organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,4-Di­chloro-6-[(2-hy­dr­oxy-5-methyl­anilino)methyl­­idene]cyclo­hexa-2,4-dienone

aDepartment of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh, bDepartment of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, dGraduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan, and eDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
*Correspondence e-mail: chansheikh@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 3 October 2019; accepted 15 October 2019; online 29 October 2019)

The title compound, C14H11Cl2NO2, has been prepared by the condensation of 3,5-di­chloro­salicyl­aldehyde and 2-amino-4-methyl­phenol. The asymmetric unit consists of two independent mol­ecules, both of which are almost planar; the dihedral angle between the two benzene rings is 10.61 (8)° for one mol­ecule and 2.46 (8)° for the other. There is an intra­molecular N—H⋯O hydrogen bond that generates S(6) ring motifs in each mol­ecule. In the crystal, the two independent mol­ecules are linked by O—H⋯O and C—H⋯Cl hydrogen bonds, forming a pseudo-inversion dimer. A ππ inter­action, with a centroid–centroid distance of 3.6065 (12) Å, is also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Halogen atoms in Schiff base ligands (Dong et al., 2015[Dong, Y. L., Li, C., Meng, X. F., Zhou, X. & Ma, J. J. (2015). J. Struct. Chem. 56, 1426-1430.]; Pal et al., 2018[Pal, T. K., Hossain, M. D., Sheikh, M. C., Miyatake, R. & Alam, M. A. (2018). IUCrData, 3, x180388.]) and their metal complexes are inter­esting because of their possible bioactivities (Dong et al., 2015[Dong, Y. L., Li, C., Meng, X. F., Zhou, X. & Ma, J. J. (2015). J. Struct. Chem. 56, 1426-1430.]; Rani & Bheeter, 2016[Rani, K. J. & Bheeter, S. R. (2016). Asian J. Biochem. Pharm. Res. 3, 72-81.]). In view of the biological activities of these compounds, which are related to structural aspects, and as part of our studies on 2,4-di­bromo-6-[(2-hy­droxy-5-methyl­anilino)methyl­idene]cyclo­hexa-2,4-dienone, we report herein the synthesis and crystal structure of 2,4-di­chloro-6-[(2-hy­droxy-5-methyl­anilino)methyl­idene]cyclo­hexa-2,4-dienone.

The C2—O1 and C16—O3 bond lengths reveal double-bond character, while the C7—N1 and C15—N2 bonds show single-bond character (Khalaji et al., 2015[Khalaji, A. D., Hafez Ghoran, S., Pojarová, M. & Dušek, M. (2015). J. Struct. Chem. 56, 1410-1414.]; Pal et al., 2018[Pal, T. K., Hossain, M. D., Sheikh, M. C., Miyatake, R. & Alam, M. A. (2018). IUCrData, 3, x180388.]). There is an intra­molecular N—H⋯O hydrogen bond (Table 1[link]) that generates S(6) ring motifs in each mol­ecule. In the crystal, the two independent mol­ecules are linked through two O—H⋯O hydrogen bonds, creating a pseudo-inversion dimer, with an R22(18) ring motif, in which C—H⋯Cl inter­actions further link the mol­ecules (Fig. 1[link] and Table 1[link]). A ππ stacking inter­action, with a centroid–centroid distance of 3.6065 (12) Å, is also observed between the C16–C21 and C22–C27 rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 (3) 1.87 (3) 2.693 (2) 168 (3)
O4—H4⋯O1 0.83 (3) 1.89 (3) 2.685 (2) 160 (3)
N1—H1⋯O1 0.80 (2) 1.96 (2) 2.617 (2) 139 (2)
N2—H3⋯O3 0.87 (2) 1.90 (2) 2.603 (2) 137 (2)
C10—H10⋯Cl3 0.95 2.88 3.660 (2) 140
C24—H24⋯Cl1 0.95 2.72 3.661 (2) 172
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. Inter­molecular C—H⋯Cl and O—H⋯O and intra­molecular N—H⋯O hydrogen bonds are indicated by dashed lines.

Synthesis and crystallization

An ethanol solution of 3,5-di­chloro­salicyl­aldehyde (100 mg, 0.52 mmol) was added dropwise to an ethanol solution of 2-amino-4-methyl­phenol (77 mg, 0.62 mmol) with continuous stirring at 333 K. A bright-orange coloured precipitate of the title compound formed immediately. The resulting mixture was stirred for a further 1 h at room temperature for completion of the reaction. On cooling, an orange solid product was isolated by filtration, washed with hot ethanol and dried in a vacuum (yield 125 mg, 77%). Orange needle-like single crystals were obtained from an N,N-di­methyl­formamide–aceto­nitrile (1:7 v/v) solution by slow evaporation of the solvent at room temperature over a period of 15 d (m.p. 457 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H11Cl2NO2
Mr 296.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 16.6119 (5), 6.83947 (16), 22.5749 (6)
β (°) 98.255 (7)
V3) 2538.30 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.37 × 0.15 × 0.07
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.697, 0.965
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 24092, 5794, 4366
Rint 0.049
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.03
No. of reflections 5794
No. of parameters 361
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.39
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2018); software used to prepare material for publication: CrystalStructure (Rigaku, 2018).

2,4-Dichloro-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dienone top
Crystal data top
C14H11Cl2NO2F(000) = 1216.00
Mr = 296.15Dx = 1.550 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 16.6119 (5) ÅCell parameters from 16379 reflections
b = 6.83947 (16) Åθ = 1.8–27.5°
c = 22.5749 (6) ŵ = 0.51 mm1
β = 98.255 (7)°T = 173 K
V = 2538.30 (12) Å3Needle, orange
Z = 80.37 × 0.14 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4366 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.049
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2121
Tmin = 0.697, Tmax = 0.965k = 88
24092 measured reflectionsl = 2729
5794 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0427P)2 + 1.2427P]
where P = (Fo2 + 2Fc2)/3
5794 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.39 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25495 (3)0.09343 (10)0.08874 (3)0.03921 (16)
Cl20.51221 (3)0.11130 (8)0.20767 (2)0.03353 (14)
Cl30.50788 (3)0.19328 (9)0.35698 (3)0.03368 (14)
Cl40.26343 (4)0.11237 (10)0.48780 (2)0.04106 (16)
O10.37601 (9)0.2150 (2)0.01624 (6)0.0307 (4)
O20.45249 (9)0.3530 (2)0.16615 (7)0.0319 (4)
O30.37348 (9)0.2238 (2)0.25471 (6)0.0312 (4)
O40.28678 (9)0.1500 (3)0.10445 (7)0.0335 (4)
N10.52248 (11)0.3018 (3)0.06875 (8)0.0238 (4)
N20.22374 (11)0.1714 (3)0.20494 (8)0.0240 (4)
C10.49095 (12)0.2179 (3)0.03532 (9)0.0224 (4)
C20.40586 (12)0.1912 (3)0.03220 (9)0.0230 (4)
C30.35810 (12)0.1351 (3)0.08807 (9)0.0252 (4)
C40.39050 (13)0.1133 (3)0.14003 (9)0.0264 (4)
H4A0.3563400.0781810.1758700.032*
C50.47392 (13)0.1425 (3)0.14064 (9)0.0253 (4)
C60.52355 (13)0.1907 (3)0.08924 (9)0.0258 (4)
H60.5803020.2060620.0896650.031*
C70.54515 (12)0.2706 (3)0.01641 (9)0.0246 (4)
H70.6011960.2841760.0129260.029*
C80.57277 (12)0.3531 (3)0.12254 (9)0.0226 (4)
C90.53468 (12)0.3730 (3)0.17345 (9)0.0253 (4)
C100.58203 (13)0.4161 (3)0.22768 (9)0.0297 (5)
H100.5571220.4290670.2628120.036*
C110.66529 (13)0.4401 (3)0.23091 (10)0.0299 (5)
H110.6967330.4687690.2684500.036*
C120.70405 (12)0.4233 (3)0.18025 (10)0.0269 (5)
C130.65650 (12)0.3793 (3)0.12615 (9)0.0252 (4)
H130.6814860.3668690.0910270.030*
C140.79483 (13)0.4497 (4)0.18360 (11)0.0359 (5)
H14A0.8088140.4631650.1430780.043*
H14B0.8228290.3356190.2031080.043*
H14C0.8117650.5675340.2068010.043*
C150.20603 (12)0.1554 (3)0.25913 (9)0.0236 (4)
H150.1507570.1369140.2642040.028*
C160.34976 (12)0.1928 (3)0.30534 (9)0.0234 (4)
C170.40453 (12)0.1814 (3)0.36060 (9)0.0243 (4)
C180.37823 (12)0.1580 (3)0.41483 (9)0.0256 (5)
H180.4163780.1535270.4504380.031*
C190.29454 (13)0.1406 (3)0.41776 (9)0.0266 (5)
C200.23901 (12)0.1389 (3)0.36714 (9)0.0251 (4)
H200.1829070.1207130.3696530.030*
C210.26538 (12)0.1643 (3)0.31084 (9)0.0225 (4)
C220.16925 (12)0.1673 (3)0.15075 (9)0.0231 (4)
C230.20467 (12)0.1583 (3)0.09815 (9)0.0260 (5)
C240.15371 (14)0.1588 (3)0.04366 (10)0.0304 (5)
H240.1763410.1526360.0073700.037*
C250.07038 (13)0.1681 (3)0.04194 (10)0.0300 (5)
H250.0366970.1685830.0041920.036*
C260.03407 (12)0.1770 (3)0.09397 (10)0.0270 (5)
C270.08532 (12)0.1767 (3)0.14838 (9)0.0257 (4)
H270.0625160.1830280.1845860.031*
C280.05674 (13)0.1887 (4)0.09160 (11)0.0360 (5)
H28A0.0712340.1594670.1312280.043*
H28B0.0828350.0936790.0624990.043*
H28C0.0753150.3207340.0795200.043*
H10.4750 (14)0.283 (3)0.0701 (10)0.025 (6)*
H20.4343 (18)0.314 (4)0.1968 (14)0.060 (9)*
H30.2752 (15)0.184 (4)0.2018 (10)0.033 (7)*
H40.3040 (18)0.164 (4)0.0721 (14)0.060 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0229 (3)0.0649 (4)0.0302 (3)0.0034 (3)0.0053 (2)0.0073 (3)
Cl20.0391 (3)0.0394 (3)0.0252 (3)0.0016 (3)0.0151 (2)0.0022 (2)
Cl30.0186 (2)0.0485 (3)0.0346 (3)0.0009 (2)0.0061 (2)0.0030 (3)
Cl40.0320 (3)0.0703 (4)0.0227 (3)0.0026 (3)0.0102 (2)0.0022 (3)
O10.0237 (8)0.0454 (9)0.0240 (8)0.0020 (7)0.0074 (6)0.0025 (7)
O20.0231 (8)0.0434 (10)0.0303 (9)0.0021 (7)0.0079 (7)0.0034 (7)
O30.0226 (8)0.0473 (10)0.0252 (8)0.0007 (7)0.0084 (6)0.0008 (7)
O40.0200 (8)0.0538 (11)0.0279 (8)0.0023 (7)0.0081 (6)0.0002 (8)
N10.0197 (9)0.0249 (9)0.0270 (9)0.0011 (7)0.0038 (7)0.0006 (7)
N20.0186 (9)0.0301 (10)0.0239 (9)0.0012 (7)0.0051 (7)0.0019 (7)
C10.0249 (10)0.0199 (10)0.0230 (10)0.0000 (8)0.0048 (8)0.0017 (8)
C20.0237 (10)0.0221 (10)0.0236 (10)0.0027 (8)0.0044 (8)0.0021 (8)
C30.0207 (10)0.0282 (11)0.0269 (11)0.0010 (8)0.0045 (8)0.0005 (9)
C40.0304 (11)0.0266 (11)0.0220 (10)0.0012 (9)0.0029 (8)0.0026 (9)
C50.0323 (11)0.0244 (11)0.0212 (10)0.0008 (9)0.0110 (9)0.0020 (8)
C60.0258 (11)0.0262 (11)0.0268 (11)0.0030 (9)0.0082 (9)0.0022 (9)
C70.0229 (10)0.0254 (11)0.0264 (11)0.0013 (8)0.0066 (8)0.0008 (9)
C80.0253 (10)0.0191 (10)0.0232 (10)0.0001 (8)0.0026 (8)0.0007 (8)
C90.0245 (10)0.0247 (11)0.0278 (11)0.0015 (9)0.0077 (8)0.0038 (9)
C100.0335 (12)0.0347 (12)0.0224 (10)0.0022 (10)0.0089 (9)0.0007 (9)
C110.0313 (12)0.0337 (13)0.0236 (11)0.0004 (9)0.0005 (9)0.0003 (9)
C120.0232 (10)0.0258 (11)0.0311 (11)0.0017 (9)0.0018 (9)0.0017 (9)
C130.0262 (11)0.0260 (11)0.0243 (10)0.0007 (9)0.0069 (8)0.0000 (9)
C140.0253 (11)0.0458 (14)0.0358 (13)0.0036 (10)0.0009 (10)0.0039 (11)
C150.0202 (10)0.0241 (11)0.0270 (11)0.0005 (8)0.0056 (8)0.0020 (8)
C160.0233 (10)0.0242 (10)0.0235 (10)0.0009 (8)0.0064 (8)0.0021 (8)
C170.0188 (10)0.0280 (11)0.0269 (11)0.0004 (8)0.0061 (8)0.0012 (9)
C180.0236 (10)0.0298 (12)0.0228 (10)0.0011 (9)0.0017 (8)0.0023 (9)
C190.0279 (11)0.0319 (12)0.0218 (10)0.0010 (9)0.0100 (8)0.0027 (9)
C200.0192 (10)0.0294 (11)0.0280 (11)0.0011 (8)0.0079 (8)0.0018 (9)
C210.0217 (10)0.0223 (10)0.0238 (10)0.0006 (8)0.0048 (8)0.0035 (8)
C220.0233 (10)0.0235 (10)0.0225 (10)0.0018 (8)0.0030 (8)0.0025 (8)
C230.0201 (10)0.0312 (12)0.0272 (11)0.0021 (9)0.0056 (8)0.0012 (9)
C240.0311 (12)0.0385 (13)0.0231 (11)0.0034 (10)0.0087 (9)0.0027 (9)
C250.0280 (11)0.0346 (12)0.0262 (11)0.0004 (9)0.0009 (9)0.0031 (9)
C260.0227 (10)0.0282 (11)0.0297 (11)0.0011 (9)0.0030 (9)0.0056 (9)
C270.0240 (10)0.0299 (11)0.0240 (10)0.0006 (9)0.0068 (8)0.0035 (9)
C280.0223 (11)0.0455 (14)0.0394 (13)0.0029 (10)0.0020 (9)0.0063 (11)
Geometric parameters (Å, º) top
Cl1—C31.735 (2)C11—C121.395 (3)
Cl2—C51.737 (2)C11—H110.9500
Cl3—C171.732 (2)C12—C131.389 (3)
Cl4—C191.743 (2)C12—C141.510 (3)
O1—C21.274 (2)C13—H130.9500
O2—C91.358 (2)C14—H14A0.9800
O2—H20.84 (3)C14—H14B0.9800
O3—C161.279 (2)C14—H14C0.9800
O4—C231.352 (2)C15—C211.417 (3)
O4—H40.83 (3)C15—H150.9500
N1—C71.308 (3)C16—C171.437 (3)
N1—C81.416 (3)C16—C211.438 (3)
N1—H10.80 (2)C17—C181.367 (3)
N2—C151.303 (3)C18—C191.406 (3)
N2—C221.414 (3)C18—H180.9500
N2—H30.87 (2)C19—C201.362 (3)
C1—C61.414 (3)C20—C211.413 (3)
C1—C71.415 (3)C20—H200.9500
C1—C21.437 (3)C22—C271.389 (3)
C2—C31.442 (3)C22—C231.400 (3)
C3—C41.367 (3)C23—C241.390 (3)
C4—C51.402 (3)C24—C251.381 (3)
C4—H4A0.9500C24—H240.9500
C5—C61.364 (3)C25—C261.396 (3)
C6—H60.9500C25—H250.9500
C7—H70.9500C26—C271.390 (3)
C8—C131.393 (3)C26—C281.504 (3)
C8—C91.396 (3)C27—H270.9500
C9—C101.388 (3)C28—H28A0.9800
C10—C111.384 (3)C28—H28B0.9800
C10—H100.9500C28—H28C0.9800
C9—O2—H2114 (2)H14A—C14—H14B109.5
C23—O4—H4112 (2)C12—C14—H14C109.5
C7—N1—C8127.17 (18)H14A—C14—H14C109.5
C7—N1—H1114.9 (16)H14B—C14—H14C109.5
C8—N1—H1117.8 (16)N2—C15—C21123.07 (19)
C15—N2—C22127.43 (18)N2—C15—H15118.5
C15—N2—H3116.1 (16)C21—C15—H15118.5
C22—N2—H3116.4 (16)O3—C16—C17123.15 (18)
C6—C1—C7117.84 (18)O3—C16—C21121.93 (18)
C6—C1—C2121.77 (18)C17—C16—C21114.91 (18)
C7—C1—C2120.38 (18)C18—C17—C16122.67 (18)
O1—C2—C1122.18 (18)C18—C17—Cl3119.61 (16)
O1—C2—C3123.47 (18)C16—C17—Cl3117.70 (15)
C1—C2—C3114.35 (18)C17—C18—C19119.83 (19)
C4—C3—C2122.99 (19)C17—C18—H18120.1
C4—C3—Cl1118.98 (16)C19—C18—H18120.1
C2—C3—Cl1118.03 (15)C20—C19—C18121.09 (19)
C3—C4—C5120.29 (19)C20—C19—Cl4120.45 (16)
C3—C4—H4A119.9C18—C19—Cl4118.42 (16)
C5—C4—H4A119.9C19—C20—C21119.58 (19)
C6—C5—C4120.24 (19)C19—C20—H20120.2
C6—C5—Cl2121.25 (17)C21—C20—H20120.2
C4—C5—Cl2118.50 (16)C20—C21—C15117.83 (18)
C5—C6—C1120.32 (19)C20—C21—C16121.75 (18)
C5—C6—H6119.8C15—C21—C16120.40 (18)
C1—C6—H6119.8C27—C22—C23120.73 (19)
N1—C7—C1123.73 (19)C27—C22—N2123.16 (18)
N1—C7—H7118.1C23—C22—N2116.09 (18)
C1—C7—H7118.1O4—C23—C24124.8 (2)
C13—C8—C9120.40 (19)O4—C23—C22116.94 (19)
C13—C8—N1122.91 (19)C24—C23—C22118.29 (19)
C9—C8—N1116.68 (18)C25—C24—C23120.4 (2)
O2—C9—C10124.10 (19)C25—C24—H24119.8
O2—C9—C8117.18 (19)C23—C24—H24119.8
C10—C9—C8118.70 (19)C24—C25—C26122.1 (2)
C11—C10—C9120.5 (2)C24—C25—H25119.0
C11—C10—H10119.8C26—C25—H25119.0
C9—C10—H10119.8C27—C26—C25117.34 (19)
C10—C11—C12121.5 (2)C27—C26—C28121.0 (2)
C10—C11—H11119.3C25—C26—C28121.6 (2)
C12—C11—H11119.3C22—C27—C26121.20 (19)
C13—C12—C11117.86 (19)C22—C27—H27119.4
C13—C12—C14120.5 (2)C26—C27—H27119.4
C11—C12—C14121.61 (19)C26—C28—H28A109.5
C12—C13—C8121.09 (19)C26—C28—H28B109.5
C12—C13—H13119.5H28A—C28—H28B109.5
C8—C13—H13119.5C26—C28—H28C109.5
C12—C14—H14A109.5H28A—C28—H28C109.5
C12—C14—H14B109.5H28B—C28—H28C109.5
C6—C1—C2—O1179.81 (19)C22—N2—C15—C21179.03 (19)
C7—C1—C2—O10.6 (3)O3—C16—C17—C18176.6 (2)
C6—C1—C2—C30.1 (3)C21—C16—C17—C184.1 (3)
C7—C1—C2—C3179.18 (19)O3—C16—C17—Cl34.7 (3)
O1—C2—C3—C4178.8 (2)C21—C16—C17—Cl3174.60 (15)
C1—C2—C3—C41.4 (3)C16—C17—C18—C191.1 (3)
O1—C2—C3—Cl11.3 (3)Cl3—C17—C18—C19177.52 (16)
C1—C2—C3—Cl1178.49 (15)C17—C18—C19—C202.6 (3)
C2—C3—C4—C51.1 (3)C17—C18—C19—Cl4179.65 (17)
Cl1—C3—C4—C5178.84 (16)C18—C19—C20—C213.0 (3)
C3—C4—C5—C60.8 (3)Cl4—C19—C20—C21179.27 (16)
C3—C4—C5—Cl2179.56 (16)C19—C20—C21—C15178.05 (19)
C4—C5—C6—C12.1 (3)C19—C20—C21—C160.2 (3)
Cl2—C5—C6—C1179.16 (16)N2—C15—C21—C20178.05 (19)
C7—C1—C6—C5179.09 (19)N2—C15—C21—C160.2 (3)
C2—C1—C6—C51.7 (3)O3—C16—C21—C20177.08 (19)
C8—N1—C7—C1179.40 (19)C17—C16—C21—C203.6 (3)
C6—C1—C7—N1179.33 (19)O3—C16—C21—C154.7 (3)
C2—C1—C7—N11.4 (3)C17—C16—C21—C15174.60 (19)
C7—N1—C8—C130.6 (3)C15—N2—C22—C2710.8 (3)
C7—N1—C8—C9178.1 (2)C15—N2—C22—C23170.8 (2)
C13—C8—C9—O2177.48 (18)C27—C22—C23—O4179.84 (19)
N1—C8—C9—O23.8 (3)N2—C22—C23—O41.4 (3)
C13—C8—C9—C101.1 (3)C27—C22—C23—C240.1 (3)
N1—C8—C9—C10177.64 (19)N2—C22—C23—C24178.47 (19)
O2—C9—C10—C11177.9 (2)O4—C23—C24—C25179.8 (2)
C8—C9—C10—C110.5 (3)C22—C23—C24—C250.1 (3)
C9—C10—C11—C120.4 (3)C23—C24—C25—C260.1 (3)
C10—C11—C12—C130.7 (3)C24—C25—C26—C270.2 (3)
C10—C11—C12—C14179.9 (2)C24—C25—C26—C28179.5 (2)
C11—C12—C13—C80.1 (3)C23—C22—C27—C260.1 (3)
C14—C12—C13—C8179.5 (2)N2—C22—C27—C26178.4 (2)
C9—C8—C13—C120.8 (3)C25—C26—C27—C220.2 (3)
N1—C8—C13—C12177.85 (19)C28—C26—C27—C22179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.84 (3)1.87 (3)2.693 (2)168 (3)
O4—H4···O10.83 (3)1.89 (3)2.685 (2)160 (3)
N1—H1···O10.80 (2)1.96 (2)2.617 (2)139 (2)
N2—H3···O30.87 (2)1.90 (2)2.603 (2)137 (2)
C10—H10···Cl30.952.883.660 (2)140
C24—H24···Cl10.952.723.661 (2)172
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Rajshahi University of Engineering & Technology (RUET), for the provision of laboratory facilities, and the Center for Environmental Conservation and Research Safety, University of Toyama, Japan, for providing facilities for single-crystal X-ray analysis. TKP is highly obliged to the director, Research and extension RUET, for providing internal research project funding.

Funding information

Funding for this research was provided by: Rajshahi University of Engineering and Technology (award No. DRE/5/RUET/200).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDong, Y. L., Li, C., Meng, X. F., Zhou, X. & Ma, J. J. (2015). J. Struct. Chem. 56, 1426–1430.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKhalaji, A. D., Hafez Ghoran, S., Pojarová, M. & Dušek, M. (2015). J. Struct. Chem. 56, 1410–1414.  Web of Science CrossRef CAS Google Scholar
First citationPal, T. K., Hossain, M. D., Sheikh, M. C., Miyatake, R. & Alam, M. A. (2018). IUCrData, 3, x180388.  Google Scholar
First citationRani, K. J. & Bheeter, S. R. (2016). Asian J. Biochem. Pharm. Res. 3, 72–81.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds