organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­­oxy]-1-naphthaldehyde

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food, Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 October 2019; accepted 12 November 2019; online 19 November 2019)

In the title compound, C21H17N3O2, the triazole ring system is inclined at dihedral angles of 4.14 (18) and 69.24 (11)° with the naphthalene ring system and phenyl ring, respectively. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into double columns propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aldehyde derivatives are starting materials for obtaining Schiff bases and oxime-type ligands and their transition-metal complexes (Vigato & Tamburini, 2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]). Heterocycles containing a 1,2,3-triazole ring have been utilized in cancer cell treatment (Yadav et al., 2017[Yadav, H., Sinha, N., Goel, S., Singh, B., Bdikin, I., Saini, A., Gopalaiah, K. & Kumar, B. (2017). Acta Cryst. B73, 347-359.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the compound, showing 30% probability displacement ellipsoids.

The 1,2,3-triazole ring (C13/C14/N1–N3) is almost planar with an r.m.s. deviation of 0.0006 Å. The triazole ring subtends dihedral angles of 4.14 (18) and 69.24 (11)° with the naphthalene ring system (C1–C10) and the phenyl ring (C15–C21), respectively. The aldehyde and meth­oxy groups are slightly twisted away from the naphthalene ring system [C8—C7—C11—O2 = 2.7 (5)° and C12—O1—C6—C5 = −2.2 (4)°]. Atom C13 shows a distorted sp2 hybridization state with bond angles of 108.5 (3) (N3—C13—C14), 131.4 (2) (C12—C13—C14) and 120.0 (3)° (N3—C13—C12), which are similar to the equivalent bond angles reported for other triazole derivatives (Zhao et al., 2010[Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.]; Gao et al., 2011[Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.]).

In the crystal (Fig. 2[link]), atom O2 is a double acceptor of hydrogen bonds (Table 1[link]) from C14—H14 and C21—H21, which generates [010] double columns.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O2i 0.93 2.53 3.462 (5) 175
C14—H14⋯O2i 0.93 2.62 3.497 (4) 157
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound, illustrating the formation of [010] chains linked by C—H⋯O hydrogen bonds (dashed lines).

Synthesis and crystallization

A mixture of o-propargyl­oxy­naphthaldehyde, (1.0 mmol), benzyl azide (1.0 mmol) and CuI (0.01 mmol) in water (5 ml) was refluxed for 30 minutes. After the completion of the reaction (monitored by TLC), the mixture was poured onto excess of crushed ice. Then, the reaction mixture was washed with a saturated solution of NH4Cl and extracted with di­chloro­methane. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography using petroleum ether:ethyl acetate (90:10) as eluents to afford the title compound in 85% yield; m.p. 165°C. Colourless blocks were recrystallized from ethanol solution after one week at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H17N3O2
Mr 343.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 14.013 (3), 5.4123 (11), 22.901 (5)
β (°) 93.157 (5)
V3) 1734.3 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.967, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 15604, 3076, 1363
Rint 0.063
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.199, 0.87
No. of reflections 3076
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.13
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methoxy]-1-naphthaldehyde top
Crystal data top
C21H17N3O2F(000) = 720
Mr = 343.38Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.013 (3) ÅCell parameters from 3076 reflections
b = 5.4123 (11) Åθ = 2.9–25.1°
c = 22.901 (5) ŵ = 0.09 mm1
β = 93.157 (5)°T = 296 K
V = 1734.3 (6) Å3Block, colourless
Z = 40.20 × 0.15 × 0.15 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3076 independent reflections
Radiation source: fine-focus sealed tube1363 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.063
ω and φ scansθmax = 25.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.967, Tmax = 0.974k = 66
15604 measured reflectionsl = 2727
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.1156P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.199(Δ/σ)max < 0.001
S = 0.87Δρmax = 0.14 e Å3
3076 reflectionsΔρmin = 0.13 e Å3
236 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.005 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and N—H = 0.86 Å. The constrain Uiso(H) = 1.2Ueq(C) was applied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63383 (15)0.3041 (4)0.10577 (8)0.0701 (7)
N10.4963 (2)0.2659 (5)0.18506 (12)0.0755 (8)
O20.82063 (19)0.6602 (5)0.20521 (10)0.1081 (9)
N30.4565 (2)0.1807 (6)0.09637 (12)0.0799 (9)
C60.6788 (2)0.4857 (6)0.07659 (12)0.0576 (8)
C70.7493 (2)0.6202 (6)0.10804 (12)0.0582 (8)
C130.5244 (2)0.0183 (6)0.11562 (13)0.0590 (8)
N20.4390 (2)0.3342 (5)0.13932 (15)0.0886 (9)
C80.7996 (2)0.8086 (6)0.07856 (13)0.0620 (9)
C120.5595 (2)0.1707 (6)0.07551 (13)0.0646 (9)
H12A0.58340.09240.04110.077*
H12B0.50800.28170.06310.077*
C30.7745 (2)0.8597 (6)0.01888 (13)0.0633 (9)
C140.5501 (2)0.0716 (6)0.17178 (13)0.0670 (9)
H140.59530.00920.19610.080*
C40.7012 (2)0.7178 (6)0.00971 (14)0.0713 (10)
H40.68400.75150.04870.086*
C50.6555 (2)0.5365 (6)0.01725 (13)0.0673 (9)
H50.60860.44460.00320.081*
C160.4240 (3)0.2729 (7)0.28069 (14)0.0746 (10)
C110.7662 (2)0.5597 (7)0.16993 (14)0.0792 (10)
H110.73090.42860.18380.095*
C210.4500 (3)0.0592 (7)0.30988 (16)0.0855 (11)
H210.50980.00910.30450.103*
C20.8223 (3)1.0431 (7)0.01081 (16)0.0858 (11)
H20.80481.07440.04990.103*
C90.8753 (3)0.9526 (7)0.10500 (16)0.0849 (11)
H90.89430.92670.14410.102*
C200.3902 (4)0.0555 (8)0.34662 (17)0.0959 (12)
H200.40980.19940.36590.115*
C10.8937 (3)1.1764 (7)0.0161 (2)0.1008 (13)
H10.92461.29940.00410.121*
C170.3341 (4)0.3686 (8)0.29026 (17)0.0987 (13)
H170.31390.51310.27140.118*
C150.4910 (3)0.3965 (7)0.24094 (15)0.0984 (13)
H15A0.55430.40390.26030.118*
H15B0.46960.56470.23350.118*
C180.2738 (3)0.2500 (10)0.3279 (2)0.1062 (14)
H180.21400.31530.33440.127*
C190.3036 (4)0.0381 (10)0.35497 (18)0.1032 (13)
H190.26330.04290.37960.124*
C100.9201 (3)1.1267 (8)0.0741 (2)0.1047 (13)
H100.97011.21560.09240.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0646 (15)0.0955 (15)0.0485 (12)0.0082 (12)0.0110 (11)0.0004 (11)
N10.094 (2)0.075 (2)0.0581 (18)0.0211 (17)0.0069 (17)0.0016 (16)
O20.101 (2)0.158 (2)0.0619 (15)0.0213 (18)0.0268 (15)0.0169 (15)
N30.081 (2)0.094 (2)0.0638 (18)0.0140 (18)0.0010 (16)0.0077 (17)
C60.051 (2)0.075 (2)0.0471 (17)0.0086 (17)0.0010 (15)0.0053 (16)
C70.0511 (19)0.074 (2)0.0482 (17)0.0112 (17)0.0057 (15)0.0151 (16)
C130.060 (2)0.070 (2)0.0463 (18)0.0099 (18)0.0025 (16)0.0082 (16)
N20.100 (3)0.092 (2)0.074 (2)0.0071 (18)0.0064 (19)0.0061 (18)
C80.057 (2)0.070 (2)0.059 (2)0.0109 (18)0.0025 (17)0.0159 (17)
C120.060 (2)0.083 (2)0.0495 (18)0.0016 (18)0.0069 (16)0.0110 (17)
C30.058 (2)0.071 (2)0.061 (2)0.0074 (17)0.0051 (17)0.0032 (17)
C140.071 (2)0.073 (2)0.057 (2)0.0108 (19)0.0024 (17)0.0062 (17)
C40.069 (2)0.095 (2)0.0494 (19)0.005 (2)0.0019 (18)0.0007 (18)
C50.062 (2)0.091 (2)0.0479 (18)0.0009 (19)0.0100 (16)0.0042 (17)
C160.105 (3)0.063 (2)0.056 (2)0.013 (2)0.006 (2)0.0117 (18)
C110.071 (2)0.109 (3)0.056 (2)0.000 (2)0.0137 (18)0.008 (2)
C210.099 (3)0.083 (3)0.077 (2)0.012 (2)0.018 (2)0.011 (2)
C20.092 (3)0.089 (2)0.077 (2)0.006 (2)0.005 (2)0.002 (2)
C90.082 (3)0.099 (3)0.072 (2)0.006 (2)0.006 (2)0.019 (2)
C200.116 (4)0.088 (3)0.084 (3)0.012 (3)0.013 (3)0.003 (2)
C10.102 (3)0.094 (3)0.106 (3)0.017 (3)0.009 (3)0.004 (3)
C170.137 (4)0.092 (3)0.065 (3)0.014 (3)0.006 (3)0.011 (2)
C150.139 (4)0.085 (2)0.073 (2)0.035 (2)0.012 (2)0.016 (2)
C180.100 (3)0.143 (4)0.077 (3)0.010 (3)0.016 (3)0.019 (3)
C190.115 (4)0.117 (4)0.079 (3)0.020 (3)0.015 (3)0.006 (3)
C100.099 (3)0.108 (3)0.106 (4)0.034 (3)0.004 (3)0.018 (3)
Geometric parameters (Å, º) top
O1—C61.362 (3)C5—H50.9300
O1—C121.416 (3)C16—C211.375 (5)
N1—N21.337 (4)C16—C171.391 (5)
N1—C141.338 (4)C16—C151.501 (5)
N1—C151.467 (4)C11—H110.9300
O2—C111.210 (3)C21—C201.369 (5)
N3—N21.321 (4)C21—H210.9300
N3—C131.352 (4)C2—C11.354 (5)
C6—C71.395 (4)C2—H20.9300
C6—C51.407 (4)C9—C101.353 (5)
C7—C81.430 (4)C9—H90.9300
C7—C111.461 (4)C20—C191.338 (5)
C13—C141.347 (4)C20—H200.9300
C13—C121.477 (4)C1—C101.386 (5)
C8—C31.420 (4)C1—H10.9300
C8—C91.425 (4)C17—C181.396 (6)
C12—H12A0.9700C17—H170.9300
C12—H12B0.9700C15—H15A0.9700
C3—C21.395 (4)C15—H15B0.9700
C3—C41.415 (4)C18—C191.358 (5)
C14—H140.9300C18—H180.9300
C4—C51.341 (4)C19—H190.9300
C4—H40.9300C10—H100.9300
C6—O1—C12118.4 (2)C17—C16—C15122.1 (4)
N2—N1—C14111.1 (3)O2—C11—C7127.6 (3)
N2—N1—C15119.5 (3)O2—C11—H11116.2
C14—N1—C15129.3 (3)C7—C11—H11116.2
N2—N3—C13108.8 (3)C20—C21—C16121.7 (4)
O1—C6—C7117.2 (3)C20—C21—H21119.2
O1—C6—C5121.7 (3)C16—C21—H21119.2
C7—C6—C5121.1 (3)C1—C2—C3121.4 (4)
C6—C7—C8118.8 (3)C1—C2—H2119.3
C6—C7—C11117.1 (3)C3—C2—H2119.3
C8—C7—C11124.1 (3)C10—C9—C8121.0 (3)
C14—C13—N3108.5 (3)C10—C9—H9119.5
C14—C13—C12131.4 (3)C8—C9—H9119.5
N3—C13—C12120.0 (3)C19—C20—C21120.5 (4)
N3—N2—N1106.3 (3)C19—C20—H20119.8
C3—C8—C9116.2 (3)C21—C20—H20119.8
C3—C8—C7119.4 (3)C2—C1—C10118.9 (4)
C9—C8—C7124.4 (3)C2—C1—H1120.5
O1—C12—C13108.0 (2)C10—C1—H1120.5
O1—C12—H12A110.1C16—C17—C18120.7 (4)
C13—C12—H12A110.1C16—C17—H17119.7
O1—C12—H12B110.1C18—C17—H17119.7
C13—C12—H12B110.1N1—C15—C16112.2 (3)
H12A—C12—H12B108.4N1—C15—H15A109.2
C2—C3—C4121.1 (3)C16—C15—H15A109.2
C2—C3—C8120.5 (3)N1—C15—H15B109.2
C4—C3—C8118.3 (3)C16—C15—H15B109.2
N1—C14—C13105.2 (3)H15A—C15—H15B107.9
N1—C14—H14127.4C19—C18—C17119.3 (4)
C13—C14—H14127.4C19—C18—H18120.3
C5—C4—C3122.5 (3)C17—C18—H18120.3
C5—C4—H4118.8C20—C19—C18120.8 (5)
C3—C4—H4118.8C20—C19—H19119.6
C4—C5—C6119.8 (3)C18—C19—H19119.6
C4—C5—H5120.1C9—C10—C1122.0 (4)
C6—C5—H5120.1C9—C10—H10119.0
C21—C16—C17117.1 (4)C1—C10—H10119.0
C21—C16—C15120.8 (4)
C12—O1—C6—C7177.7 (2)C2—C3—C4—C5178.4 (3)
C12—O1—C6—C52.2 (4)C8—C3—C4—C50.6 (5)
O1—C6—C7—C8178.6 (2)C3—C4—C5—C61.4 (5)
C5—C6—C7—C81.4 (4)O1—C6—C5—C4179.6 (3)
O1—C6—C7—C112.0 (4)C7—C6—C5—C40.3 (4)
C5—C6—C7—C11177.9 (3)C6—C7—C11—O2176.7 (3)
N2—N3—C13—C140.1 (4)C8—C7—C11—O22.7 (5)
N2—N3—C13—C12178.3 (3)C17—C16—C21—C200.2 (5)
C13—N3—N2—N10.0 (4)C15—C16—C21—C20179.6 (3)
C14—N1—N2—N30.1 (4)C4—C3—C2—C1178.8 (3)
C15—N1—N2—N3177.6 (3)C8—C3—C2—C10.2 (5)
C6—C7—C8—C32.1 (4)C3—C8—C9—C100.3 (5)
C11—C7—C8—C3177.2 (3)C7—C8—C9—C10179.5 (3)
C6—C7—C8—C9177.6 (3)C16—C21—C20—C190.3 (6)
C11—C7—C8—C93.1 (5)C3—C2—C1—C100.7 (6)
C6—O1—C12—C13178.4 (2)C21—C16—C17—C180.1 (5)
C14—C13—C12—O11.3 (4)C15—C16—C17—C18179.5 (3)
N3—C13—C12—O1176.4 (3)N2—N1—C15—C1693.1 (4)
C9—C8—C3—C20.4 (4)C14—N1—C15—C1684.2 (4)
C7—C8—C3—C2179.8 (3)C21—C16—C15—N175.5 (4)
C9—C8—C3—C4178.6 (3)C17—C16—C15—N1105.3 (4)
C7—C8—C3—C41.1 (4)C16—C17—C18—C190.5 (6)
N2—N1—C14—C130.2 (3)C21—C20—C19—C180.9 (6)
C15—N1—C14—C13177.3 (3)C17—C18—C19—C201.0 (6)
N3—C13—C14—N10.2 (3)C8—C9—C10—C11.2 (6)
C12—C13—C14—N1178.1 (3)C2—C1—C10—C91.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O2i0.932.533.462 (5)175
C14—H14···O2i0.932.623.497 (4)157
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

JS and RV thank the management of The Madura College for their support.

Funding information

JS thanks the UGC for funds under project No. F MRP-7018/16(SERO/UGC).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar
First citationYadav, H., Sinha, N., Goel, S., Singh, B., Bdikin, I., Saini, A., Gopalaiah, K. & Kumar, B. (2017). Acta Cryst. B73, 347–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds