organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(4-hy­dr­oxy-N,N-di-n-propyl­tryptammonium) fumarate tetra­hydrate

aCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and b285 Old Westport Rd., North Dartmouth, MA, 02747, USA
*Correspondence e-mail: andrew@caam.tech

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 9 October 2019; accepted 29 October 2019; online 12 November 2019)

The title compound (systematic name: bis­{[2-(4-hy­droxy-1H-indol-3-yl)eth­yl]bis­(propan-2-yl)aza­nium} but-2-enedioate tetra­hydrate), 2C16H25N2O+·C4H2O42−·4H2O, has a singly protonated DPT cation, one half of a fumarate dianion (completed by a crystallographic centre of symmetry) and two water mol­ecules of crystallization in the asymmetric unit. A series of N—H⋯O and O—H⋯O hydrogen bonds form a three-dimensional network in the solid state.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

4-Hy­droxy-N,N-di-n-propyl­tryptamine, or 4-HO-DPT, is a derivative of psilocin, which is the primary active psychedelic in `magic' mushrooms. Psilocin is the metabolite of psilocybin and its synthetic analogue psilacetin, and is a serotonin-2a agonist which results in its mood-altering effects. Tryptamines, both naturally occurring [Psilocybin (Weber & Petcher, 1974[Weber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942-946.]), Psilocin (Petcher & Weber, 1974[Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946-948.]), and DMT (Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3075-3083.])] and their synthetic derivatives [Psilacetin (Chadeayne et al. 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900-902.],b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.]), MPT (Chadeayne et al. 2019c[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019c). Psychedel. Sci. Rev. https://psychedelicreview. com/the-crystal-structure-of-4-aco-dmt-fumarate/.]), MiPT, and 4-HO-MiPT (Chadeayne, Pham et al. 2019[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1316-1320.])] have garnered a great deal of inter­est because of their potential to treat depression and post-traumatic stress disorder (PTSD) (Carhart-Harris & Goodwin, 2017[Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105-2113.]). The solid-state structures of bioactive tryptamine mol­ecules are significant because they define each mol­ecule's physical identity, thereby providing the foundation for all downstream research. For example, such fundamental structural characterization is essential for understanding each mol­ecule's biological and clinical properties via structure-activity relationships. To help further elucidate these properties, we report the structure of 4-HO-DPT herein.

The synthesis of 4-HO-DPT was first reported by Repke et al. in 1977 (Repke et al., 1977[Repke, D. B., Ferguson, W. J. & Bates, D. K. (1977). J. Heterocycl. Chem. 14, 71-74.]). The mol­ecular structure of bis­(4-hy­droxy-N,N-di-n-propyl­tryptammonium)­fumarate is shown in Fig. 1[link]. The asymmetric unit contains one 4-HO-DPT cation, protonated at the di­propyl­amine N atom. There are also two independent water mol­ecules, and half of a fumarate ion present. The 4-hy­droxy-N,N-di-n-propyl­tryptammonium cations, fumarate dianions and water mol­ecules are linked to each other in an infinite three-dimensional network through hydrogen bonds (Fig. 2[link], Table 1[link]). Both inequivalent O atoms on the fumarate dianion (i.e. O2 and O3) accept two hydrogen bonds. One oxygen accepts hydrogen bonds from the hydroxide of the DPT cation and one water mol­ecule. The other oxygen inter­acts with the indole N atom and the second independent water mol­ecule. The ammonium proton hydrogen bonds with one of the water mol­ecules. A weak O—H⋯π inter­action is observed between one hydrogen atom of one of the water mol­ecules and the six-membered ring of an adjacent indole unit. The packing of the compound is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 (3) 2.08 (3) 2.926 (2) 157 (2)
N2—H2⋯O1W 0.98 (2) 1.73 (3) 2.689 (2) 168 (2)
O1—H1⋯O2 0.88 (3) 1.74 (3) 2.625 (2) 174 (3)
O1W—H1WA⋯O2Wii 0.83 (3) 1.88 (3) 2.710 (3) 172 (3)
O1W—H1WB⋯O3 0.83 (3) 1.86 (3) 2.684 (3) 171 (3)
O2W—H2WB⋯O2 0.94 (3) 1.76 (3) 2.695 (2) 173 (3)
O2W—H2WACgiii 0.82 (4) 2.69 (4) 3.488 (2) 167 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of bis­(4-hy­droxy-N,N-di-n-propyl­tryptammonium)­fumarate tetra­hydrate, showing the atomic labeling. Displacement ellipsoids are drawn at 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) 2 − x, 1 − y, −z.
[Figure 2]
Figure 2
The hydrogen bonding of the fumarate ion in the structure of the title compound (Table 1[link]), with hydrogen bonds shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iii) [{5\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the a axis. The N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]) are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Synthesis and crystallization

Single crystals of 4-HO-DPT fumarate suitable for X-ray analysis were obtained by the slow evaporation of an aqueous solution of a commercial sample of 4-hy­droxy-N,N-di-n-propyl­tryptamine fumarate (The Indole Shop).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H25N2O+·0.5C4H2O42−·2H2O
Mr 354.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 8.3495 (8), 12.5138 (11), 18.6631 (17)
β (°) 100.902 (3)
V3) 1914.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.705, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 52418, 3512, 2630
Rint 0.061
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.05
No. of reflections 3512
No. of parameters 257
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.22
Computer programs: SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Bis{[2-(4-hydroxy-1H-indol-3-yl)ethyl]bis(propan-2-yl)azanium} but-2-enedioate tetrahydrate top
Crystal data top
C16H25N2O+·0.5C4H2O42·2H2OF(000) = 768
Mr = 354.44Dx = 1.229 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3495 (8) ÅCell parameters from 9972 reflections
b = 12.5138 (11) Åθ = 2.9–25.2°
c = 18.6631 (17) ŵ = 0.09 mm1
β = 100.902 (3)°T = 200 K
V = 1914.8 (3) Å3Shard, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2630 reflections with I > 2σ(I)
φ and ω scansRint = 0.061
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 2.9°
Tmin = 0.705, Tmax = 0.745h = 1010
52418 measured reflectionsk = 1515
3512 independent reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.997P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.59 e Å3
3512 reflectionsΔρmin = 0.22 e Å3
257 parametersExtinction correction: SHELXL2018 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0155 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94852 (17)0.34667 (12)0.25667 (7)0.0394 (4)
O1W0.5933 (3)0.38719 (15)0.16468 (15)0.0764 (7)
O21.05696 (17)0.46219 (12)0.15852 (7)0.0445 (4)
O2W1.3681 (2)0.53142 (15)0.18964 (10)0.0529 (5)
O30.82210 (18)0.42826 (13)0.08492 (7)0.0457 (4)
N11.0659 (3)0.16741 (15)0.47495 (10)0.0494 (5)
N20.60593 (19)0.17587 (13)0.19118 (8)0.0321 (4)
C10.9055 (3)0.15399 (17)0.44334 (11)0.0468 (6)
H1B0.8295260.1126460.4635120.056*
C21.1400 (3)0.23028 (15)0.43090 (10)0.0381 (5)
C31.3016 (3)0.26370 (17)0.43917 (12)0.0459 (6)
H31.3806260.2444380.4807790.055*
C41.3413 (3)0.32549 (18)0.38466 (13)0.0457 (5)
H41.4504840.3497550.3888950.055*
C51.2268 (2)0.35418 (16)0.32296 (11)0.0390 (5)
H51.2596990.3967490.2861600.047*
C61.0666 (2)0.32147 (15)0.31481 (10)0.0312 (4)
C71.0205 (2)0.25791 (14)0.36961 (10)0.0307 (4)
C80.8697 (3)0.20820 (15)0.37881 (10)0.0347 (5)
C90.7111 (2)0.21074 (16)0.32523 (11)0.0372 (5)
H9A0.6833860.2854340.3103710.045*
H9B0.6229120.1819410.3484080.045*
C100.7250 (2)0.14395 (16)0.25814 (10)0.0346 (5)
H10A0.8369790.1508990.2483420.042*
H10B0.7072170.0678360.2688200.042*
C110.6625 (3)0.13956 (16)0.12321 (11)0.0379 (5)
H11A0.5841900.1657360.0802250.045*
H11B0.7693650.1730930.1220330.045*
C120.6794 (3)0.02060 (19)0.11654 (13)0.0560 (6)
H12A0.5733700.0139260.1178880.067*
H12B0.7600090.0062820.1585180.067*
C130.7340 (3)0.0092 (2)0.04618 (13)0.0572 (6)
H13A0.7365370.0872040.0417360.086*
H13B0.8432540.0196980.0466370.086*
H13C0.6574360.0205770.0046690.086*
C140.4340 (2)0.14425 (17)0.19474 (11)0.0397 (5)
H14A0.4101340.1656110.2427110.048*
H14B0.4240830.0655340.1909020.048*
C150.3094 (3)0.1947 (2)0.13503 (14)0.0594 (7)
H15A0.3191250.2734260.1388870.071*
H15B0.3332080.1733940.0870450.071*
C160.1391 (3)0.1631 (2)0.13865 (15)0.0615 (7)
H16A0.0633100.1981770.0991190.092*
H16B0.1141320.1850710.1857420.092*
H16C0.1278290.0854390.1334800.092*
C170.9662 (2)0.45901 (15)0.09626 (10)0.0317 (4)
C181.0407 (2)0.49612 (15)0.03381 (10)0.0338 (4)
H181.1529180.5151500.0433460.041*
H10.991 (3)0.383 (2)0.2241 (15)0.066 (8)*
H2WA1.372 (4)0.591 (3)0.1719 (19)0.098 (12)*
H20.604 (3)0.254 (2)0.1887 (13)0.052 (6)*
H2WB1.261 (4)0.505 (2)0.1751 (15)0.081 (9)*
H1A1.121 (3)0.135 (2)0.5147 (15)0.065 (8)*
H1WA0.527 (4)0.435 (2)0.1698 (15)0.072 (9)*
H1WB0.670 (4)0.403 (2)0.1439 (17)0.079 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0337 (8)0.0537 (9)0.0303 (7)0.0009 (7)0.0044 (6)0.0130 (7)
O1W0.0541 (12)0.0389 (10)0.149 (2)0.0080 (9)0.0516 (13)0.0289 (11)
O20.0450 (9)0.0619 (10)0.0258 (7)0.0141 (7)0.0043 (6)0.0076 (7)
O2W0.0432 (10)0.0484 (10)0.0669 (11)0.0053 (8)0.0104 (8)0.0144 (9)
O30.0415 (9)0.0666 (10)0.0289 (7)0.0133 (7)0.0065 (6)0.0004 (7)
N10.0745 (14)0.0405 (10)0.0264 (9)0.0074 (10)0.0074 (9)0.0056 (8)
N20.0315 (9)0.0300 (9)0.0347 (9)0.0010 (7)0.0063 (7)0.0043 (7)
C10.0688 (16)0.0388 (12)0.0337 (11)0.0109 (11)0.0117 (11)0.0017 (9)
C20.0538 (13)0.0286 (10)0.0275 (10)0.0017 (9)0.0034 (9)0.0034 (8)
C30.0488 (13)0.0375 (12)0.0420 (12)0.0037 (10)0.0155 (10)0.0067 (10)
C40.0338 (11)0.0431 (12)0.0560 (14)0.0007 (9)0.0026 (10)0.0107 (11)
C50.0356 (11)0.0388 (11)0.0431 (12)0.0002 (9)0.0092 (9)0.0007 (9)
C60.0344 (10)0.0311 (10)0.0273 (9)0.0046 (8)0.0040 (8)0.0014 (8)
C70.0387 (11)0.0270 (9)0.0248 (9)0.0017 (8)0.0022 (8)0.0034 (7)
C80.0467 (12)0.0301 (10)0.0277 (10)0.0028 (8)0.0077 (8)0.0024 (8)
C90.0369 (11)0.0380 (11)0.0385 (11)0.0034 (9)0.0119 (9)0.0001 (9)
C100.0323 (10)0.0351 (10)0.0342 (10)0.0015 (8)0.0004 (8)0.0009 (8)
C110.0367 (11)0.0412 (12)0.0362 (11)0.0001 (9)0.0079 (9)0.0034 (9)
C120.0807 (18)0.0428 (13)0.0442 (13)0.0013 (12)0.0111 (12)0.0023 (10)
C130.0663 (16)0.0562 (15)0.0494 (14)0.0061 (12)0.0114 (12)0.0111 (12)
C140.0304 (11)0.0446 (12)0.0443 (12)0.0030 (9)0.0078 (9)0.0030 (10)
C150.0373 (12)0.0812 (18)0.0563 (15)0.0030 (12)0.0004 (11)0.0113 (13)
C160.0371 (13)0.0743 (18)0.0691 (17)0.0007 (12)0.0000 (11)0.0053 (14)
C170.0417 (11)0.0306 (10)0.0229 (9)0.0014 (8)0.0067 (8)0.0015 (8)
C180.0403 (11)0.0343 (10)0.0281 (9)0.0032 (9)0.0100 (8)0.0014 (8)
Geometric parameters (Å, º) top
O1—C61.358 (2)C8—C91.501 (3)
O1—H10.88 (3)C9—H9A0.9900
O1W—H1WA0.83 (3)C9—H9B0.9900
O1W—H1WB0.83 (3)C9—C101.528 (3)
O2—C171.262 (2)C10—H10A0.9900
O2W—H2WA0.82 (4)C10—H10B0.9900
O2W—H2WB0.94 (3)C11—H11A0.9900
O3—C171.243 (2)C11—H11B0.9900
N1—C11.368 (3)C11—C121.503 (3)
N1—C21.367 (3)C12—H12A0.9900
N1—H1A0.89 (3)C12—H12B0.9900
N2—C101.496 (2)C12—C131.516 (3)
N2—C111.505 (3)C13—H13A0.9800
N2—C141.503 (2)C13—H13B0.9800
N2—H20.98 (2)C13—H13C0.9800
C1—H1B0.9500C14—H14A0.9900
C1—C81.365 (3)C14—H14B0.9900
C2—C31.393 (3)C14—C151.511 (3)
C2—C71.411 (3)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C3—C41.368 (3)C15—C161.489 (3)
C4—H40.9500C16—H16A0.9800
C4—C51.397 (3)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C5—C61.380 (3)C17—C181.495 (3)
C6—C71.406 (3)C18—C18i1.319 (4)
C7—C81.443 (3)C18—H180.9500
C6—O1—H1109.9 (17)C9—C10—H10A108.9
H1WA—O1W—H1WB118 (3)C9—C10—H10B108.9
H2WA—O2W—H2WB108 (3)H10A—C10—H10B107.7
C1—N1—H1A127.6 (17)N2—C11—H11A108.6
C2—N1—C1109.18 (17)N2—C11—H11B108.6
C2—N1—H1A122.8 (17)H11A—C11—H11B107.6
C10—N2—C11111.00 (15)C12—C11—N2114.73 (17)
C10—N2—C14112.47 (15)C12—C11—H11A108.6
C10—N2—H2107.9 (13)C12—C11—H11B108.6
C11—N2—H2105.5 (14)C11—C12—H12A109.4
C14—N2—C11114.36 (15)C11—C12—H12B109.4
C14—N2—H2105.0 (13)C11—C12—C13111.4 (2)
N1—C1—H1B124.7H12A—C12—H12B108.0
C8—C1—N1110.7 (2)C13—C12—H12A109.4
C8—C1—H1B124.7C13—C12—H12B109.4
N1—C2—C3130.15 (19)C12—C13—H13A109.5
N1—C2—C7107.29 (19)C12—C13—H13B109.5
C3—C2—C7122.55 (19)C12—C13—H13C109.5
C2—C3—H3121.5H13A—C13—H13B109.5
C4—C3—C2116.94 (19)H13A—C13—H13C109.5
C4—C3—H3121.5H13B—C13—H13C109.5
C3—C4—H4118.9N2—C14—H14A109.0
C3—C4—C5122.3 (2)N2—C14—H14B109.0
C5—C4—H4118.9N2—C14—C15112.81 (17)
C4—C5—H5119.6H14A—C14—H14B107.8
C6—C5—C4120.8 (2)C15—C14—H14A109.0
C6—C5—H5119.6C15—C14—H14B109.0
O1—C6—C5124.15 (18)C14—C15—H15A109.1
O1—C6—C7117.10 (17)C14—C15—H15B109.1
C5—C6—C7118.74 (17)H15A—C15—H15B107.8
C2—C7—C8107.28 (17)C16—C15—C14112.7 (2)
C6—C7—C2118.64 (18)C16—C15—H15A109.1
C6—C7—C8134.07 (17)C16—C15—H15B109.1
C1—C8—C7105.59 (18)C15—C16—H16A109.5
C1—C8—C9128.06 (19)C15—C16—H16B109.5
C7—C8—C9126.23 (16)C15—C16—H16C109.5
C8—C9—H9A109.7H16A—C16—H16B109.5
C8—C9—H9B109.7H16A—C16—H16C109.5
C8—C9—C10109.90 (16)H16B—C16—H16C109.5
H9A—C9—H9B108.2O2—C17—C18116.23 (17)
C10—C9—H9A109.7O3—C17—O2124.05 (17)
C10—C9—H9B109.7O3—C17—C18119.71 (16)
N2—C10—C9113.40 (16)C17—C18—H18118.2
N2—C10—H10A108.9C18i—C18—C17123.6 (2)
N2—C10—H10B108.9C18i—C18—H18118.2
O1—C6—C7—C2179.92 (16)C3—C2—C7—C60.1 (3)
O1—C6—C7—C81.6 (3)C3—C2—C7—C8178.94 (18)
O2—C17—C18—C18i175.7 (2)C3—C4—C5—C60.5 (3)
O3—C17—C18—C18i3.7 (4)C4—C5—C6—O1179.62 (18)
N1—C1—C8—C70.7 (2)C4—C5—C6—C70.4 (3)
N1—C1—C8—C9176.85 (19)C5—C6—C7—C20.1 (3)
N1—C2—C3—C4178.8 (2)C5—C6—C7—C8178.3 (2)
N1—C2—C7—C6178.92 (17)C6—C7—C8—C1178.2 (2)
N1—C2—C7—C80.1 (2)C6—C7—C8—C92.0 (3)
N2—C11—C12—C13179.03 (18)C7—C2—C3—C40.0 (3)
N2—C14—C15—C16179.9 (2)C7—C8—C9—C1069.5 (2)
C1—N1—C2—C3178.4 (2)C8—C9—C10—N2156.21 (16)
C1—N1—C2—C70.5 (2)C10—N2—C11—C1261.6 (2)
C1—C8—C9—C10105.9 (2)C10—N2—C14—C15168.58 (19)
C2—N1—C1—C80.8 (3)C11—N2—C10—C9158.64 (16)
C2—C3—C4—C50.3 (3)C11—N2—C14—C1563.6 (2)
C2—C7—C8—C10.4 (2)C14—N2—C10—C971.8 (2)
C2—C7—C8—C9176.62 (18)C14—N2—C11—C1266.9 (2)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.89 (3)2.08 (3)2.926 (2)157 (2)
N2—H2···O1W0.98 (2)1.73 (3)2.689 (2)168 (2)
O1—H1···O20.88 (3)1.74 (3)2.625 (2)174 (3)
O1W—H1WA···O2Wiii0.83 (3)1.88 (3)2.710 (3)172 (3)
O1W—H1WB···O30.83 (3)1.86 (3)2.684 (3)171 (3)
O2W—H2WB···O20.94 (3)1.76 (3)2.695 (2)173 (3)
O2W—H2WA···Cgiv0.82 (4)2.69 (4)3.488 (2)167 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+5/2, y+1/2, z+1/2.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, LLC. ARC reports an ownership inter­est in CaaMTech, LLC, which has filed patent applications covering compositions of psilocybin derivatives.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105–2113.  Web of Science CAS PubMed Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.  Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019c). Psychedel. Sci. Rev. https://psychedelicreview. com/the-crystal-structure-of-4-aco-dmt-fumarate/.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1316–1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3075–3083.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPetcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946–948.  CSD CrossRef Web of Science Google Scholar
First citationRepke, D. B., Ferguson, W. J. & Bates, D. K. (1977). J. Heterocycl. Chem. 14, 71–74.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942–946.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds