organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[1-(1,3-Dioxo-1,3-di­hydro-2H-inden-2-yl­­idene)eth­yl]hydrazinecarbo­thio­amide

aChemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan, Tungku Link BE1410, Negara, Brunei Darussalam
*Correspondence e-mail: haniti.hamid@ubd.edu.bn

Edited by H. Ishida, Okayama University, Japan (Received 30 September 2019; accepted 6 November 2019; online 12 November 2019)

The title compound, C12H11N3O2S, was synthesized by a condensation reaction of 2-acetyl­indan-1,3-dione and thio­semicarbazide in ethanol in the presence of glacial acetic acid. The mol­ecule adopts a thio­ketone form. The dihedral angle between the mean planes of 1H-inden-1,3(2H)-dione and hydrazinecarbo­thio­amide units is 86.32 (7)°. Weak intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are linked via pairs of weak inter­molecular N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are further linked into a three-dimensional network through N—H⋯S and N—H⋯O hydrogen bonds, and ππ inter­actions [centroid–centroid distances = 3.5619 (10)–3.9712 (9) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Derivatives obtained from the reaction of 2-acetyl­indan-1,3-dione and thio­semicarbazide are not widely known in the literature (Sawhney & Lemke, 1983[Sawhney, K. N. & Lemke, T. L. (1983). J. Org. Chem. 48, 4326-4329.]; Kumar et al., 2014[Kumar, D., Singh, V. K., Khiwar, S. S. & Saxena, N. (2014). J. Drug Deliv. Ther. 4, 73-83.]). It is predicted that the reaction with thio­semicarbazide at the acetyl group will produce a thio­semicarbazone as a Schiff base, but in this work, we report the formation of the title compound, an enamine of 2-acetyl­indan-1,3-dione­thio­semicarbazone.

The title compound is completely in a thio­ketone form and weak intra­molecular N—H⋯O and C—H⋯O hydrogen bonds (N3—HN4⋯O2 and C12—H12B⋯O1; Table 1[link]) are observed (Fig. 1[link]). The dihedral angle between the mean planes of the 1H-indene-1,3(2H)-dione and hydrazinecarbo­thio­amide units is 86.32 (7)°. The length of the C1—S1 bond [1.705 (2) Å] is inter­mediate between a single bond C—S (1.82 Å) and a double bond C=S (1.67 Å) (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), which implies that it possesses partial double-bond character indicative of possible delocalization over atoms S1, C1 and N1. This notion is supported by the C1—N1 bond length [1.318 (2) Å], which is shorter than C1—N2 [1.340 (2) Å], again indicative of some double-bond character of C1—N1. A similar feature has been observed in a thio­semicarbazone (Jouad et al., 2001[Jouad, E. M., Riou, A., Allain, M., Khan, M. A. & Bouet, G. M. (2001). Polyhedron, 20, 67-74.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O1 0.98 2.26 3.033 (3) 135
N2—HN3⋯S1i 0.84 (2) 2.47 (2) 3.2796 (16) 163 (2)
N1—HN1⋯S1ii 0.85 (3) 2.63 (3) 3.3764 (19) 147 (2)
N1—HN2⋯O1iii 0.84 (3) 2.11 (3) 2.816 (2) 142 (2)
N3—HN4⋯O2 0.89 (3) 2.05 (3) 2.7592 (19) 135 (2)
N3—HN4⋯O2iv 0.89 (3) 2.30 (2) 3.0107 (19) 137 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iv) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at 50% probability level. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are shown as dashed lines.

In the crystal, two mol­ecules are bound by a pair of N—H⋯O hydrogen bonds (N3—HN4⋯O2iv; Table 1[link]), forming a centrosymmetric dimeric structure (Fig. 2[link]). The dimers are further connected by two N—H⋯S hydrogen bonds and one N—H⋯O hydrogen bond (N2—HN3⋯S1i, N1—HN1⋯S1ii, and N1—HN2⋯O1iii; Table 1[link]). The crystal packing also features ππ stacking inter­actions. The centroid–centroid distances are 3.8487 (10), 3.6271 (11), 3.5619 (10), 3.8614 (11) and 3.9712 (9) Å, respectively, for Cg1⋯Cg1v, Cg1⋯Cg2vi, Cg1⋯Cg3vi, Cg2⋯Cg3v and Cg3⋯Cg3v; Cg1, Cg2 and Cg3 are the centroids of the C3–C5/C10/C11 and C5–C10 rings, and the C3–C11 ring system, respectively [symmetry codes: (v) [{3\over 2}] − x, −[{1\over 2}] + y, z; (vi) [{3\over 2}] − x, [{1\over 2}] + y, z].

[Figure 2]
Figure 2
The inversion dimer of the title compound formed by a pair of N—H⋯O hydrogen bonds (dashed lines).

Synthesis and crystallization

The title compound was prepared by heating a mixed solution of 2-acetyl­indan-1,3-dione (0.50 g, 2.66 mmol) in absolute ethanol (20 ml) and thio­semicarbazide (0.24 g, 2.66 mmol) in absolute ethanol (55 ml). Three drops of glacial acetic acid were then added and the mixture was refluxed for 30 min. A yellow microcrystalline powder was obtained and it was recrystallized from an aceto­nitrile/methanol mixture solvent. The pale-brown crystals obtained were filtered, washed with cold aceto­nitrile and dried in vacuo [yield: 0.57 g (82%), m.p. 486–487 K]. Single crystals of the title compound suitable for X-ray analysis were grown by slow evaporation at room temperature from an aceto­nitrile/methanol mixture solvent.

IR (ν, cm−1): 3336–3112 (w, N—H), 2945 (w, Ar C—H), 1696 (m, C=O), 1654 (s, C=O), 1573 and 1502 (s, aromatic C=C), 858 (s, C=S). EI–MS calculated for C12H11N3O2S, M: 261.30, found: 261. 1H NMR (DMSO-d6) δ (p.p.m.): 11.48 (br, 1H, –NH), 10.00 (s, 1H, –NH), 7.99 (br, 2H, –NH2), 7.67–7.72 (m, 4H, Ar-H), 3.33 (s, 3H, –CH3). 13C NMR (DMSO-d6) δ (p.p.m.): 192.34, 189.44, 182.36, 139.65, 138.09, 133.61, 133.53, 121.20, 120.94, 12.59. Analysis calculated for C12H11N3O2S: C 55.16, H 4.24, N 16.08%. Found: C 55.12, H 3.96, N 15.42%.

Refinement

Crystal data, data collection and structure refinement details of the title compound are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H11N3O2S
Mr 261.30
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 99
a, b, c (Å) 15.0751 (6), 7.6891 (4), 20.7891 (9)
V3) 2409.75 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.76 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.824, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 18247, 3382, 2712
Rint 0.073
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.173, 1.07
No. of reflections 3382
No. of parameters 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −1.00
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

2-[1-(1,3-Dioxo-1,3-dihydro-2H-inden-2-ylidene)ethyl]hydrazinecarbothioamide top
Crystal data top
C12H11N3O2SDx = 1.440 Mg m3
Mr = 261.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6090 reflections
a = 15.0751 (6) Åθ = 2.4–29.6°
b = 7.6891 (4) ŵ = 0.27 mm1
c = 20.7891 (9) ÅT = 99 K
V = 2409.75 (19) Å3Rod, brown
Z = 80.76 × 0.25 × 0.25 mm
F(000) = 1088
Data collection top
Bruker D8 Venture
diffractometer
2712 reflections with I > 2σ(I)
profile data from θ/2θ scansRint = 0.073
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 29.6°, θmin = 2.4°
Tmin = 0.824, Tmax = 0.937h = 2018
18247 measured reflectionsk = 810
3382 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: mixed
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.117P)2 + 0.3104P]
where P = (Fo2 + 2Fc2)/3
3382 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 1.00 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43388 (3)0.69858 (6)0.75750 (2)0.01816 (17)
O10.86124 (9)0.5148 (2)0.58244 (8)0.0294 (4)
O20.58261 (8)0.40510 (17)0.48472 (6)0.0202 (3)
N10.50396 (12)0.8510 (2)0.65405 (8)0.0213 (4)
HN10.4960 (17)0.948 (4)0.6726 (15)0.043 (8)*
HN20.5428 (16)0.853 (3)0.6251 (14)0.025 (6)*
N20.52093 (10)0.5557 (2)0.66273 (7)0.0162 (3)
HN30.5202 (14)0.465 (3)0.6853 (13)0.024 (6)*
N30.57075 (10)0.5469 (2)0.60634 (7)0.0150 (3)
HN40.5434 (15)0.516 (3)0.5700 (14)0.027 (6)*
C10.49117 (11)0.7065 (2)0.68685 (8)0.0152 (4)
C20.66012 (11)0.5365 (2)0.60836 (8)0.0141 (3)
C30.70518 (11)0.4833 (2)0.55397 (8)0.0151 (3)
C40.80153 (11)0.4714 (2)0.54558 (10)0.0191 (4)
C50.81627 (12)0.3939 (2)0.48089 (10)0.0209 (4)
C60.89580 (14)0.3553 (3)0.45015 (12)0.0308 (5)
H60.9513210.3773950.4701590.037*
C70.89078 (15)0.2830 (3)0.38902 (12)0.0366 (6)
H70.9440600.2567970.3666300.044*
C80.81003 (16)0.2482 (3)0.35982 (11)0.0349 (5)
H80.8092650.1978830.3180950.042*
C90.72982 (15)0.2855 (3)0.39040 (10)0.0268 (5)
H90.6743940.2617520.3705100.032*
C100.73498 (12)0.3592 (2)0.45145 (8)0.0177 (4)
C110.66251 (11)0.4159 (2)0.49572 (8)0.0149 (3)
C120.70463 (12)0.5863 (3)0.67010 (9)0.0215 (4)
H12A0.6846280.7022080.6832400.026*
H12B0.7690690.5874500.6638750.026*
H12C0.6893230.5016750.7035660.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0289 (3)0.0173 (3)0.0083 (2)0.00088 (16)0.00634 (15)0.00102 (15)
O10.0189 (7)0.0388 (9)0.0304 (9)0.0005 (6)0.0073 (6)0.0053 (6)
O20.0190 (6)0.0289 (7)0.0128 (6)0.0048 (5)0.0024 (5)0.0033 (5)
N10.0347 (9)0.0172 (8)0.0120 (8)0.0020 (7)0.0095 (6)0.0015 (6)
N20.0263 (8)0.0151 (7)0.0073 (7)0.0003 (6)0.0054 (6)0.0000 (6)
N30.0190 (7)0.0219 (8)0.0042 (7)0.0015 (5)0.0020 (5)0.0013 (5)
C10.0193 (8)0.0168 (8)0.0094 (8)0.0013 (6)0.0018 (6)0.0021 (6)
C20.0188 (8)0.0141 (8)0.0095 (8)0.0012 (6)0.0021 (6)0.0032 (6)
C30.0164 (8)0.0179 (8)0.0110 (8)0.0020 (6)0.0013 (6)0.0028 (6)
C40.0167 (8)0.0207 (9)0.0200 (9)0.0026 (6)0.0004 (6)0.0086 (7)
C50.0232 (9)0.0171 (9)0.0223 (10)0.0058 (7)0.0088 (7)0.0080 (7)
C60.0256 (10)0.0230 (10)0.0436 (13)0.0052 (8)0.0169 (9)0.0101 (9)
C70.0424 (13)0.0228 (11)0.0444 (14)0.0086 (9)0.0313 (11)0.0070 (9)
C80.0565 (14)0.0243 (11)0.0239 (11)0.0098 (10)0.0237 (10)0.0024 (9)
C90.0420 (12)0.0239 (10)0.0146 (9)0.0070 (8)0.0083 (8)0.0011 (7)
C100.0240 (9)0.0173 (8)0.0118 (8)0.0053 (7)0.0066 (6)0.0043 (7)
C110.0200 (8)0.0164 (8)0.0082 (8)0.0048 (6)0.0020 (6)0.0029 (6)
C120.0263 (9)0.0268 (10)0.0113 (8)0.0015 (7)0.0062 (7)0.0009 (7)
Geometric parameters (Å, º) top
S1—C11.7050 (18)C4—C51.488 (3)
O1—C41.228 (2)C5—C61.391 (3)
O2—C111.229 (2)C5—C101.395 (3)
N1—C11.318 (2)C6—C71.389 (4)
N1—HN10.85 (3)C6—H60.9500
N1—HN20.84 (3)C7—C81.386 (4)
N2—C11.340 (2)C7—H70.9500
N2—N31.394 (2)C8—C91.396 (3)
N2—HN30.84 (2)C8—H80.9500
N3—C21.350 (2)C9—C101.392 (3)
N3—HN40.89 (3)C9—H90.9500
C2—C31.381 (2)C10—C111.493 (2)
C2—C121.498 (2)C12—H12A0.9800
C3—C111.466 (2)C12—H12B0.9800
C3—C41.466 (2)C12—H12C0.9800
C1—N1—HN1119 (2)C7—C6—C5117.3 (2)
C1—N1—HN2119.0 (17)C7—C6—H6121.3
HN1—N1—HN2114 (2)C5—C6—H6121.3
C1—N2—N3122.48 (15)C8—C7—C6121.71 (18)
C1—N2—HN3120.3 (17)C8—C7—H7119.1
N3—N2—HN3115.8 (16)C6—C7—H7119.1
C2—N3—N2120.94 (15)C7—C8—C9121.4 (2)
C2—N3—HN4118.1 (15)C7—C8—H8119.3
N2—N3—HN4118.4 (15)C9—C8—H8119.3
N1—C1—N2119.14 (16)C10—C9—C8116.8 (2)
N1—C1—S1123.34 (14)C10—C9—H9121.6
N2—C1—S1117.46 (13)C8—C9—H9121.6
N3—C2—C3118.86 (15)C9—C10—C5121.78 (17)
N3—C2—C12117.30 (15)C9—C10—C11129.77 (18)
C3—C2—C12123.84 (16)C5—C10—C11108.44 (16)
C2—C3—C11124.43 (15)O2—C11—C3127.43 (15)
C2—C3—C4127.10 (16)O2—C11—C10125.64 (16)
C11—C3—C4108.34 (15)C3—C11—C10106.93 (14)
O1—C4—C3129.43 (19)C2—C12—H12A109.5
O1—C4—C5124.29 (17)C2—C12—H12B109.5
C3—C4—C5106.28 (16)H12A—C12—H12B109.5
C6—C5—C10121.0 (2)C2—C12—H12C109.5
C6—C5—C4129.0 (2)H12A—C12—H12C109.5
C10—C5—C4109.99 (15)H12B—C12—H12C109.5
C1—N2—N3—C297.7 (2)C4—C5—C6—C7179.82 (18)
N3—N2—C1—N14.8 (3)C5—C6—C7—C80.9 (3)
N3—N2—C1—S1178.07 (12)C6—C7—C8—C90.5 (3)
N2—N3—C2—C3163.37 (16)C7—C8—C9—C100.0 (3)
N2—N3—C2—C1217.4 (2)C8—C9—C10—C50.2 (3)
N3—C2—C3—C117.9 (3)C8—C9—C10—C11179.00 (18)
C12—C2—C3—C11172.90 (16)C6—C5—C10—C90.2 (3)
N3—C2—C3—C4176.93 (16)C4—C5—C10—C9179.77 (17)
C12—C2—C3—C42.3 (3)C6—C5—C10—C11179.53 (16)
C2—C3—C4—O14.8 (3)C4—C5—C10—C110.9 (2)
C11—C3—C4—O1179.40 (19)C2—C3—C11—O24.2 (3)
C2—C3—C4—C5175.41 (17)C4—C3—C11—O2179.82 (17)
C11—C3—C4—C50.42 (19)C2—C3—C11—C10175.02 (16)
O1—C4—C5—C60.3 (3)C4—C3—C11—C100.94 (19)
C3—C4—C5—C6179.83 (19)C9—C10—C11—O20.3 (3)
O1—C4—C5—C10179.86 (18)C5—C10—C11—O2179.61 (16)
C3—C4—C5—C100.3 (2)C9—C10—C11—C3179.59 (18)
C10—C5—C6—C70.7 (3)C5—C10—C11—C31.14 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O10.982.263.033 (3)135
N2—HN3···S1i0.84 (2)2.47 (2)3.2796 (16)163 (2)
N1—HN1···S1ii0.85 (3)2.63 (3)3.3764 (19)147 (2)
N1—HN2···O1iii0.84 (3)2.11 (3)2.816 (2)142 (2)
N3—HN4···O20.89 (3)2.05 (3)2.7592 (19)135 (2)
N3—HN4···O2iv0.89 (3)2.30 (2)3.0107 (19)137 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to the Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam for the necessary support in carrying out the research work. We also thank the National University of Singapore for running the spectroscopic, analytical data and the collection of the X-ray diffraction data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJouad, E. M., Riou, A., Allain, M., Khan, M. A. & Bouet, G. M. (2001). Polyhedron, 20, 67–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, D., Singh, V. K., Khiwar, S. S. & Saxena, N. (2014). J. Drug Deliv. Ther. 4, 73–83.  Google Scholar
First citationSawhney, K. N. & Lemke, T. L. (1983). J. Org. Chem. 48, 4326–4329.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds