Argitis, P., Koutsolelos, P., Diakoumakos, C. D., Tsamakis, D. & Glezos, N. (2004). Microelectron. Eng. 73-74, 746-751.]; Long et al., 2007[Long, D., Burkholder, E. & Cronin, L. (2007). Chem. Soc. Rev. 36, 105-121.]; Rhule et al., 1998[Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327-358.]). Generally, group 5 and 6 POMs are more common and can adopt a wide range of nuclearity (Pope, 1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Heidelberg: Springer-Verlag.]; Pope & Müller, 1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-48.]). Within the context of molybdenum, seven isomers of the octa­molybdate anion, [Mo8O26]4−, have been reported (Bridgeman, 2002[Bridgeman, A. J. (2002). J. Phys. Chem. A, 106, 12151-12160.]; Allis et al., 2004[Allis, D. G., Burkholder, E. & Zubieta, J. (2004). Polyhedron, 23, 1145-1152.]). Here, we report the isolation of the title compound (1), which is characterized by a protonated bis­(dialk­yl)ammonium ether salt linked to an octa­molybdate anion through hydrogen bonding (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O14 1.00 2.26 2.737 (6) 108
N1—H1⋯O15 1.00 1.97 2.916 (7) 157
N2—H2⋯O14 1.00 2.46 2.808 (7) 100
N2—H2⋯O15 1.00 1.87 2.863 (6) 170
O15—D15A⋯O4 0.87 1.99 2.854 (5) 170
O15—D15B⋯O4ii 0.87 1.99 2.863 (6) 177
C1—H1A⋯O5iii 0.98 2.56 3.440 (6) 149
C1—H1B⋯O9 0.98 2.36 3.189 (7) 142
C1—H1C⋯O11ii 0.98 2.39 3.355 (8) 168
C2—H2A⋯O3iv 0.98 2.44 3.343 (7) 153
C2—H2B⋯O10ii 0.98 2.34 3.300 (8) 167
C3—H3A⋯O13i 0.99 2.52 3.407 (7) 150
C3—H3B⋯O11iii 0.99 2.42 3.266 (7) 143
C4—H4A⋯O6v 0.99 2.50 3.472 (8) 167
C6—H6B⋯O6i 0.99 2.44 3.360 (8) 154
C7—H7A⋯O12v 0.98 2.49 3.316 (8) 142
C7—H7B⋯O8ii 0.98 2.26 3.227 (8) 170
C8—H8A⋯O9vi 0.98 2.48 3.402 (7) 157
C8—H8B⋯O9ii 0.98 2.48 3.461 (8) 176
C8—H8C⋯O11 0.98 2.40 3.155 (7) 134
C8—H8C⋯O7i 0.98 2.52 3.270 (8) 133
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x+1, y, z.

Compound (1) (Fig. 1[link]) crystallizes as a salt containing two [bis­(2-N,N-di­methyl­ammonium)­ethyl ether]2+ cations and a [β-Mo8O26]4− anion hydrogen bonded through a single water molecule (deuterated)of hydration per [H2L]2+. The anion lies across a center of inversion. The protonated amino arms of the ether groups are arranged in a cis orientation and create a hydrogen-bonding pocket for D2O coordination between both N—H protons of a given ether group and a μ2-O-atom of the [Mo8O26]4− anion. Overall, hydrogen-bond lengths range from 1.87–2.46 Å, with the close proximity of the ammonium protons to the oxygen atom of the ether group facilitating the longer (2.26–2.46 Å) hydrogen bonding. In the crystal, O—H⋯O hydrogen bonds link the components into chains (Fig. 2[link]) along [010]. Furthermore, weak C—H⋯O hydrogen bonds link these chains into a three-dimensional network (Fig. 3[link]). Although 1 was crystallized from D2O, only the solvent mol­ecules have been modeled with deuterium atoms; however, deuterium exchange with N—H protons is likely and supported by 1H-NMR experiments (see below).

[Figure 1]
Figure 1
The mol­ecular entities in the title compound with ellipsoids drawn at the 50% probability level. Only the symmetry-unique cation and solvent water mol­ecules are shown. H atoms bonded to C atoms are omitted for the sake of clarity. Atoms labeled with the suffix `a' are related by the symmetry operator (−x + 1, −y + 1, −z + 1).
[Figure 2]
Figure 2
Part of the crystal structure with N—H⋯O and O—H⋯O hydrogen bonds shown as dashed lines viewed along the [100] direction of the unit cell.
[Figure 3]
Figure 3
Part of the crystal structure with N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds shown as dashed lines viewed along the [010] direction of the unit cell.

In 1, the octa­molybate anion consists of six-coordinate Mo atoms in a distorted octa­hedral shape bound to oxygen through combinations of terminal, μ2, μ3, or μ5 modes. Relevant bond metrics are reported in Table 2[link]. Most notable, the μ2-O13 bond lengths are closer to that of terminal [Mo4—O13: 1.759 (4) Å] and higher-coordination environment oxides [Mo2—O13: 2.270 (4) Å], respectively. The atypical bridging Mo—O bond lengths are a hallmark of the β-isomer and have been described as `pseudoterminal' (Bridgeman, 2002[Bridgeman, A. J. (2002). J. Phys. Chem. A, 106, 12151-12160.]). Taken together, these data are consistent with the structural trends present in reported [β-Mo8O26]4− motifs (Bridgeman, 2002[Bridgeman, A. J. (2002). J. Phys. Chem. A, 106, 12151-12160.]).

Table 2
Selected bond lengths (Å)

Mo1—O1 2.340 (4) Mo3—O1 2.277 (4)
Mo1—O2 2.015 (4) Mo3—O2i 2.334 (4)
Mo1—O3 1.893 (4) Mo3—O4 1.933 (4)
Mo1—O5i 2.357 (4) Mo3—O5 1.984 (4)
Mo1—O6 1.696 (4) Mo3—O10 1.705 (4)
Mo1—O7 1.700 (4) Mo3—O11 1.699 (4)
Mo2—O1 2.450 (4) Mo4—O1 2.172 (4)
Mo2—O3 1.901 (4) Mo4—O1i 2.368 (4)
Mo2—O4 1.968 (4) Mo4—O2 1.942 (4)
Mo2—O8 1.699 (4) Mo4—O5 1.963 (4)
Mo2—O9 1.696 (4) Mo4—O12 1.692 (4)
Mo2—O13i 2.270 (4) Mo4—O13 1.759 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

The octa­molybdate anion, [Mo8O26]4−, is common. A search of the Cambridge Structural Database (CSD version 5.40 up to May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) listed 278 deposited structures. However, the cis-[bis­(2-N,N-di­methyl­ammo­nium)­ethyl ether]2+ cation reported here is the first crystallographic example in the literature.

Synthesis and crystallization

Synthesis of the title complex (1): All reagents were purchased from Sigma–Aldrich and used without further purification. MoO3 (5.0 g, 34.7 mmol) and bis­[2-(N,N-di­methyl­amino)­eth­yl] ether (13.1 ml, 69.4 mmol) were loaded into a 250 ml round-bottom flask equipped with a magnetic stir bar and diluted with 100 ml of H2O. The resulting mint-green mixture was heated to 373 K. After 20 minutes the reaction presented as a colorless solution and was cooled to room temperature. The solution was transferred to a 500 ml beaker and diluted with 2-propanol (300 ml), resulting in the formation of a fine colorless precipitate. The solid was allowed to settle, the mother liquor deca­nted off, and the white solid collected and dried under reduced pressure at 333 K. 1H NMR (400 MHz, D2O) in p.p.m.: δ = 4.79 (s, 6H), 3.92 (t, 5.34 Hz, 4H), 3.42 (t, 5.34 Hz, 4H), 2.96 (s, 12H). 13C NMR (100 MHz, D2O) in p.p.m.: δ = 64.40, 56.78, 43.26.

The title complex (1) precipitated as colorless crystals from a D2O solution stored inside of an NMR tube for three days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula (C8H22N2O)2[Mo8O26]·2D2O
Mr 1548.13
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.139 (3), 11.350 (3), 17.815 (5)
β (°) 96.773 (3)
V3) 2035.7 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.48
Crystal size (mm) 0.28 × 0.23 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA])
Tmin, Tmax 0.581, 0.646
No. of measured, independent and observed [I > 2σ(I)] reflections 8296, 3652, 2992
Rint 0.029
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.08
No. of reflections 3652
No. of parameters 269
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.88
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[Oxybis(ethane-1,2-diyl)]bis(dimethylammonium) octamolybdate dihydrate top
Crystal data top
(C8H22N2O)2[Mo8O26]·2D2OF(000) = 1496
Mr = 1548.13Dx = 2.526 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.139 (3) ÅCell parameters from 4105 reflections
b = 11.350 (3) Åθ = 2.2–25.4°
c = 17.815 (5) ŵ = 2.48 mm1
β = 96.773 (3)°T = 100 K
V = 2035.7 (9) Å3Block, colourless
Z = 20.28 × 0.23 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
2992 reflections with I > 2σ(I)
Detector resolution: 8.258 pixels mm-1Rint = 0.029
φ and ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1012
Tmin = 0.581, Tmax = 0.646k = 913
8296 measured reflectionsl = 2119
3652 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0204P)2 + 11.0569P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3652 reflectionsΔρmax = 0.75 e Å3
269 parametersΔρmin = 0.88 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo40.51222 (5)0.56859 (4)0.59121 (2)0.00664 (12)
Mo30.57308 (5)0.29183 (4)0.58295 (2)0.00758 (12)
Mo20.27674 (5)0.24855 (5)0.49345 (3)0.00926 (13)
Mo10.21926 (5)0.52804 (5)0.50414 (3)0.00963 (13)
O50.6544 (4)0.4504 (3)0.59792 (19)0.0083 (8)
O40.4575 (4)0.1866 (3)0.52022 (19)0.0082 (8)
O10.4160 (4)0.4202 (3)0.53033 (19)0.0081 (8)
O20.3639 (4)0.6471 (3)0.53276 (19)0.0078 (8)
O30.1739 (4)0.3814 (3)0.45750 (19)0.0090 (8)
O150.5610 (4)0.0398 (4)0.4110 (2)0.0102 (9)
D15A0.5380310.0902720.4437950.015*
D15B0.5521870.0285890.4318480.015*
O130.6163 (4)0.6926 (3)0.6051 (2)0.0102 (8)
O70.1035 (4)0.6188 (4)0.4579 (2)0.0138 (9)
O140.6350 (4)0.1851 (4)0.2749 (2)0.0138 (9)
O110.7115 (4)0.2063 (4)0.5948 (2)0.0127 (9)
O90.2025 (4)0.1352 (4)0.4428 (2)0.0161 (9)
O100.5105 (4)0.2820 (4)0.6675 (2)0.0116 (9)
O80.2277 (4)0.2344 (4)0.5810 (2)0.0162 (9)
O120.4551 (4)0.5481 (4)0.6757 (2)0.0117 (9)
O60.1744 (4)0.5114 (4)0.5923 (2)0.0148 (9)
N10.8289 (5)0.1047 (4)0.3826 (2)0.0108 (10)
H10.7313530.0881980.3776280.013*
N20.4038 (5)0.0472 (4)0.2666 (3)0.0120 (11)
H20.4659670.0503700.3144830.014*
C40.5429 (6)0.1940 (6)0.2073 (3)0.0163 (14)
H4A0.5674470.1381380.1685770.020*
H4B0.5435930.2747960.1864600.020*
C60.8473 (6)0.2142 (6)0.3394 (3)0.0159 (13)
H6A0.9427460.2243330.3340540.019*
H6B0.8184490.2827360.3677150.019*
C20.4473 (7)0.0508 (6)0.2199 (3)0.0221 (15)
H2A0.3859250.0576480.1732910.033*
H2B0.4475990.1246280.2483780.033*
H2C0.5369920.0345770.2072000.033*
C50.7685 (6)0.2105 (6)0.2617 (3)0.0185 (14)
H5A0.7731870.2872570.2357030.022*
H5B0.8029650.1483900.2302060.022*
C80.8742 (6)0.1196 (6)0.4648 (3)0.0172 (14)
H8A0.9694810.1374000.4718560.026*
H8B0.8578090.0467100.4917160.026*
H8C0.8251830.1845160.4849420.026*
C30.4072 (6)0.1646 (6)0.2288 (3)0.0153 (13)
H3A0.3803440.2261510.2633470.018*
H3B0.3421070.1648990.1828070.018*
C70.8937 (7)0.0006 (6)0.3518 (4)0.0244 (16)
H7A0.8663960.0051980.2973110.037*
H7B0.8669650.0709640.3768080.037*
H7C0.9903850.0094870.3610600.037*
C10.2683 (6)0.0247 (6)0.2869 (3)0.0209 (15)
H1A0.2057180.0189430.2406800.031*
H1B0.2417660.0895400.3181420.031*
H1C0.2678740.0493430.3151570.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo40.0060 (3)0.0080 (3)0.0061 (2)0.0005 (2)0.00142 (17)0.00017 (18)
Mo30.0070 (3)0.0078 (3)0.0080 (2)0.0009 (2)0.00073 (18)0.00107 (19)
Mo20.0070 (3)0.0099 (3)0.0112 (2)0.0009 (2)0.00251 (18)0.0000 (2)
Mo10.0070 (3)0.0103 (3)0.0118 (2)0.0009 (2)0.00221 (19)0.0002 (2)
O50.009 (2)0.008 (2)0.0078 (17)0.0009 (16)0.0008 (15)0.0025 (15)
O40.007 (2)0.008 (2)0.0096 (18)0.0003 (16)0.0029 (15)0.0001 (15)
O10.008 (2)0.009 (2)0.0073 (17)0.0017 (16)0.0010 (15)0.0002 (15)
O20.007 (2)0.005 (2)0.0108 (18)0.0014 (16)0.0003 (15)0.0010 (15)
O30.007 (2)0.009 (2)0.0107 (18)0.0000 (16)0.0007 (15)0.0011 (16)
O150.011 (2)0.008 (2)0.0122 (19)0.0018 (18)0.0033 (16)0.0002 (16)
O130.007 (2)0.012 (2)0.0113 (18)0.0006 (17)0.0012 (15)0.0023 (16)
O70.011 (2)0.013 (2)0.018 (2)0.0020 (18)0.0013 (16)0.0032 (18)
O140.009 (2)0.021 (3)0.0116 (19)0.0033 (18)0.0017 (16)0.0065 (17)
O110.009 (2)0.014 (2)0.0151 (19)0.0011 (17)0.0002 (16)0.0001 (17)
O90.010 (2)0.018 (3)0.021 (2)0.0008 (18)0.0049 (17)0.0042 (18)
O100.015 (2)0.012 (2)0.0082 (18)0.0027 (18)0.0037 (16)0.0010 (16)
O80.016 (2)0.020 (3)0.014 (2)0.0002 (19)0.0061 (17)0.0020 (18)
O120.015 (2)0.013 (2)0.0075 (18)0.0002 (18)0.0039 (16)0.0027 (16)
O60.011 (2)0.016 (2)0.018 (2)0.0006 (18)0.0059 (16)0.0006 (18)
N10.008 (3)0.012 (3)0.013 (2)0.001 (2)0.0044 (19)0.000 (2)
N20.013 (3)0.011 (3)0.012 (2)0.002 (2)0.0012 (19)0.001 (2)
C40.019 (3)0.017 (4)0.013 (3)0.002 (3)0.001 (2)0.003 (3)
C60.013 (3)0.017 (4)0.018 (3)0.004 (3)0.003 (2)0.002 (3)
C20.034 (4)0.014 (4)0.017 (3)0.002 (3)0.002 (3)0.001 (3)
C50.016 (3)0.020 (4)0.020 (3)0.005 (3)0.004 (3)0.008 (3)
C80.010 (3)0.028 (4)0.014 (3)0.000 (3)0.001 (2)0.002 (3)
C30.015 (3)0.017 (3)0.013 (3)0.005 (3)0.002 (2)0.003 (2)
C70.034 (4)0.019 (4)0.022 (3)0.003 (3)0.011 (3)0.006 (3)
C10.014 (3)0.033 (4)0.016 (3)0.009 (3)0.003 (3)0.004 (3)
Geometric parameters (Å, º) top
Mo1—O12.340 (4)N1—H11.0000
Mo1—O22.015 (4)N1—C61.485 (7)
Mo1—O31.893 (4)N1—C81.493 (7)
Mo1—O5i2.357 (4)N1—C71.487 (8)
Mo1—O61.696 (4)N2—H21.0000
Mo1—O71.700 (4)N2—C21.486 (8)
Mo2—O12.450 (4)N2—C31.494 (8)
Mo2—O31.901 (4)N2—C11.484 (7)
Mo2—O41.968 (4)C4—H4A0.9900
Mo2—O81.699 (4)C4—H4B0.9900
Mo2—O91.696 (4)C4—C31.509 (8)
Mo2—O13i2.270 (4)C6—H6A0.9900
Mo3—O12.277 (4)C6—H6B0.9900
Mo3—O2i2.334 (4)C6—C51.516 (7)
Mo3—O41.933 (4)C2—H2A0.9800
Mo3—O51.984 (4)C2—H2B0.9800
Mo3—O101.705 (4)C2—H2C0.9800
Mo3—O111.699 (4)C5—H5A0.9900
Mo4—O12.172 (4)C5—H5B0.9900
Mo4—O1i2.368 (4)C8—H8A0.9800
Mo4—O21.942 (4)C8—H8B0.9800
Mo4—O51.963 (4)C8—H8C0.9800
Mo4—O121.692 (4)C3—H3A0.9900
Mo4—O131.759 (4)C3—H3B0.9900
Mo4—Mo33.2081 (11)C7—H7A0.9800
Mo4—Mo13.2177 (9)C7—H7B0.9800
O15—D15A0.8701C7—H7C0.9800
O15—D15B0.8698C1—H1A0.9800
O14—C41.437 (6)C1—H1B0.9800
O14—C51.430 (7)C1—H1C0.9800
Mo3—Mo4—Mo190.539 (19)O6—Mo1—O3103.34 (18)
O5—Mo4—Mo335.86 (11)O6—Mo1—O7105.74 (19)
O5—Mo4—Mo1124.14 (11)Mo4—O5—Mo3108.74 (17)
O5—Mo4—O177.51 (15)Mo4—O5—Mo1i110.13 (16)
O5—Mo4—O1i77.85 (14)Mo3—O5—Mo1i104.21 (16)
O1—Mo4—Mo345.18 (10)Mo3—O4—Mo2113.77 (19)
O1i—Mo4—Mo385.93 (9)Mo4—O1—Mo4i104.28 (15)
O1—Mo4—Mo146.64 (10)Mo4—O1—Mo392.26 (13)
O1i—Mo4—Mo186.14 (9)Mo4—O1—Mo2164.06 (18)
O1—Mo4—O1i75.72 (15)Mo4i—O1—Mo291.55 (12)
O2—Mo4—Mo3124.45 (11)Mo4—O1—Mo190.93 (14)
O2—Mo4—Mo136.36 (11)Mo3—O1—Mo4i97.77 (14)
O2—Mo4—O5149.67 (15)Mo3—O1—Mo287.39 (13)
O2—Mo4—O1i77.70 (14)Mo3—O1—Mo1162.78 (18)
O2—Mo4—O179.29 (15)Mo1—O1—Mo4i97.84 (13)
O13—Mo4—Mo3132.42 (13)Mo1—O1—Mo284.95 (12)
O13—Mo4—Mo1133.35 (12)Mo4—O2—Mo3i109.56 (17)
O13—Mo4—O596.57 (17)Mo4—O2—Mo1108.81 (18)
O13—Mo4—O1156.57 (16)Mo1—O2—Mo3i104.03 (14)
O13—Mo4—O1i80.88 (15)Mo1—O3—Mo2117.03 (18)
O13—Mo4—O297.00 (16)D15A—O15—D15B104.5
O12—Mo4—Mo389.67 (14)Mo4—O13—Mo2i117.40 (18)
O12—Mo4—Mo190.91 (13)C5—O14—C4112.4 (4)
O12—Mo4—O5100.26 (17)C6—N1—H1107.1
O12—Mo4—O199.04 (17)C6—N1—C8111.7 (5)
O12—Mo4—O1i174.68 (17)C6—N1—C7112.7 (5)
O12—Mo4—O2102.45 (17)C8—N1—H1107.1
O12—Mo4—O13104.33 (18)C7—N1—H1107.1
O5—Mo3—Mo435.40 (11)C7—N1—C8110.7 (5)
O5—Mo3—O174.60 (14)C2—N2—H2107.8
O5—Mo3—O2i72.35 (14)C2—N2—C3113.0 (5)
O4—Mo3—Mo4121.63 (11)C3—N2—H2107.8
O4—Mo3—O5148.38 (15)C1—N2—H2107.8
O4—Mo3—O179.08 (14)C1—N2—C2110.6 (5)
O4—Mo3—O2i83.29 (14)C1—N2—C3109.5 (5)
O1—Mo3—Mo442.56 (9)O14—C4—H4A110.3
O1—Mo3—O2i72.39 (13)O14—C4—H4B110.3
O2i—Mo3—Mo479.86 (9)O14—C4—C3107.0 (4)
O11—Mo3—Mo4135.57 (14)H4A—C4—H4B108.6
O11—Mo3—O5100.21 (17)C3—C4—H4A110.3
O11—Mo3—O498.89 (17)C3—C4—H4B110.3
O11—Mo3—O1160.74 (16)N1—C6—H6A109.3
O11—Mo3—O2i88.35 (16)N1—C6—H6B109.3
O11—Mo3—O10103.94 (18)N1—C6—C5111.4 (5)
O10—Mo3—Mo485.97 (14)H6A—C6—H6B108.0
O10—Mo3—O597.61 (17)C5—C6—H6A109.3
O10—Mo3—O4101.94 (17)C5—C6—H6B109.3
O10—Mo3—O195.18 (16)N2—C2—H2A109.5
O10—Mo3—O2i165.54 (17)N2—C2—H2B109.5
O4—Mo2—O174.23 (14)N2—C2—H2C109.5
O4—Mo2—O13i77.07 (14)H2A—C2—H2B109.5
O3—Mo2—O4145.37 (16)H2A—C2—H2C109.5
O3—Mo2—O174.65 (14)H2B—C2—H2C109.5
O3—Mo2—O13i78.41 (15)O14—C5—C6105.2 (5)
O13i—Mo2—O170.16 (13)O14—C5—H5A110.7
O9—Mo2—O4101.54 (17)O14—C5—H5B110.7
O9—Mo2—O1162.10 (16)C6—C5—H5A110.7
O9—Mo2—O3103.37 (18)C6—C5—H5B110.7
O9—Mo2—O13i91.97 (17)H5A—C5—H5B108.8
O9—Mo2—O8104.9 (2)N1—C8—H8A109.5
O8—Mo2—O496.25 (17)N1—C8—H8B109.5
O8—Mo2—O192.90 (17)N1—C8—H8C109.5
O8—Mo2—O3100.13 (18)H8A—C8—H8B109.5
O8—Mo2—O13i162.85 (17)H8A—C8—H8C109.5
O5i—Mo1—Mo478.60 (9)H8B—C8—H8C109.5
O1—Mo1—Mo442.44 (9)N2—C3—C4112.4 (5)
O1—Mo1—O5i71.35 (13)N2—C3—H3A109.1
O2—Mo1—Mo434.83 (10)N2—C3—H3B109.1
O2—Mo1—O5i71.34 (14)C4—C3—H3A109.1
O2—Mo1—O173.89 (14)C4—C3—H3B109.1
O3—Mo1—Mo4120.00 (11)H3A—C3—H3B107.9
O3—Mo1—O5i83.03 (15)N1—C7—H7A109.5
O3—Mo1—O177.57 (14)N1—C7—H7B109.5
O3—Mo1—O2146.37 (16)N1—C7—H7C109.5
O7—Mo1—Mo4133.80 (14)H7A—C7—H7B109.5
O7—Mo1—O5i88.28 (16)H7A—C7—H7C109.5
O7—Mo1—O1159.59 (16)H7B—C7—H7C109.5
O7—Mo1—O299.00 (17)N2—C1—H1A109.5
O7—Mo1—O3101.67 (17)N2—C1—H1B109.5
O6—Mo1—Mo484.40 (13)N2—C1—H1C109.5
O6—Mo1—O5i162.77 (16)H1A—C1—H1B109.5
O6—Mo1—O194.14 (16)H1A—C1—H1C109.5
O6—Mo1—O296.14 (17)H1B—C1—H1C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O141.002.262.737 (6)108
N1—H1···O151.001.972.916 (7)157
N2—H2···O141.002.462.808 (7)100
N2—H2···O151.001.872.863 (6)170
O15—D15A···O40.871.992.854 (5)170
O15—D15B···O4ii0.871.992.863 (6)177
C1—H1A···O5iii0.982.563.440 (6)149
C1—H1B···O90.982.363.189 (7)142
C1—H1C···O11ii0.982.393.355 (8)168
C2—H2A···O3iv0.982.443.343 (7)153
C2—H2B···O10ii0.982.343.300 (8)167
C3—H3A···O13i0.992.523.407 (7)150
C3—H3B···O11iii0.992.423.266 (7)143
C4—H4A···O6v0.992.503.472 (8)167
C6—H6B···O6i0.992.443.360 (8)154
C7—H7A···O12v0.982.493.316 (8)142
C7—H7B···O8ii0.982.263.227 (8)170
C8—H8A···O9vi0.982.483.402 (7)157
C8—H8B···O9ii0.982.483.461 (8)176
C8—H8C···O110.982.403.155 (7)134
C8—H8C···O7i0.982.523.270 (8)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1, y, z.
Selected bond lengths (Å) top
Mo-O(Å)Mo-O(Å)
Mo1-O12.340 (4)Mo3-O12.277 (4)
Mo1-O22.015 (4)Mo3-O2#12.334 (4)
Mo1-O31.893 (4)Mo3-O41.933 (4)
Mo1-O5#12.357 (4)Mo3-O51.984 (4)
Mo1-O61.696 (4)Mo3-O101.705 (4)
Mo1-O71.700 (4)Mo3-O111.699 (4)
Mo2-O12.450 (4)Mo4-O12.172 (4)
Mo2-O31.901 (4)Mo4-O1#12.368 (4)
Mo2-O41.968 (4)Mo4-O21.942 (4)
Mo2-O81.699 (4)Mo4-O51.963 (4)
Mo2-O91.696 (4)Mo4-O121.692 (4)
Mo2-O13#12.270 (4)Mo4-O131.759 (4)
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

References

First citationAllis, D. G., Burkholder, E. & Zubieta, J. (2004). Polyhedron, 23, 1145–1152.  Web of Science CSD CrossRef CAS Google Scholar
First citationBridgeman, A. J. (2002). J. Phys. Chem. A, 106, 12151–12160.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationChaidogiannos, G., Velessiotis, D., Argitis, P., Koutsolelos, P., Diakoumakos, C. D., Tsamakis, D. & Glezos, N. (2004). Microelectron. Eng. 73–74, 746–751.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatsoulis, D. E. (1998). Chem. Rev. 98, 359–388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLong, D., Burkholder, E. & Cronin, L. (2007). Chem. Soc. Rev. 36, 105–121.  CrossRef PubMed CAS Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Heidelberg: Springer-Verlag.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48.  CrossRef Web of Science Google Scholar
First citationRhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327–358.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds