metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

μ2-Methanol-κ2O:O-bis­­[(1,10-phenanthroline-κ2N,N′)bis­­(2,3,4,5-tetra­fluoro­benzoato)-κO;κ2O,O′-copper(II)]

aCollege of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271000, Shandong Province, People's Republic of China
*Correspondence e-mail: sunjunshan79@163.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 23 August 2019; accepted 23 November 2019; online 29 November 2019)

In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2(CH3OH)], the mol­ecule lies on a twofold rotation axis in space group C2/c. The Cu2+ ion exhibits a distorted octa­hedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetra­fluoro­benzoate ligands and one O atom from a methanol mol­ecule. The distortion from an octa­hedral shape is a consequence of the Jahn–Teller effect of CuII and the small bite angle for the bidentate fluoro­benzoate ligand [54.50 (11)°]. The methanol mol­ecule bridges two symmetry-related CuII atoms to form the complete mol­ecule. In the bidentate fluoro­benzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak inter­molecular inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The rational design and synthesis of metal–organic coordination compounds has received great inter­est owing to their magnetic, luminescence, gas storage/separation and catalytic properties (Wu & Lee, 2006[Wu, M.-C. & Lee, C.-S. (2006). Inorg. Chem. 45, 9634-9636.]; Han et al., 2006[Han, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006). Eur. J. Inorg. Chem. pp. 1594-1600.]; Noro et al., 2000[Noro, S.-I., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.]). The general strategy for the choice of organic building blocks and the framework of the coordination complex relies on the utilization of multidentate ligands, which can act as bridging ligands. It is well known that the spacer ligands with appropriate backbones and coordination conformations are important in regulating the final structure of coordination complexes, especially carboxyl­ates, because of their diverse coordination modes in the construction of coordination complexes (Sun et al., 2009[Sun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. & Zheng, L.-S. (2009). Polyhedron, 28, 2983-2988.]). In this study, we selected 2,3,4,5-tetra­fluoro­benzoic acid as ligand, with 1,10-phenanthroline and methanol as co-ligands.

The asymmetric unit of the title complex contains two 2,3,4,5-tetra­fluoro­benzoate anions, one 1,10-phenanthroline, and one coordinating methanol mol­ecule. The CuII atom exhibits a distorted octa­hedral sphere, which is formed by two 1,10-phenanthroline N atoms, two O atoms from one bidentate tetra­fluoro­benzoate ligand, one O atom from the other independent tetra­fluoro­benzoate ligand and one O atom from the methanol mol­ecule. The distortion is ascribed to the Jahn–Teller effect of CuII and the small bite angle of the bidentate tetra­fluoro­benzoate ligand, O1—Cu1—O2 = 54.50 (11)°. The Cu—N bond lengths are 2.010 (3) and 2.014 (3) Å. The Cu—O coordination bond lengths are in the range 1.919 (3) to 2.686 (4) Å. The latter distance is very long, while the other distances are close to the literature reported distances [for example 1.942 (3) Å; Sun, 2014[Sun, J. (2014). Acta Cryst. E70, m365-m366.]]. The methanol mol­ecule is located on a twofold rotation axis of space group C2/c and bridges two metal centres, forming a dinuclear complex (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels for the asymmetric unit, and 20% probability displacement ellipsoids. Non-labelled atoms are generated by the symmetry operation 1 − x, y, [{3\over 2}] − z. H atoms are omitted for clarity.

Synthesis and crystallization

2,3,4,5-Tetra­fluoro­benzoic acid (0.194 g, 1 mmol), copper acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.198 g, 1 mmol) were dissolved in methanol. The mixture was heated to 40°C for 3 h, resulting in a blue-coloured solution. Crystals of the title compound were obtained by slow evaporation within one week (yield: 78%). Elemental analysis: calculated for C53H24Cu2F16N4O9: C 49.28, H 1.87, N 4.34; found: C 49.31, H 1.49, N 4.54.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One F atom on the C2–C7 ring was found to be disordered over two chemically equivalent positions (F1 and F1′); the occupancies for these F atoms were fixed at 0.5.

Table 1
Experimental details

Crystal data
Chemical formula [Cu2(C7HF4O2)4(C12H8N2)2(CH4O)]
Mr 1291.84
Crystal system, space group Monoclinic, C2/c
Temperature (K) 295
a, b, c (Å) 14.5119 (12), 24.8953 (19), 15.2514 (17)
β (°) 115.360 (1)
V3) 4979.0 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.98
Crystal size (mm) 0.34 × 0.31 × 0.28
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.741, 0.794
No. of measured, independent and observed [I > 2σ(I)] reflections 14347, 5087, 3096
Rint 0.083
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.183, 0.97
No. of reflections 5087
No. of parameters 389
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

µ2-Methanol-κ2O:O-bis[(1,10-phenanthroline-κ2N,N')bis(2,3,4,5-tetrafluorobenzoato)-κO;κ2O,O'-copper(II)] top
Crystal data top
[Cu2(C7HF4O2)4(C12H8N2)2(CH4O)]F(000) = 2576.0
Mr = 1291.84Dx = 1.721 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.5119 (12) ÅCell parameters from 3671 reflections
b = 24.8953 (19) Åθ = 2.7–22.7°
c = 15.2514 (17) ŵ = 0.98 mm1
β = 115.360 (1)°T = 295 K
V = 4979.0 (8) Å3Block, blue
Z = 40.34 × 0.31 × 0.28 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3096 reflections with I > 2σ(I)
ω scansRint = 0.083
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 26.4°, θmin = 1.8°
Tmin = 0.741, Tmax = 0.794h = 1812
14347 measured reflectionsk = 3031
5087 independent reflectionsl = 919
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1076P)2]
where P = (Fo2 + 2Fc2)/3
5087 reflections(Δ/σ)max < 0.001
389 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Refinement. All H atoms bonded to C atoms were placed in idealized positions, while the H atom for the hydroxy group in methanol was found in a difference map. They were refined with calculated isotropic displacement parameters, Uiso(H) = 1.5Ueq(carrier atom) for the methanol molecule, and Uiso(H) = 1.2Ueq(carrier atom) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.34551 (4)0.11688 (2)0.66779 (4)0.0594 (2)
F10.2002 (3)0.04902 (16)0.6375 (4)0.0661 (13)0.5
F1'0.0297 (6)0.0968 (3)0.6070 (7)0.138 (3)0.5
F20.0645 (2)0.11549 (9)0.6484 (3)0.0951 (10)
F30.1166 (2)0.08059 (10)0.6335 (2)0.0861 (8)
F40.1603 (2)0.02528 (11)0.6133 (2)0.0949 (9)
F50.3880 (4)0.1024 (2)1.0631 (3)0.1549 (16)
F60.2833 (5)0.1509 (2)1.1452 (3)0.183 (2)
F70.1278 (4)0.2134 (2)1.0437 (4)0.174 (2)
F80.0803 (4)0.2335 (2)0.8579 (4)0.191 (2)
N10.3711 (2)0.19254 (11)0.6371 (2)0.0524 (8)
N20.3552 (2)0.10156 (12)0.5426 (2)0.0541 (8)
O10.1410 (3)0.11257 (12)0.5917 (3)0.0948 (12)
O20.2644 (2)0.05231 (11)0.6604 (2)0.0669 (8)
O30.3402 (3)0.14324 (12)0.7838 (2)0.0859 (10)
O40.4020 (3)0.07702 (14)0.8920 (3)0.0880 (10)
O50.5000000.06843 (17)0.7500000.114 (2)
H50.5075590.0874540.7180560.170*0.5
C10.1719 (3)0.06834 (15)0.6248 (3)0.0638 (11)
C20.0938 (3)0.02777 (15)0.6269 (3)0.0558 (10)
C30.1167 (3)0.02735 (16)0.6371 (3)0.0609 (10)
H3A0.1796410.0396200.6430940.073*0.5
C40.0439 (3)0.06323 (15)0.6380 (3)0.0618 (10)
C50.0490 (3)0.04519 (16)0.6303 (3)0.0641 (11)
C60.0700 (3)0.00815 (16)0.6191 (3)0.0613 (10)
C70.0008 (3)0.04419 (15)0.6171 (3)0.0596 (10)
H7A0.0154340.0805380.6087910.072*0.5
C80.3517 (4)0.11736 (17)0.8595 (4)0.0669 (12)
C90.2945 (3)0.14200 (17)0.9129 (3)0.0640 (11)
C100.3157 (5)0.1326 (2)1.0070 (4)0.0913 (16)
C110.2593 (6)0.1583 (3)1.0534 (4)0.1020 (19)
C120.1783 (6)0.1904 (3)0.9955 (6)0.111 (2)
C130.1601 (6)0.1995 (3)0.9059 (6)0.118 (2)
C140.2117 (5)0.1761 (2)0.8620 (5)0.0988 (18)
H14A0.1924030.1825060.7964440.119*
C150.3733 (3)0.23756 (15)0.6848 (3)0.0581 (10)
H15A0.3691350.2353470.7438330.070*
C160.3816 (3)0.28796 (15)0.6491 (3)0.0630 (11)
H16A0.3829540.3187110.6842410.076*
C170.3879 (3)0.29221 (15)0.5628 (3)0.0631 (11)
H17A0.3929980.3258030.5386130.076*
C180.3864 (3)0.24496 (15)0.5100 (3)0.0552 (9)
C190.3773 (3)0.19618 (14)0.5514 (3)0.0488 (9)
C200.3699 (3)0.14693 (14)0.4999 (3)0.0509 (9)
C210.3765 (3)0.14670 (17)0.4121 (3)0.0641 (11)
C220.3703 (3)0.0972 (2)0.3674 (3)0.0720 (12)
H22A0.3752670.0950250.3087350.086*
C230.3568 (3)0.05181 (18)0.4108 (4)0.0753 (13)
H23A0.3530940.0184450.3820270.090*
C240.3485 (3)0.05565 (17)0.4976 (3)0.0671 (12)
H24A0.3378670.0244040.5253490.081*
C250.3883 (4)0.1983 (2)0.3731 (4)0.0784 (13)
H25A0.3934100.1992760.3143720.094*
C260.3922 (4)0.24431 (19)0.4199 (3)0.0714 (12)
H26A0.3987460.2765910.3924090.086*
C270.5000000.0126 (2)0.7500000.087 (2)
H27A0.4684940.0002600.7899620.130*0.5
H27B0.5689360.0002600.7751530.130*0.5
H27C0.4625700.0002600.6848850.130*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0700 (4)0.0378 (3)0.0787 (4)0.0107 (2)0.0399 (3)0.0006 (2)
F10.043 (2)0.036 (2)0.117 (4)0.0006 (18)0.033 (2)0.007 (2)
F1'0.118 (6)0.076 (4)0.224 (9)0.001 (4)0.078 (6)0.021 (5)
F20.093 (2)0.0375 (13)0.156 (3)0.0039 (12)0.0553 (19)0.0089 (13)
F30.0818 (18)0.0639 (16)0.123 (2)0.0259 (13)0.0534 (16)0.0013 (14)
F40.0665 (17)0.0773 (19)0.147 (3)0.0014 (14)0.0520 (17)0.0028 (17)
F50.134 (3)0.199 (4)0.132 (3)0.030 (3)0.057 (3)0.038 (3)
F60.240 (5)0.242 (6)0.085 (3)0.063 (5)0.086 (3)0.015 (3)
F70.207 (5)0.180 (4)0.206 (5)0.008 (4)0.155 (4)0.039 (3)
F80.156 (4)0.202 (5)0.228 (5)0.095 (4)0.097 (4)0.037 (4)
N10.0495 (18)0.0399 (16)0.068 (2)0.0079 (13)0.0252 (16)0.0004 (14)
N20.0499 (18)0.0406 (16)0.071 (2)0.0052 (14)0.0256 (16)0.0031 (14)
O10.086 (2)0.0580 (19)0.131 (3)0.0046 (16)0.038 (2)0.0402 (18)
O20.0623 (19)0.0488 (15)0.093 (2)0.0109 (14)0.0362 (16)0.0031 (14)
O30.141 (3)0.0483 (17)0.098 (2)0.0090 (18)0.079 (2)0.0014 (16)
O40.082 (2)0.080 (2)0.107 (3)0.0179 (18)0.0459 (19)0.0157 (19)
O50.088 (4)0.050 (3)0.130 (4)0.0000.022 (3)0.000
C10.070 (3)0.042 (2)0.079 (3)0.014 (2)0.031 (2)0.0069 (19)
C20.059 (2)0.045 (2)0.060 (2)0.0071 (18)0.0223 (19)0.0126 (17)
C30.060 (2)0.047 (2)0.072 (3)0.0040 (18)0.025 (2)0.0090 (18)
C40.068 (3)0.0377 (19)0.074 (3)0.0110 (18)0.025 (2)0.0028 (17)
C50.067 (3)0.054 (2)0.070 (3)0.023 (2)0.028 (2)0.0004 (19)
C60.053 (2)0.055 (2)0.070 (3)0.0047 (19)0.021 (2)0.0006 (19)
C70.062 (3)0.0377 (19)0.076 (3)0.0010 (18)0.027 (2)0.0099 (18)
C80.070 (3)0.053 (2)0.085 (3)0.013 (2)0.041 (2)0.004 (2)
C90.067 (3)0.058 (2)0.070 (3)0.010 (2)0.033 (2)0.003 (2)
C100.091 (4)0.087 (4)0.085 (4)0.000 (3)0.028 (3)0.031 (3)
C110.128 (5)0.124 (5)0.065 (3)0.039 (4)0.051 (4)0.003 (3)
C120.118 (6)0.105 (5)0.128 (6)0.015 (4)0.069 (5)0.020 (4)
C130.113 (5)0.116 (5)0.121 (6)0.016 (4)0.046 (5)0.021 (4)
C140.101 (4)0.083 (4)0.144 (5)0.010 (3)0.082 (4)0.005 (3)
C150.059 (2)0.043 (2)0.072 (3)0.0046 (17)0.028 (2)0.0050 (18)
C160.062 (3)0.039 (2)0.084 (3)0.0066 (18)0.027 (2)0.0075 (19)
C170.060 (3)0.038 (2)0.079 (3)0.0079 (17)0.018 (2)0.0084 (18)
C180.046 (2)0.050 (2)0.063 (2)0.0105 (17)0.0171 (18)0.0065 (18)
C190.0370 (19)0.0411 (18)0.064 (2)0.0056 (15)0.0171 (17)0.0031 (16)
C200.041 (2)0.045 (2)0.065 (2)0.0044 (15)0.0209 (18)0.0004 (17)
C210.055 (2)0.066 (3)0.072 (3)0.005 (2)0.028 (2)0.003 (2)
C220.068 (3)0.071 (3)0.077 (3)0.004 (2)0.031 (2)0.013 (2)
C230.074 (3)0.056 (3)0.096 (4)0.000 (2)0.036 (3)0.020 (2)
C240.066 (3)0.044 (2)0.092 (3)0.0065 (19)0.035 (2)0.009 (2)
C250.086 (3)0.081 (3)0.071 (3)0.014 (3)0.035 (3)0.004 (2)
C260.071 (3)0.064 (3)0.076 (3)0.016 (2)0.028 (2)0.011 (2)
C270.083 (5)0.054 (4)0.129 (6)0.0000.050 (4)0.000
Geometric parameters (Å, º) top
Cu1—O12.686 (4)C8—C91.519 (6)
Cu1—O21.967 (3)C9—C101.354 (7)
Cu1—O31.919 (3)C9—C141.403 (7)
Cu1—O52.376 (2)C10—C111.440 (9)
Cu1—N12.014 (3)C11—C121.383 (9)
Cu1—N22.010 (3)C12—C131.297 (9)
F1—C31.324 (6)C13—C141.332 (9)
F1'—C71.370 (8)C14—H14A0.9300
F2—C41.329 (4)C15—C161.393 (5)
F3—C51.336 (4)C15—H15A0.9300
F4—C61.345 (5)C16—C171.361 (6)
F5—C101.277 (6)C16—H16A0.9300
F6—C111.303 (6)C17—C181.421 (6)
F7—C121.366 (8)C17—H17A0.9300
F8—C131.366 (8)C18—C191.401 (5)
N1—C151.329 (5)C18—C261.413 (6)
N1—C191.350 (5)C19—C201.435 (5)
N2—C241.316 (5)C20—C211.383 (6)
N2—C201.366 (5)C21—C221.393 (6)
O1—C11.214 (5)C21—C251.456 (6)
O2—C11.278 (5)C22—C231.364 (6)
O3—C81.270 (5)C22—H22A0.9300
O4—C81.216 (5)C23—C241.383 (6)
O5—C271.390 (7)C23—H23A0.9300
O5—H50.7207C24—H24A0.9300
O5—H5i0.7207C25—C261.338 (7)
C1—C21.528 (5)C25—H25A0.9300
C2—C71.356 (6)C26—H26A0.9300
C2—C31.405 (5)C27—H27A0.9600
C3—C41.388 (6)C27—H27B0.9600
C3—H3A0.9300C27—H27C0.9600
C4—C51.377 (6)C27—H27Ai0.9600
C5—C61.357 (6)C27—H27Bi0.9600
C6—C71.374 (6)C27—H27Ci0.9600
C7—H7A0.9300
O3—Cu1—O294.16 (13)F6—C11—C10121.2 (7)
O3—Cu1—N2170.84 (12)C12—C11—C10116.8 (5)
O2—Cu1—N294.25 (12)C13—C12—F7125.5 (8)
O3—Cu1—N188.80 (13)C13—C12—C11120.4 (7)
O2—Cu1—N1156.46 (13)F7—C12—C11113.9 (7)
N2—Cu1—N182.04 (13)C12—C13—C14123.3 (7)
O3—Cu1—O595.09 (12)C12—C13—F8114.5 (7)
O2—Cu1—O591.23 (12)C14—C13—F8122.1 (7)
N2—Cu1—O588.34 (9)C13—C14—C9121.3 (6)
N1—Cu1—O5111.79 (12)C13—C14—H14A119.4
O3—Cu1—O186.47 (15)C9—C14—H14A119.4
O2—Cu1—O154.50 (11)N1—C15—C16122.1 (4)
N2—Cu1—O195.49 (13)N1—C15—H15A119.0
N1—Cu1—O1102.52 (11)C16—C15—H15A119.0
O5—Cu1—O1145.68 (10)C17—C16—C15120.0 (4)
C15—N1—C19118.5 (3)C17—C16—H16A120.0
C15—N1—Cu1128.7 (3)C15—C16—H16A120.0
C19—N1—Cu1112.5 (2)C16—C17—C18119.5 (4)
C24—N2—C20117.4 (4)C16—C17—H17A120.2
C24—N2—Cu1129.9 (3)C18—C17—H17A120.2
C20—N2—Cu1112.7 (3)C19—C18—C26119.0 (4)
C1—O2—Cu1105.3 (2)C19—C18—C17116.4 (4)
C8—O3—Cu1128.6 (3)C26—C18—C17124.7 (4)
C27—O5—Cu1120.51 (9)N1—C19—C18123.5 (3)
C27—O5—Cu1i120.51 (9)N1—C19—C20116.9 (3)
Cu1—O5—Cu1i118.98 (18)C18—C19—C20119.6 (4)
C27—O5—H5131.1N2—C20—C21123.3 (4)
Cu1—O5—H572.1N2—C20—C19115.8 (4)
Cu1i—O5—H568.9C21—C20—C19120.9 (3)
C27—O5—H5i131.077 (4)C20—C21—C22117.4 (4)
Cu1—O5—H5i68.94 (5)C20—C21—C25117.4 (4)
Cu1i—O5—H5i72.07 (6)C22—C21—C25125.1 (5)
H5—O5—H5i97.8C23—C22—C21119.2 (4)
O1—C1—O2126.4 (4)C23—C22—H22A120.4
O1—C1—C2117.6 (4)C21—C22—H22A120.4
O2—C1—C2116.0 (3)C22—C23—C24119.7 (4)
C7—C2—C3118.9 (4)C22—C23—H23A120.1
C7—C2—C1120.7 (4)C24—C23—H23A120.1
C3—C2—C1120.4 (4)N2—C24—C23122.9 (4)
F1—C3—C4115.9 (4)N2—C24—H24A118.5
F1—C3—C2124.8 (4)C23—C24—H24A118.5
C4—C3—C2119.0 (4)C26—C25—C21121.5 (5)
C4—C3—H3A120.5C26—C25—H25A119.2
C2—C3—H3A120.5C21—C25—H25A119.2
F2—C4—C5119.4 (4)C25—C26—C18121.5 (4)
F2—C4—C3119.9 (4)C25—C26—H26A119.3
C5—C4—C3120.7 (4)C18—C26—H26A119.3
F3—C5—C6121.4 (4)O5—C27—H27A109.5
F3—C5—C4119.3 (4)O5—C27—H27B109.5
C6—C5—C4119.3 (4)H27A—C27—H27B109.5
F4—C6—C5118.6 (4)O5—C27—H27C109.5
F4—C6—C7120.6 (4)H27A—C27—H27C109.5
C5—C6—C7120.8 (4)H27B—C27—H27C109.5
C2—C7—F1'124.0 (4)O5—C27—H27Ai109.470 (2)
C2—C7—C6121.3 (4)H27A—C27—H27Ai141.1
F1'—C7—C6114.7 (5)H27B—C27—H27Ai56.3
C2—C7—H7A119.4H27C—C27—H27Ai56.3
C6—C7—H7A119.4O5—C27—H27Bi109.470 (3)
O4—C8—O3127.7 (5)H27A—C27—H27Bi56.3
O4—C8—C9119.1 (4)H27B—C27—H27Bi141.1
O3—C8—C9113.2 (4)H27C—C27—H27Bi56.3
C10—C9—C14116.3 (5)H27Ai—C27—H27Bi109.5
C10—C9—C8124.8 (5)O5—C27—H27Ci109.470 (3)
C14—C9—C8118.9 (4)H27A—C27—H27Ci56.3
F5—C10—C9124.1 (6)H27B—C27—H27Ci56.3
F5—C10—C11114.2 (6)H27C—C27—H27Ci141.1
C9—C10—C11121.6 (5)H27Ai—C27—H27Ci109.5
F6—C11—C12122.0 (7)H27Bi—C27—H27Ci109.5
Cu1—O2—C1—O18.2 (6)C10—C11—C12—F7179.7 (5)
Cu1—O2—C1—C2170.2 (3)F7—C12—C13—C14179.9 (7)
O1—C1—C2—C717.2 (7)C11—C12—C13—C145.1 (12)
O2—C1—C2—C7161.4 (4)F7—C12—C13—F82.8 (11)
O1—C1—C2—C3161.6 (4)C11—C12—C13—F8177.6 (6)
O2—C1—C2—C319.9 (6)C12—C13—C14—C94.0 (11)
C7—C2—C3—F1173.0 (5)F8—C13—C14—C9178.9 (6)
C1—C2—C3—F15.8 (7)C10—C9—C14—C132.8 (8)
C7—C2—C3—C40.8 (6)C8—C9—C14—C13178.8 (6)
C1—C2—C3—C4179.6 (4)C19—N1—C15—C160.0 (6)
F1—C3—C4—F26.3 (6)Cu1—N1—C15—C16173.2 (3)
C2—C3—C4—F2179.4 (4)N1—C15—C16—C170.0 (6)
F1—C3—C4—C5175.1 (4)C15—C16—C17—C180.4 (6)
C2—C3—C4—C50.8 (6)C16—C17—C18—C190.7 (6)
F2—C4—C5—F30.1 (6)C16—C17—C18—C26179.9 (4)
C3—C4—C5—F3178.5 (4)C15—N1—C19—C180.4 (5)
F2—C4—C5—C6179.7 (4)Cu1—N1—C19—C18174.7 (3)
C3—C4—C5—C61.7 (7)C15—N1—C19—C20177.2 (3)
F3—C5—C6—F41.3 (6)Cu1—N1—C19—C202.9 (4)
C4—C5—C6—F4178.9 (4)C26—C18—C19—N1179.9 (3)
F3—C5—C6—C7179.2 (4)C17—C18—C19—N10.7 (5)
C4—C5—C6—C71.0 (7)C26—C18—C19—C202.4 (5)
C3—C2—C7—F1'179.7 (6)C17—C18—C19—C20176.7 (3)
C1—C2—C7—F1'1.5 (8)C24—N2—C20—C211.0 (6)
C3—C2—C7—C61.5 (6)Cu1—N2—C20—C21178.4 (3)
C1—C2—C7—C6179.8 (4)C24—N2—C20—C19179.7 (3)
F4—C6—C7—C2177.3 (4)Cu1—N2—C20—C190.9 (4)
C5—C6—C7—C20.6 (7)N1—C19—C20—N21.3 (5)
F4—C6—C7—F1'1.2 (7)C18—C19—C20—N2176.3 (3)
C5—C6—C7—F1'179.0 (6)N1—C19—C20—C21179.3 (3)
Cu1—O3—C8—O428.6 (7)C18—C19—C20—C213.0 (5)
Cu1—O3—C8—C9151.9 (3)N2—C20—C21—C221.7 (6)
O4—C8—C9—C1019.5 (7)C19—C20—C21—C22179.0 (4)
O3—C8—C9—C10160.1 (5)N2—C20—C21—C25177.7 (4)
O4—C8—C9—C14158.8 (5)C19—C20—C21—C251.6 (6)
O3—C8—C9—C1421.6 (6)C20—C21—C22—C230.9 (6)
C14—C9—C10—F5179.7 (6)C25—C21—C22—C23178.5 (4)
C8—C9—C10—F51.4 (9)C21—C22—C23—C240.6 (7)
C14—C9—C10—C113.0 (8)C20—N2—C24—C230.6 (6)
C8—C9—C10—C11178.7 (5)Cu1—N2—C24—C23179.9 (3)
F5—C10—C11—F60.8 (9)C22—C23—C24—N21.4 (7)
C9—C10—C11—F6176.8 (5)C20—C21—C25—C260.4 (7)
F5—C10—C11—C12178.3 (6)C22—C21—C25—C26179.0 (5)
C9—C10—C11—C124.1 (9)C21—C25—C26—C181.0 (7)
F6—C11—C12—C13175.9 (6)C19—C18—C26—C250.5 (6)
C10—C11—C12—C135.0 (10)C17—C18—C26—C25178.6 (4)
F6—C11—C12—F70.6 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.722.673.067 (3)118
O5—H5···O3i0.722.623.184 (4)137
O5—H5···O4i0.722.553.065 (4)130
Symmetry code: (i) x+1, y, z+3/2.
 

Funding information

Financial support from the Shandong Provincial Higher Education Research and Development Program Project (No. J18KB049) and Talent Foundation of Taishan University (No. Y2015–1–002) are gratefully acknowledged.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006). Eur. J. Inorg. Chem. pp. 1594–1600.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoro, S.-I., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. & Zheng, L.-S. (2009). Polyhedron, 28, 2983–2988.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, J. (2014). Acta Cryst. E70, m365–m366.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, M.-C. & Lee, C.-S. (2006). Inorg. Chem. 45, 9634–9636.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds