metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Decacarbon­yl(μ-ethyl­idenimino-1κN:2κC)-μ-hydrido-triangulo-triosmium(3 OsOs)

aDepartment of Chemistry and Biochemistry, Abilene Christian University, ACU 28132, Abilene, Texas 79699, USA
*Correspondence e-mail: powellc@acu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 September 2019; accepted 10 October 2019; online 22 October 2019)

The title complex, [Os3(C2H4N)H(CO)10] or [Os3(CO)10(μ-H)(μ-HN=C—CH3-1κN:2κC)], was synthesized in 41.6% yield by reactions between Os3(CO)11(CH3CN) and 2,4,6-tri­methyl­hexa­hydro-1,3,5-triazine. The central osmium triangle has two OsI atoms bridged by a hydride ligand and a μ-HN= C—CH3-1κN:2κC triazine fragment. Three CO ligands complete the coordination sphere around each OsI atom, while the remaining Os0 atom has four CO ligands. Each Os atom exhibits a pseudo-octa­hedral coordination environment, discounting the bridging Os—Os bond.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Previous research (Liu et al., 2003[Liu, Y.-C., Yeh, W.-Y., Lee, G.-H. & Peng, S.-M. (2003). Organometallics, 22, 4163-4166.]) has shown that 1,3,5-tri­methyl­hexa­hydro-1,3,5-triazine reacts with Group 8 carbonyl compounds M3(CO)12 (M = Fe and Ru) to form [(μ-H)M3(CO)11][MeN(MeNCH2)2CH] anionic hydrido clusters, with the transfer of a hydride from the triazine to the metal carbonyl. While Fe and Ru starting materials reacted with the triazine directly, Os3(CO)12 was first converted to Os3(CO)11(CH3CN) to accomplish the same result. Liu and co-workers subsequently reported the products of reactions of Os3(CO)12 with 1,3,5-tri­methyl­hexa­hydro-1,3,5-triazine, which yielded three products, i.e. a trimer containing a μ-N(CH3)—CH2—N(CH3) triazine fragment and a hydride bridge, a trimer containing a μ3-N(CH3)—CH2—N(CH3) triazine fragment and a hydride bridge, and a dimer with two bridging N(CH3)—CH—N(CH3) fragments perpendicular to one another forming a sawhorse-type complex (Liu et al., 2005[Liu, Y.-C., Yeh, W.-Y., Lee, G.-H. & Peng, S.-M. (2005). J. Organomet. Chem. 690, 163-167.]). In these complexes, each bridge has a N—C—N backbone. We were inter­ested in further investigating the reactions of Os3(CO)12 and Os3(CO)11(CH3CN) with triazines using microwave heating.

We report here the synthesis and structure of the title complex, Os3(CO)10(μ-H)(μ-HN=C—CH3-1κN:2κC), a trinuclear osmium compound which was the product of reactions between Os3(CO)11(CH3CN) and 2,4,6-tri­methyl­hexa­hydro-1,3,5-triazine. The product yield was 41.6%. Rather than containing a bridge with an N—C—N backbone, Os3(CO)10(μ-H)(μ-HN=C—CH3-1κN:2κC) contains a μ-HN=C—CH3-1κN:2κC triazine fragment bridge with a N—C backbone and a hydride bridge across two Os atoms in the central osmium triangle. A few related trinuclear structures of iron, ruthenium, and osmium with bridging μ-HN=C—R-1κN:2κC species and nine CO ligands have been reported (Andrews et al., 1978[Andrews, M. A., van Buskirk, G., Knobler, C. B. & Kaesz, H. D. (1978). J. Am. Chem. Soc. 101, 7245-7254.]; Dawoodi et al., 1981[Dawoodi, Z., Mays, M. & Raithby, P. R. (1981). J. Organomet. Chem. 219, 103-113.]; Takao et al., 2018[Takao, T., Horikoshi, S., Kawashima, T., Asano, S., Takahashi, Y., Sawano, A. & Suzuki, H. (2018). Organometallics, 37, 1598-1614.]). The only previously reported trinuclear structure which has ten CO ligands and the same (μ-)κ2-N,C(H—N=C—R) brid­ging configuration as the title complex is that for Os3(CO)9PMe2Ph(μ-H)(μ-HN=C—CF3-1κN:2κC) which was synthesized in 4.3% yield by the reaction of H2Os3(CO)9PMe2Ph with CF3CN (Adams et al., 1981[Adams, R. D., Katahira, D. A. & Yang, L.-W. (1981). J. Organomet. Chem. 219, 85-101.]).

In the title complex, the bridged OsI atoms (Os1 and Os2) have three terminal CO ligands in addition to the ethyl­idenimino and hydride ligands, and the Os0 atom (Os3) has four terminal CO ligands (Fig. 1[link]). Each of the three Os atoms exhibits a pseudo-octa­hedral coordination environment, dis­counting the bridged Os—Os bond. The individual octa­hedra of each bridged Os atom are rotated on average by 24 (4)° out of the plane of the osmium traingle toward the mid-point of the metal–metal bond. The Os—Os bond length for the bridged bond is 2.9331 (4) Å, while the unbridged Os—Os bond lengths are shorter, as expected, at 2.8604 (4) and 2.8759 (4) Å. The mol­ecules stack so that the planes containing the triangular Os3 units are roughly perpendicular to the c axis (Fig. 2[link]). A 21 screw axis passes through the centers of the Os3 triangles. Thus, every Os3 unit in the stack is rotated 180° from the one above it and below it so that the triazine fragments of every other mol­ecule are facing in the opposite direction. Although an N—H donor group is present, there is no evidence of classical hydrogen bonding in the crystal.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The packing of the mol­ecules of the title compound in a view approximately along the a axis.

Synthesis and crystallization

Dodceca­carbonyl­triosmium(0) (60.2 mg, 0.066 mmol) and CH3CN (7.5 ml) were placed in a 35 ml glass reaction vessel, then sealed with a PTFE cap and placed in a CEM Discover-SP microwave reactor. The mixture was stirred and heated at 411 K for 9 min to yield a green solution of Os3(CO)11(CH3CN) (Jung et al., 2009[Jung, J. Y., Newton, B. S., Tonkin, M. L., Powell, C. B. & Powell, G. L. (2009). J. Organomet. Chem. 694, 3526-3528.]). The reaction vessel was removed from the microwave reactor. The solvent was removed by rotary evaporation. 1,2-Di­chloro­ethane (7 ml) was added to the dry Os3(CO)11(CH3CN). Acetaldehyde ammonia trimer (61.2 mg, 0.474 mmol) was then added to the vessel, which was then sealed with a PTFE cap, and the mixture was stirred and heated in a microwave reactor at 398 K for 20 min to produce a yellow–orange solution. The solvent was then removed by rotary evaporation, and the residue was dissolved in CH2Cl2 and subjected to thin-layer chromatography using an eluent mixture of 2.5:1 (v/v) hexa­nes/CH2Cl2. Two yellow bands were collected. The top band contained 2.1 mg of an unidentified compound and had an RF value of 0.82. IR (νCO, CHCl3): 2103 (w), 2065 (vs), 2050 (m), 2034 (w), 2017 (s), 2001 (m), 1988 (sh) cm−1. The second band consisted of 24.7 mg of the title complex (41.6% yield) and had an RF value of 0.67. IR (νCO, n-hexa­ne): 2105 (w), 2064 (vs), 2052 (s), 2024 (s), 2007 (vs), 1991 (m), 1977 (w) cm−1. 1H NMR (60 MHz, CDCl3): δ 2.18 (s, 3H, CH3), −15.15 (s, 1H, Os—H—Os). Crystals were grown at 277 K via p-xylene vapor diffusion into a CHCl3 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal under investigation was twinned by inversion; TWIN and BASF commands were used to refine the absolute structure parameter for this noncentrosymmetric structure. The bridging hydride ligand and the N-bound H atom were both located in a difference Fourier map. A DFIX command was used to constrain the position of the hydride H atom, while an AFIX command was used to constrain the N-bound H atom.

Table 1
Experimental details

Crystal data
Chemical formula [Os3(C2H4N)H(CO)10]
Mr 893.77
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 9.56470 (6), 11.59555 (8), 15.61610 (11)
V3) 1731.95 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 41.18
Crystal size (mm) 0.15 × 0.07 × 0.02
 
Data collection
Diffractometer Rigaku SuperNova AtlasS2 CCD
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.109, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33313, 3487, 3471
Rint 0.052
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.037, 1.06
No. of reflections 3487
No. of parameters 241
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.89
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.465 (16)
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Decacarbonyl(µ-ethylidenimino-1κN:2κC)-µ-hydrido-triangulo-triosmium(3 OsOs) top
Crystal data top
[Os3(C2H4N)H(CO)10]Dx = 3.428 Mg m3
Mr = 893.77Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 23076 reflections
a = 9.56470 (6) Åθ = 3.8–73.5°
b = 11.59555 (8) ŵ = 41.18 mm1
c = 15.61610 (11) ÅT = 100 K
V = 1731.95 (2) Å3Plate, clear reddish orange
Z = 40.15 × 0.07 × 0.02 mm
F(000) = 1568
Data collection top
Rigaku SuperNova AtlasS2 CCD
diffractometer
3487 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3471 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.052
Detector resolution: 5.2387 pixels mm-1θmax = 73.6°, θmin = 4.8°
ω scansh = 1111
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2017)
k = 1414
Tmin = 0.109, Tmax = 1.000l = 1919
33313 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0177P)2 + 1.930P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.58 e Å3
3487 reflectionsΔρmin = 0.89 e Å3
241 parametersAbsolute structure: Refined as an inversion twin.
2 restraintsAbsolute structure parameter: 0.465 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. An AFIX command was used to constrain the N-bound H atom. A DFIX command was used to constrain the position of hydride H atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os10.55519 (3)0.47729 (2)0.31968 (2)0.01492 (7)
Os30.81319 (3)0.37203 (2)0.37293 (2)0.01544 (7)
Os20.81157 (3)0.61402 (2)0.33737 (2)0.01578 (7)
O80.7118 (6)0.1256 (5)0.4066 (3)0.0295 (12)
O20.2816 (6)0.6049 (5)0.2863 (3)0.0265 (11)
N10.6712 (6)0.6362 (5)0.4404 (3)0.0192 (11)
H10.6873620.6826230.4838360.023*
O61.0711 (6)0.6239 (5)0.4504 (3)0.0270 (11)
O50.7938 (6)0.8712 (4)0.2948 (4)0.0309 (12)
O10.5513 (7)0.3569 (5)0.1421 (3)0.0317 (12)
O70.8601 (5)0.3331 (4)0.1797 (3)0.0218 (10)
O91.1229 (6)0.3324 (6)0.4109 (4)0.0375 (15)
O30.4224 (6)0.2725 (5)0.4103 (4)0.0355 (13)
O40.9924 (5)0.5754 (5)0.1790 (3)0.0246 (11)
C80.7491 (7)0.2157 (7)0.3941 (4)0.0237 (15)
C10.5576 (8)0.4015 (6)0.2072 (4)0.0235 (14)
O100.7542 (6)0.4424 (5)0.5608 (3)0.0292 (12)
C110.5588 (8)0.5746 (6)0.4332 (4)0.0179 (13)
C91.0074 (8)0.3481 (7)0.3968 (5)0.0254 (16)
C60.9740 (8)0.6201 (6)0.4085 (5)0.0225 (15)
C30.4709 (7)0.3493 (7)0.3761 (5)0.0238 (16)
C40.9231 (7)0.5866 (6)0.2380 (4)0.0199 (14)
C100.7726 (7)0.4187 (6)0.4916 (4)0.0209 (15)
C120.4450 (8)0.5834 (7)0.4983 (4)0.0259 (15)
H12A0.3631830.6206900.4726320.039*
H12B0.4777050.6293300.5470690.039*
H12C0.4193990.5060050.5180690.039*
C50.7956 (7)0.7757 (6)0.3109 (5)0.0231 (14)
C70.8407 (7)0.3485 (6)0.2497 (5)0.0206 (14)
C20.3870 (7)0.5583 (6)0.2960 (4)0.0190 (14)
H20.652 (9)0.592 (9)0.273 (6)0.09 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.01033 (13)0.01544 (13)0.01901 (13)0.00051 (10)0.00092 (12)0.00164 (10)
Os30.01224 (14)0.01589 (12)0.01820 (13)0.00247 (12)0.00051 (11)0.00095 (10)
Os20.01117 (13)0.01577 (13)0.02039 (13)0.00120 (11)0.00046 (11)0.00136 (10)
O80.037 (3)0.019 (2)0.033 (3)0.003 (2)0.008 (2)0.005 (2)
O20.021 (3)0.030 (3)0.029 (2)0.009 (2)0.007 (2)0.001 (2)
N10.017 (3)0.021 (3)0.020 (3)0.002 (3)0.004 (2)0.005 (2)
O60.016 (2)0.033 (3)0.032 (3)0.001 (2)0.007 (2)0.002 (2)
O50.031 (3)0.018 (2)0.044 (3)0.000 (2)0.007 (2)0.007 (2)
O10.031 (3)0.039 (3)0.025 (3)0.003 (3)0.002 (2)0.010 (2)
O70.024 (3)0.020 (2)0.021 (3)0.0001 (19)0.006 (2)0.005 (2)
O90.019 (3)0.057 (4)0.037 (3)0.015 (3)0.005 (2)0.006 (3)
O30.022 (3)0.027 (3)0.057 (4)0.007 (2)0.009 (3)0.022 (3)
O40.020 (2)0.028 (3)0.026 (3)0.004 (2)0.005 (2)0.003 (2)
C80.021 (4)0.029 (4)0.021 (3)0.006 (3)0.001 (3)0.001 (3)
C10.015 (3)0.026 (4)0.029 (3)0.001 (3)0.005 (3)0.003 (3)
O100.035 (3)0.033 (3)0.020 (3)0.013 (2)0.002 (2)0.000 (2)
C110.020 (3)0.017 (3)0.017 (3)0.004 (3)0.002 (3)0.002 (2)
C90.024 (4)0.030 (4)0.022 (3)0.004 (3)0.006 (3)0.003 (3)
C60.028 (4)0.016 (3)0.024 (3)0.001 (3)0.005 (3)0.000 (3)
C30.011 (3)0.032 (4)0.029 (3)0.005 (3)0.004 (3)0.002 (3)
C40.014 (3)0.018 (3)0.028 (3)0.000 (3)0.006 (3)0.001 (3)
C100.021 (4)0.021 (3)0.021 (4)0.010 (3)0.002 (3)0.003 (3)
C120.023 (4)0.031 (4)0.024 (3)0.003 (3)0.000 (3)0.006 (3)
C50.014 (3)0.029 (4)0.025 (3)0.001 (3)0.004 (3)0.003 (3)
C70.016 (3)0.017 (3)0.029 (4)0.001 (2)0.001 (3)0.000 (3)
C20.018 (4)0.019 (3)0.020 (3)0.003 (3)0.003 (3)0.003 (3)
Geometric parameters (Å, º) top
Os1—Os32.8759 (4)O8—C81.121 (10)
Os1—Os22.9331 (4)O2—C21.154 (9)
Os1—C11.964 (7)N1—H10.8800
Os1—C112.102 (6)N1—C111.296 (10)
Os1—C31.904 (8)O6—C61.137 (9)
Os1—C21.899 (7)O5—C51.136 (9)
Os1—H21.78 (6)O1—C11.142 (9)
Os3—Os22.8604 (4)O7—C71.124 (9)
Os3—C81.942 (8)O9—C91.142 (10)
Os3—C91.914 (8)O3—C31.138 (9)
Os3—C101.969 (7)O4—C41.141 (9)
Os3—C71.961 (7)O10—C101.128 (9)
Os2—N12.111 (6)C11—C121.493 (10)
Os2—C61.911 (7)C12—H12A0.9800
Os2—C41.910 (7)C12—H12B0.9800
Os2—C51.926 (7)C12—H12C0.9800
Os2—H21.84 (6)
Os3—Os1—Os258.988 (9)N1—Os2—Os388.56 (16)
Os3—Os1—H289 (3)N1—Os2—H285 (4)
Os2—Os1—H237 (2)C6—Os2—Os1139.0 (2)
C1—Os1—Os393.4 (2)C6—Os2—Os385.3 (2)
C1—Os1—Os2108.4 (2)C6—Os2—N194.0 (3)
C1—Os1—C11173.9 (3)C6—Os2—C598.8 (3)
C1—Os1—H288 (4)C6—Os2—H2174 (2)
C11—Os1—Os388.3 (2)C4—Os2—Os1107.5 (2)
C11—Os1—Os267.5 (2)C4—Os2—Os389.5 (2)
C11—Os1—H286 (4)C4—Os2—N1174.1 (3)
C3—Os1—Os384.2 (2)C4—Os2—C691.4 (3)
C3—Os1—Os2137.0 (2)C4—Os2—C591.8 (3)
C3—Os1—C194.0 (3)C4—Os2—H290 (4)
C3—Os1—C1192.0 (3)C5—Os2—Os1116.1 (2)
C3—Os1—H2173 (2)C5—Os2—Os3175.6 (2)
C2—Os1—Os3173.2 (2)C5—Os2—N189.7 (3)
C2—Os1—Os2117.3 (2)C5—Os2—H287 (3)
C2—Os1—C193.3 (3)Os2—N1—H1123.4
C2—Os1—C1185.0 (3)C11—N1—Os2113.3 (4)
C2—Os1—C396.7 (3)C11—N1—H1123.4
C2—Os1—H290 (3)O8—C8—Os3179.7 (7)
Os2—Os3—Os161.502 (10)O1—C1—Os1176.3 (7)
C8—Os3—Os1100.1 (2)N1—C11—Os1112.5 (5)
C8—Os3—Os2161.3 (2)N1—C11—C12120.6 (6)
C8—Os3—C1092.0 (3)C12—C11—Os1126.8 (5)
C8—Os3—C794.6 (3)O9—C9—Os3179.2 (8)
C9—Os3—Os1161.8 (2)O6—C6—Os2179.6 (7)
C9—Os3—Os2100.7 (2)O3—C3—Os1179.0 (7)
C9—Os3—C897.9 (3)O4—C4—Os2176.7 (6)
C9—Os3—C1092.8 (3)O10—C10—Os3176.9 (6)
C9—Os3—C792.3 (3)C11—C12—H12A109.5
C10—Os3—Os189.2 (2)C11—C12—H12B109.5
C10—Os3—Os285.0 (2)C11—C12—H12C109.5
C7—Os3—Os183.7 (2)H12A—C12—H12B109.5
C7—Os3—Os286.9 (2)H12A—C12—H12C109.5
C7—Os3—C10171.1 (3)H12B—C12—H12C109.5
Os1—Os2—H235 (2)O5—C5—Os2176.3 (7)
Os3—Os2—Os159.509 (9)O7—C7—Os3177.8 (6)
Os3—Os2—H288 (3)O2—C2—Os1175.8 (6)
N1—Os2—Os166.78 (15)
Os2—N1—C11—Os11.3 (6)Os2—N1—C11—C12177.2 (5)
 

Acknowledgements

We are thankful for the support of the Abilene Christian University Scholars Lab.

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021).

References

First citationAdams, R. D., Katahira, D. A. & Yang, L.-W. (1981). J. Organomet. Chem. 219, 85–101.  CSD CrossRef CAS Google Scholar
First citationAndrews, M. A., van Buskirk, G., Knobler, C. B. & Kaesz, H. D. (1978). J. Am. Chem. Soc. 101, 7245–7254.  CSD CrossRef Google Scholar
First citationDawoodi, Z., Mays, M. & Raithby, P. R. (1981). J. Organomet. Chem. 219, 103–113.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJung, J. Y., Newton, B. S., Tonkin, M. L., Powell, C. B. & Powell, G. L. (2009). J. Organomet. Chem. 694, 3526–3528.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y.-C., Yeh, W.-Y., Lee, G.-H. & Peng, S.-M. (2003). Organometallics, 22, 4163–4166.  CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C., Yeh, W.-Y., Lee, G.-H. & Peng, S.-M. (2005). J. Organomet. Chem. 690, 163–167.  CAS Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakao, T., Horikoshi, S., Kawashima, T., Asano, S., Takahashi, Y., Sawano, A. & Suzuki, H. (2018). Organometallics, 37, 1598–1614.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds