organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146


aEscuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501, San José, Costa Rica
*Correspondence e-mail:

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 November 2019; accepted 23 November 2019; online 29 November 2019)

The title compound, C9H7NO2, was prepared by alkynylation of 4-iodo­nitro­benzene with 1,3-dili­thio­propyne in the presence of 1 equivalent of CuI and catalytic amounts of Pd(PPh3)2Cl2. The complete mol­ecule is generated by crystallographic twofold symmetry with the C—N and C—C≡C—C units lying on the rotation axis. No directional inter­actions beyond normal van der Waals contacts could be identified in the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

One of the most general methods for the synthesis of aromatic alkynes is the alkynylation of halogenated aromatic rings (Negishi & Anastasia, 2003[Negishi, E. & Anastasia, L. (2003). Chem. Rev. 103, 1979-2017.]). Today, the Sonogashira reaction is probably the most extensively used protocol for the synthesis of mono and di-substituted acetyl­enes (Sonogashira et al., 1975[Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]). In this reaction an aromatic (or vin­yl) halide is treated with the corresponding acetyl­ene, in the presence of catalytic amounts of Pd0 or PdII tri­phenyl­phosphine complexes, an amine (i.e., Et2NH) and catalytic amounts of CuI at room temperature.

Specifically 1-propynylarenes, which can be obtained by the above-mentioned alkynylation protocols, using prop-1-yne, are not only very valuable synthetic inter­mediates, but also these structures are present in a wide number of natural products (Carpita et al., 1985[Carpita, A., Lezzi, A., Rossi, R., Marchetti, F. & Merlino, S. (1985). Tetrahedron, 41, 621-625.]; Christensen & Lam, 1991[Christensen, L. P. & Lam, J. (1991). Phytochemistry, 30, 11-49.]), many of which have important biological activity (Zhang et al., 2014[Zhang, L., Chen, C. J., Chen, J., Zhao, Q. Q., Li, Y. & Gao, K. (2014). Phytochemistry, 106, 134-140.]).

As part of our work in this area, we now report the synthesis and crystal structure of the title compound, 1. The C7≡C8 distance of 1.195 (4) Å is consistent with previous reported values (Umaña et al., 2018[Umaña, C. A., Pineda, L. W. & Cabezas, J. A. (2018). IUCrData, 3, x181619.]). The complete mol­ecule is generated by a crystallographic twofold axis with atoms C1, C4, C7, C8, C9 and N1 lying on the rotation axis. The nitro group is close to being coplanar with its attached ring as indicated by the O1—N1—C1—C2i torsion angle of 171.25 (14)° (Fig. 1[link]). The extended structure (Fig. 2[link]) shows neither hydrogen bonding nor aromatic ππ stacking.

[Figure 1]
Figure 1
The title mol­ecule, 1, with 50% probability ellipsoids. Unlabelled atoms are generated by the symmetry operation [{1\over 2}] − x, y, −z.
[Figure 2]
Figure 2
The crystal packing of the title compound.

Synthesis and crystallization

The title compound, 1, was synthesized by a variation of the Sonogashira reaction. Thus, 4-iodo­nitro­benzene, 2, was treated with the dianion 1,3-dili­thio­propyne, 3, in the presence of one equivalent of CuI (instead of catalytic amounts) and catalytic amounts of Pd(PPh3)2Cl2 (Fig. 3[link]). The 1,3-dilithipropyne, 3, was prepared from 2,3-di­chloro­propene by sequential treatment with magnesium and n-BuLi as previously reported (Umaña & Cabezas, 2017[Umaña, C. A. & Cabezas, J. A. (2017). J. Org. Chem. 82, 9505-9514.]; Cabezas et al., 2018[Cabezas, J. A., Poveda, R. R. & Brenes, J. A. (2018). Synthesis, 50, 3307-3321.]). After ether–water partition, the crude reaction was purified by column chromatography (ether:hexane, 30:70), to obtain the title compound, 1, in 72% yield. The product was recrystallized from ethyl acetate solution at room temperature in the form of pale-yellow blocks.

[Figure 3]
Figure 3
A synthetic scheme for the preparation of title compound 1.


Crystal data, data collection and structure refinement are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C9H7NO2
Mr 161.16
Crystal system, space group Monoclinic, I2/a
Temperature (K) 100
a, b, c (Å) 7.3633 (13), 12.0641 (16), 8.9185 (19)
β (°) 103.738 (13)
V3) 769.6 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.83
Crystal size (mm) 0.15 × 0.13 × 0.10
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.509, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 7605, 717, 571
Rint 0.109
(sin θ/λ)max−1) 0.606
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.179, 1.13
No. of reflections 717
No. of parameters 60
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.37
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle, 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data

Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Nitro-4-(1-propyn-1-yl)benzene top
Crystal data top
C9H7NO2F(000) = 336
Mr = 161.16Dx = 1.391 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54178 Å
a = 7.3633 (13) ÅCell parameters from 4037 reflections
b = 12.0641 (16) Åθ = 6.3–68.4°
c = 8.9185 (19) ŵ = 0.83 mm1
β = 103.738 (13)°T = 100 K
V = 769.6 (2) Å3Block, pale yellow
Z = 40.15 × 0.13 × 0.10 mm
Data collection top
Bruker D8 Venture
571 reflections with I > 2σ(I)
Radiation source: Incoatec MicrosourceRint = 0.109
ω scansθmax = 69.2°, θmin = 6.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 88
Tmin = 0.509, Tmax = 0.753k = 1414
7605 measured reflectionsl = 1010
717 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.1002P)2 + 0.5352P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
717 reflectionsΔρmax = 0.26 e Å3
60 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located initially by difference Fourier synthesis and relocated to idealized locations (C—H = 0.95–0.98 Å) and refined as riding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3309 (2)0.64648 (13)0.11827 (18)0.0376 (6)
N10.2500000.5986 (2)0.0000000.0286 (7)
C10.2500000.4765 (2)0.0000000.0266 (8)
C20.3613 (3)0.42172 (19)0.1242 (2)0.0286 (7)
C30.3623 (3)0.30639 (19)0.1232 (3)0.0299 (7)
C40.2500000.2484 (2)0.0000000.0282 (8)
C70.2500000.1283 (2)0.0000000.0298 (8)
C80.2500000.0292 (3)0.0000000.0317 (8)
C90.2500000.0924 (3)0.0000000.0337 (9)
Atomic displacement parameters (Å2) top
O10.0414 (10)0.0234 (10)0.0409 (11)0.0031 (7)0.0042 (7)0.0041 (7)
N10.0262 (13)0.0213 (14)0.0351 (15)0.0000.0008 (10)0.000
C10.0249 (15)0.0172 (16)0.0371 (18)0.0000.0058 (13)0.000
C20.0262 (12)0.0232 (13)0.0333 (13)0.0029 (8)0.0011 (9)0.0031 (9)
C30.0280 (12)0.0238 (14)0.0350 (14)0.0020 (8)0.0018 (9)0.0051 (9)
C40.0273 (16)0.0203 (17)0.0373 (18)0.0000.0080 (12)0.000
C70.0297 (17)0.0205 (18)0.0375 (19)0.0000.0048 (13)0.000
C80.0285 (16)0.026 (2)0.0387 (19)0.0000.0041 (13)0.000
C90.0313 (17)0.0174 (17)0.049 (2)0.0000.0021 (14)0.000
Geometric parameters (Å, º) top
N1—O11.226 (2)C7—C81.195 (4)
N1—C11.473 (4)C8—C91.468 (4)
C1—C2i1.380 (3)C9—H9A0.9800
C1—C21.380 (3)C9—H9B0.9800
C2—C31.391 (3)C9—H9C0.9800
C3—C41.396 (3)C9—H9Bi0.9800
C4—C71.449 (4)
O1—N1—O1i123.7 (3)H9A—C9—H9B109.5
O1—N1—C1118.13 (13)C8—C9—H9C109.5
O1i—N1—C1118.13 (13)H9A—C9—H9C109.5
C2i—C1—C2122.8 (3)H9B—C9—H9C109.5
C2i—C1—N1118.59 (14)C8—C9—H9Ai109.474 (4)
C2—C1—N1118.59 (14)H9A—C9—H9Ai141.1
C1—C2—C3118.4 (2)H9B—C9—H9Ai56.3
C3—C2—H2120.8C8—C9—H9Bi109.469 (5)
C2—C3—C4120.2 (2)H9A—C9—H9Bi56.3
C3—C4—C3i119.9 (3)H9Ai—C9—H9Bi109.5
C3—C4—C7120.06 (14)C8—C9—H9Ci109.469 (4)
C3i—C4—C7120.06 (14)H9A—C9—H9Ci56.2
O1—N1—C1—C2i171.25 (14)N1—C1—C2—C3179.44 (14)
O1i—N1—C1—C2i8.75 (14)C1—C2—C3—C41.1 (3)
O1—N1—C1—C28.75 (14)C2—C3—C4—C3i0.57 (14)
O1i—N1—C1—C2171.25 (14)C2—C3—C4—C7179.43 (14)
C2i—C1—C2—C30.56 (14)
Symmetry code: (i) x+1/2, y, z.


CELEQ is thanked for supplying liquid nitro­gen for the X-ray measurements. We also thank Dr Vojtech Jancik for all his advice.

Funding information

We thank Vicerrectoría de Investigación (UCR) for financial support.


First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabezas, J. A., Poveda, R. R. & Brenes, J. A. (2018). Synthesis, 50, 3307–3321.  CrossRef CAS Google Scholar
First citationCarpita, A., Lezzi, A., Rossi, R., Marchetti, F. & Merlino, S. (1985). Tetrahedron, 41, 621–625.  CrossRef CAS Google Scholar
First citationChristensen, L. P. & Lam, J. (1991). Phytochemistry, 30, 11–49.  CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNegishi, E. & Anastasia, L. (2003). Chem. Rev. 103, 1979–2017.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Google Scholar
First citationUmaña, C. A. & Cabezas, J. A. (2017). J. Org. Chem. 82, 9505–9514.  PubMed Google Scholar
First citationUmaña, C. A., Pineda, L. W. & Cabezas, J. A. (2018). IUCrData, 3, x181619.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Chen, C. J., Chen, J., Zhao, Q. Q., Li, Y. & Gao, K. (2014). Phytochemistry, 106, 134–140.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds