

ISSN 2414-3146

Received 26 July 2019 Accepted 30 July 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; tetranuclear stannoxane; oxo-tin core; $Sn \cdots O$ contacts; C— $H \cdots O$ hydrogen bonds.

CCDC reference: 1941837

Structural data: full structural data are available from iucrdata.iucr.org

Bis(μ_2 -4-nitrophenolato)bis(4-nitrophenolato)di- μ_3 -oxido-octaphenyltetratin chloroform sesquisolvate [+ solvate]: a tetranuclear stannoxane

Patrick Butler*

Research School of Chemistry, Building 137, Sullivans Creek Road, The Australian National University, Canberra ACT 2601, Australia. *Correspondence e-mail: patrick.butler@anu.edu.au

The title tetranuclear stannoxane, $[Sn_4(C_6H_5)_8(C_6H_4NO_3)_4O_2]\cdot 1.5CHCl_3$ solvent, crystallized with two independent complex molecules, *A* and *B*, in the asymmetric unit together with 1.5 molecules of chloroform. There is also a region of disordered electron density, which was corrected for using the SQUEEZE routine [Spek (2015). *Acta Cryst.* C**71**, 9–18]. The oxo-tin core of each complex is in a planar 'ladder' arrangement and each Sn atom is fivefold SnO₃C₂ coordinated, with one tin centre having an almost perfect squarepyramidal coordination geometry, while the other three Sn centres have distorted shapes. In the crystal, the complex molecules are arranged in layers, composed of *A* or *B* complexes, lying parallel to the *bc* plane. The complex molecules are linked by a number of C–H···O hydrogen bonds within the layers and between the layers, forming a supramolecular three-dimensional structure.

Structure description

Stannoxanes represent an intriguing class of tin complexes characterized by a polynuclear oxo-tin core. A large variety of stannoxanes have been described from simple dimers (Gross, 1989) to hexameric macrocycles (Prabusankar & Murugavel, 2004). In recent years, these versatile structures have gained considerable interest as anti-tumour cytotoxins (Gerasimchuk *et al.*, 2007; Sun *et al.*, 2011) and as supports for the development of nanomaterials (Strachota *et al.*, 2012; Chandrasekhar *et al.*, 2006). The preparation of stannoxanes typically involves hydrolysis of an organotin halide reagent with the halides often being displaced by the addition of carboxylate ligands (Basu Baul *et al.*, 2010). A number of tetranuclear stannoxanes have been reported containing

The molecular structure of complex A. Displacement ellipsoids are drawn at the 30% probability level. Phenyl ring 1 = C51-C56, 2 = C61-C66, 3 = C71-C76, 4 = C81-C86, 5 = C91-C96, 6 = C101-C106, 7 = C111-C116, 8 = C121-C126. For clarity, the hydrogen atoms have been omitted.

carboxylate ligands (Khoo & Hazell, 1999; Chandrasekhar et al., 2002; Kumara Swamy et al., 1988; Win et al., 2008; Zhang et al., 2005). However, as demonstrated previously (Devi et al.,

Figure 2

The molecular structure of complex *B*. Displacement ellipsoids are drawn at the 30% probability level. Phenyl ring 1 = C171-C176, 2 = C181-C186, 3 = C191-C196, 4 = C201-C206, 5 = C211-C216, 6 = C221-C226, 7 = C231-C236, 8 = C241-C246. For clarity, the hydrogen atoms have been omitted.

 Table 1

 Hydrogen-bond geometry (Å, °).

	•			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C82-H82···O31	0.93	2.35	3.144 (13)	143
C116-H116···O11	0.93	2.55	3.289 (11)	137
C182-H182···O151	0.93	2.52	3.259 (12)	137
C216-H216···O131	0.93	2.37	3.161 (13)	143
$C3-H3\cdots O148^{i}$	0.98	2.44	3.27 (2)	143
$C16-H16\cdots O138^{ii}$	0.93	2.60	3.301 (13)	133
$C22-H22\cdots O159^{i}$	0.93	2.47	3.388 (11)	168
$C84 - H84 \cdots O39^{i}$	0.93	2.55	3.264 (16)	134
$C94 - H94 \cdots O138^{iii}$	0.93	2.57	3.470 (16)	162
$C96 - H96 \cdots O49^{iv}$	0.93	2.53	3.305 (14)	142
C156-H156···O38	0.93	2.53	3.271 (13)	136
$C162 - H162 \cdots O19^{v}$	0.93	2.43	3.343 (12)	168
$C202 - H202 \cdots O149^{vi}$	0.93	2.53	3.293 (16)	139

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z; (iii) x + 1, y + 1, z; (iv) -x + 2, -y + 2, -z; (v) x + 1, y - 1, z; (vi) -x + 2, -y + 1, -z.

2015; Beckmann *et al.*, 2004; Wang *et al.*, 2005; Gömez *et al.*, 2010; Vatsa *et al.* 1991) and by the structure reported here, in the case of tetranuclear stannoxanes phenolate ligands are also amenable.

The title stannoxane complex was prepared by reaction of Ph_2SnCl_2 with 4-nitrophenol. It was crystallized by vapour diffusion of a concentrated chloroform solution of the compound with hexane at ambient temperature. The asymmetric contains two independent complex molecules (*A* and *B*) of the stannoxane (Figs. 1 and 2), and 1.5 CHCl₃ solvent molecules, plus an unknown solvate. The oxo-tin core of each complex is in a planar 'ladder' arrangement. Each Sn atom is fivefold SnO₃C₂ coordinate with one tin centre having an almost perfect square-pyramidal coordination geometry, *viz.* atom Sn2 in complex *A* and atom Sn8 in complex *B*, with τ_5 factors of 0.04 and 0.09, respectively ($\tau_5 = 0$ for a perfect square-pyramidal geometry and = 1 for a perfect trigonal-

A view along the *a* axis of the crystal packing of the title compound. The $C-H\cdots O$ hydrogen bonds are shown as dashed lines (Table 1). Colour code: *A* complexes blue, *B* complexes red, CHCl₃ solvent molecules green.

Figure 4

The reaction scheme for the synthesis of the title compound.

pyramidal geometry; Addison *et al.*, 1984). The other three Sn centres in each complex molecule have distorted shapes with τ_5 factors of 0.35 for Sn1, 0.27 for Sn3 and 0.15 for Sn4 in complex *A*, and 0.25 for Sn5, 0.15 for Sn6 and 0.38 for Sn7 in complex *B*.

One pair of opposing phenolate ligands are identified as bridging ligands with Sn-O bond lengths varying from 2.243 (5) to 2.305 (6) Å. For the monodentate phenolate ligands the Sn-O bond lengths are shorter, varying from 2.071 (5) Å to 2.095 (6) Å. The positioning of these ligands notably suggests additional long-distance Sn···O interactions, ranging from 3.082 (6) to 3.161 (6) Å, with the adjacent non-bonded tin centres.

In each complex there are two intramolecular $C-H\cdots O$ hydrogen bonds involving the monodentate phenol O atoms (O11 and O31 in complex *A*, and O131 and O151 in complex *B*) and neighbouring phenyl rings (Table 1).

In the crystal, there are further $C-H\cdots O$ hydrogen bonds present linking the complexes to form separate layers of A and B complex molecules parallel to the bc plane (Fig. 3, Table 1). The layers are also linked by $C-H\cdots O$ contacts, forming a supramolecular three-dimensional structure.

Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is shown in Fig. 4. To a dry acetonitrile (18 ml) solution of 4-nitrophenol (100 mg, 0.72 mmol) was added triethylamine (0.053 ml, 0.72 mmol). The resulting orange solution was frozen with liquid nitrogen and diphenyltin dichloride (124 mg, 0.36 mmol) was added. While still frozen, the reaction flask was evacuated and back-filled with nitrogen (\times 4) then allowed to warm to r.t. before being heated to reflux for 8 h. Thereafter, all volatiles were removed under reduced pressure and the crude product re-suspended in methanol (25 ml). After sonicating for 80 min, the title compound was isolated by filtration. Needle-like colourless crystals, suitable crystal X-ray diffraction analysis, were obtained by vapour diffusion of a concentrated chloroform solution of the compound with hexane at ambient temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. No sensible disordered model

Crystal data	
Chemical formula	$[Sn_4(C_6H_5)_8(C_6H_4NO_3)_4O_2]$
	1.5CHCl ₂ + solvent
$M_{ m r}$	1855.02
Crystal system, space group	Triclinic, P1
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.8262 (2), 22.1075 (4), 28.9552 (5)
α, β, γ (°)	72.349 (2), 79.800 (2), 89.827 (1)
$V(\dot{A}^3)$	7689.0 (2)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	12.18
Crystal size (mm)	$0.16 \times 0.06 \times 0.02$
•	
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Dual, Cu at zero, EosS2
Absorption correction	For a sphere (CrysAlis PRO;
-	Rigaku OD, 2015)
T_{\min}, T_{\max}	0.584, 0.615
No. of measured, independent and	52013, 30192, 21951
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.040
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.624
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.069, 0.197, 1.04
No. of reflections	30192
No. of parameters	1801
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	3.88, -2.32

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008.

could be formulated for a region of disordered electron density related to an unknown solvate, most probably hexane. The SQUEEZE routine within *PLATON* (Spek, 2015) was used to account for the electron density in this region of the unit cell. The program identified solvent-accessible voids totalling *ca* 516 Å³ and 118 electrons per unit cell were recovered. The formula weight, density *etc.* listed in Table 2 does not include any correction for the missing solvate. The largest residual electron density peaks and holes are near the tin atoms, for example, that of 3.49 e Å⁻³ is 0.88 Å from atom Sn2, while the most negative of -2.38 e Å⁻³ is 0.87 Å from atom Sn3.

Acknowledgements

The author thanks the Ward Group for their support in funding this work.

References

Table 2

Experimental details.

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Basu Baul, T. S., Das, P., Song, X., Eng, G., Quah, C. K. & Fun, H.-K. (2010). Z. Anorg. Allg. Chem. 636, 851–856.
- Beckmann, J., Dakternieks, D., Duthie, A., Jurkschat, K. & Schürmann, M. (2004). Acta Cryst. E60, m1437–m1438.

Chandrasekhar, V., Baskar, V., Steiner, A. & Zacchini, S. (2002). Organometallics, **21**, 4528–4532.

- Chandrasekhar, V., Thilagar, P., Steiner, A. & Bickley, J. F. (2006). Chem. Eur. J. 12, 8847–8861.
- Devi, S. S., Roy, M., Roy, S. & Singh, K. S. (2015). *Main Group Chem.* **14**, 339–348.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gerasimchuk, N., Maher, T., Durham, P., Domasevitch, K. V., Wilking, J. & Mokhir, A. (2007). *Inorg. Chem.* 46, 7268–7284.
- Gómez, E., Morales-Morales, N. N., Santana, P., Ramírez-Apan, T., Nieto-Camacho, A. & Toscano, R. A. (2010). Z. Anorg. Allg. Chem. 636, 1474–1477.
- Gross, D. C. (1989). Inorg. Chem. 28, 2355-2359.
- Khoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070-2073.
- Kumara Swamy, K. C., Schmid, C. G., Day, R. O. & Holmes, R. R. (1988). J. Am. Chem. Soc. 110, 7067–7076.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Prabusankar, G. & Murugavel, R. (2004). Organometallics, 23, 5644–5647.

- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Strachota, A., Ribot, F., Matějka, L., Whelan, P., Starovoytova, L., Pleštil, J., Steinhart, M., Šlouf, M., Hromádková, J., Kovářová, J., Špírková, M. & Strachota, B. (2012). *Macromolecules*, **45**, 221– 237.
- Sun, M.-L., Ruan, B.-F., Zhang, Q., Liu, Z.-D., Li, S.-L., Wu, J.-Y., Jin, B.-K., Yang, J.-X., Zhang, S.-Y. & Tian, Y.-P. (2011). J. Organomet. Chem. 696, 3180–3185.
- Vatsa, C., Jain, V. K., Das, T. K. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 418, 329–338.
- Wang, Y., Yao, J., Zhang, Y. & Wang, G.-Y. (2005). Acta Chim. Sinica, 63, 603–611.
- Win, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008). J. Chem. Crystallogr. 38, 345–350.
- Zhang, R., Sun, J. & Ma, C. (2005). J. Organomet. Chem. 690, 4366– 4372.

full crystallographic data

IUCrData (2019). **4**, x191067 [https://doi.org/10.1107/S2414314619010678]

Bis(μ_2 -4-nitrophenolato)bis(4-nitrophenolato)di- μ_3 -oxido-octaphenyltetratin chloroform sesquisolvate [+ solvate]: a tetranuclear stannoxane

Patrick Butler

 $Bis(\mu_2$ -4-nitrophenolato) bis(4-nitrophenolato) di- μ_3 -oxido-octaphenyltetratin chloroform sesquisolvate [+ solvate]

Crystal data

$[Sn_4(C_6H_5)_8(C_6H_4NO_3)_4O_2]$ ·1.5CHCl ₃ ·solvent
$M_r = 1855.02$
Triclinic, P1
a = 12.8262 (2) Å
b = 22.1075 (4) Å
c = 28.9552 (5) Å
$\alpha = 72.349 \ (2)^{\circ}$
$\beta = 79.800 \ (2)^{\circ}$
$\gamma = 89.827 (1)^{\circ}$
$V = 7689.0(2) \text{ Å}^3$

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, EosS2 diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 8.1297 pixels mm⁻¹ ω scans Absorption correction: for a sphere (CrysAlisPro; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.197$ S = 1.0430192 reflections 1801 parameters 0 restraints Primary atom site location: dual Z = 4 F(000) = 3660 $D_x = 1.602 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 18171 reflections $\theta = 4.2-73.6^{\circ}$ $\mu = 12.18 \text{ mm}^{-1}$ T = 150 K Plate, colourless $0.16 \times 0.06 \times 0.02 \times 0.03$ (radius) mm

 $T_{\min} = 0.584, T_{\max} = 0.615$ 52013 measured reflections 30192 independent reflections 21951 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{\max} = 74.1^{\circ}, \theta_{\min} = 4.0^{\circ}$ $h = -15 \rightarrow 15$ $k = -17 \rightarrow 27$ $l = -32 \rightarrow 35$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0961P)^2 + 23.2885P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 3.88 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -2.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H hydrogen were fixed geometrically and allowed to ride on their parent atom: C—H = 0.93 - 0.98 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.53861 (4)	0.65920(3)	0.34840 (2)	0.04212 (13)	
Sn2	0.77097 (4)	0.62717 (2)	0.28055 (2)	0.03858 (12)	
Sn3	0.92558 (4)	0.73917 (3)	0.16305 (2)	0.04266 (13)	
Sn4	0.69375 (4)	0.77305 (2)	0.23106 (2)	0.03783 (12)	
Sn5	0.85368 (4)	0.23602 (3)	0.16023 (2)	0.04028 (12)	
Sn6	1.02791 (4)	0.27083 (2)	0.22917 (2)	0.03723 (12)	
Sn7	1.08118 (4)	0.15952 (3)	0.34960 (2)	0.04118 (13)	
Sn8	0.90618 (4)	0.12653 (2)	0.28113 (2)	0.03754 (12)	
Cl1	0.5708 (3)	0.1827 (3)	0.47571 (14)	0.1293 (19)	
C12	0.5721 (3)	0.17084 (18)	0.57722 (13)	0.0849 (9)	
C13	0.4834 (3)	0.06952 (17)	0.55210 (16)	0.0983 (11)	
Cl11	0.1342 (2)	0.33339 (18)	0.41801 (13)	0.0856 (9)	
Cl12	0.0225 (3)	0.43345 (18)	0.44377 (18)	0.1093 (14)	
Cl13	0.0551 (4)	0.3206 (3)	0.51985 (14)	0.134 (2)	
Cl21	0.4673 (5)	0.6781 (4)	0.0325 (3)	0.172 (3)	
C122	0.2931 (6)	0.7580 (3)	0.0183 (3)	0.176 (3)	
C123	0.3618 (5)	0.6885 (3)	-0.04883 (16)	0.146 (2)	
01	0.6555 (4)	0.6888 (2)	0.29002 (17)	0.0336 (10)	
O2	0.8112 (4)	0.7134 (3)	0.22283 (18)	0.0383 (12)	
O3	0.9177 (4)	0.2106 (2)	0.22149 (18)	0.0354 (11)	
04	1.0151 (4)	0.1880 (2)	0.28904 (18)	0.0367 (11)	
011	0.4839 (5)	0.7456 (3)	0.3118 (2)	0.0414 (12)	
O18	0.0402 (6)	0.8282 (4)	0.3929 (3)	0.0635 (18)	
019	0.0968 (6)	0.9116 (4)	0.3314 (3)	0.072 (2)	
O21	0.6598 (5)	0.5822 (3)	0.3522 (2)	0.0458 (13)	
O28	0.7848 (8)	0.4093 (5)	0.5472 (3)	0.092 (3)	
O29	0.7736 (8)	0.3396 (4)	0.5099 (3)	0.086 (3)	
O31	0.9699 (5)	0.6482 (3)	0.1991 (2)	0.0455 (13)	
O38	1.3145 (8)	0.4500 (4)	0.1913 (4)	0.094 (3)	
O39	1.3943 (7)	0.5314 (5)	0.1350 (4)	0.102 (3)	
O41	0.8173 (5)	0.8209 (3)	0.1610 (2)	0.0472 (13)	
O48	0.7535 (8)	1.0995 (4)	0.0345 (3)	0.085 (3)	
O49	0.8620 (9)	1.0676 (4)	-0.0189 (3)	0.099 (3)	
0131	0.7719 (5)	0.1478 (3)	0.1977 (2)	0.0453 (13)	
O138	0.4221 (8)	-0.0444 (4)	0.1934 (4)	0.088 (3)	
0139	0.3969 (7)	0.0350 (4)	0.1328 (4)	0.086 (3)	
O141	0.9691 (5)	0.3169 (3)	0.15790 (18)	0.0422 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O148	1.1389 (8)	0.5950 (4)	0.0333 (3)	0.087 (3)
O149	1.1724 (14)	0.5476 (6)	-0.0220 (4)	0.156 (7)
0151	1.1679 (5)	0.2449 (3)	0.3116 (2)	0.0453 (13)
O158	1.5434 (6)	0.3310 (4)	0.3925 (3)	0.0654 (19)
O159	1.5456 (6)	0.4092 (3)	0.3264 (3)	0.068 (2)
0161	0.9568 (5)	0.0830 (3)	0.35384 (19)	0.0413 (12)
0168	0.6702 (8)	-0.0895(5)	0.5470 (3)	0.092 (3)
0169	0.7188 (7)	-0.1605(4)	0.5107 (3)	0.085(3)
N17	0.1083(7)	0.8577 (4)	0.3577 (3)	0.0545(19)
N27	0.7665 (7)	0.3949 (5)	0.5120(3)	0.068 (3)
N37	1 3169 (8)	0.5057(5)	0.1659(4)	0.066(2)
N47	0.8087(9)	1.0597(5)	0.1029(4)	0.000(2) 0.076(3)
N137	0.4462(7)	0.0093(4)	0.0220(1) 0.1662(3)	0.062(2)
N147	1,1357(10)	0.5480(5)	0.1002(3) 0.0201(4)	0.002(2)
N157	1.5084 (6)	0.3579(4)	0.0201(1) 0.3550(3)	0.003(3)
N167	0.7204(8)	-0.1052(5)	0.5550(3) 0.5127(3)	0.0404(17) 0.069(3)
C1	0.7201(8) 0.5052(8)	0.1525(5)	0.5352(4)	0.009(3)
H1	0.4358	0.1712	0.5377	0.069*
C^2	0.0343 (8)	0.1712 0.3513 (5)	0.4602 (4)	0.009
е <u>2</u> H2	-0.0327	0.3319	0.4582	0.072*
C3	0.3508(18)	0.6891 (10)	0.0104 (6)	0.072 0.125 (7)
Н3	0.3018	0.6533	0.0308	0.150*
C11	0.3935 (6)	0.0333 0.7707 (4)	0.3247(3)	0.0385 (16)
C12	0.3172(7)	0.7406 (4)	0.3217(3)	0.0303(10) 0.0454(18)
H12	0.3294	0.7007	0.3863	0.054*
C13	0.3291 0.2241(7)	0.7686 (4)	0.3775(3)	0.031 0.0437(18)
H13	0.1735	0.7480	0.4051	0.052*
C14	0 2076 (7)	0.8277(4)	0.3472(3)	0.032 0.0427 (18)
C15	0.2823(8)	0.8602(4)	0.3056(3)	0.051(2)
H15	0.2696	0.9005	0.2861	0.062*
C16	0.3747(7)	0.8319(4)	0.2941(3)	0.0458(19)
H16	0 4249	0.8527	0.2664	0.055*
C21	0.6856 (6)	0.5375(4)	0.3918(3)	0.0382 (16)
C22	0.6668 (6)	0 4729 (4)	0.3971(3)	0.0302(10) 0.0433(18)
H22	0.6355	0.4616	0.3740	0.052*
C23	0.6947 (7)	0.4256 (5)	0.4365(4)	0.054(2)
H23	0.6837	0.3828	0.4398	0.065*
C24	0.7394(7)	0.4441 (5)	0.4707(3)	0.002
C25	0.7578(8)	0.5073(5)	0.4671(3)	0.052(2)
H25	0.7865	0.5184	0 4909	0.066*
C26	0.7321(7)	0.5535(4)	0.4269(3)	0.0449 (18)
H26	0.7462	0.5961	0.4232	0.054*
C31	1.0540 (7)	0.6162 (4)	0.1903(3)	0.0448 (18)
C32	1.1464 (8)	0.6438(5)	0.1564 (4)	0.053(2)
H32	1.1502	0.6869	0.1390	0.064*
C33	1.2335 (7)	0.6067 (5)	0.1486 (4)	0.054 (2)
H33	1.2948	0.6251	0.1262	0.065*
C34	1.2265 (8)	0.5427 (5)	0.1748 (4)	0.052 (2)
	~ /			\ /

C35	1.1377 (8)	0.5137 (5)	0.2089 (4)	0.056(2)
H35	1.1361	0.4709	0.2268	0.067*
C36	1.0509 (8)	0.5496 (4)	0.2158 (3)	0.050(2)
H36	0.9894	0.5300	0.2374	0.060*
C41	0.8185 (7)	0.8798 (4)	0.1277 (3)	0.0441 (18)
C42	0.7689 (8)	0.9298 (5)	0.1416 (3)	0.054 (2)
H42	0.7381	0.9235	0.1744	0.065*
C43	0.7653 (8)	0.9888(5)	0.1067 (3)	0.056(2)
H43	0.7306	1.0216	0.1158	0.067*
C44	0.8143 (9)	0.9979 (5)	0.0582 (4)	0.058(2)
C45	0.8669 (9)	0.9493(5)	0.0449(4)	0.066(3)
H45	0.9010	0.9562	0.0124	0.080*
C46	0.8693 (9)	0.8911(5)	0.0729(3)	0.059(3)
H46	0.9051	0.8588	0.0695	0.071*
C51	0.5744(7)	0.6260	0.0092	0.0471(19)
C52	0.6548(8)	0.0702(5)	0.4052(4)	0.054(2)
U52 Н52	0.6869	0.7468	0.3737	0.064*
C53	0.6871 (9)	0.7315 (5)	0.3757 0.4464 (4)	0.063(3)
Н53	0.7406	0.7621	0.4422	0.005 (5)
C54	0.6399 (11)	0.6955 (7)	0.4928(4)	0.070
H54	0.6617	0.7016	0.5202	0.097*
C55	0.5606(10)	0.6503 (7)	0.3202 0.4994 (4)	0.079(4)
H55	0.5296	0.6260	0.5311	0.095*
C56	0.5261 (8)	0.6404 (6)	0.4592 (3)	0.064(3)
H56	0.4714	0.6103	0.4641	0.077*
C61	0.4203(7)	0.5961(4)	0 3425 (4)	0.052(2)
C62	0.4039(8)	0.5342(5)	0.3736 (5)	0.067(3)
H62	0.4407	0.5206	0.3995	0.081*
C63	0.3336 (9)	0.4926 (6)	0.3665 (6)	0.085(4)
H63	0.3231	0.4512	0.3877	0.103*
C64	0.2791 (10)	0.5113 (8)	0.3285 (7)	0.099 (6)
H64	0.2320	0.4827	0.3239	0.119*
C65	0.2945 (9)	0.5751 (8)	0.2957 (6)	0.086 (4)
H65	0.2583	0.5882	0.2695	0.103*
C66	0.3647 (8)	0.6170 (6)	0.3040 (5)	0.066 (3)
H66	0.3744	0.6590	0.2837	0.079*
C71	0.8949 (6)	0.6317 (4)	0.3177 (3)	0.0405 (17)
C72	0.9084 (8)	0.6882(5)	0.3285 (3)	0.051 (2)
H72	0.8646	0.7215	0.3187	0.061*
C73	0.9886 (9)	0.6945 (6)	0.3545 (4)	0.067(3)
H73	0.9988	0.7323	0.3613	0.080*
C74	1.0520 (8)	0.6447 (6)	0.3697 (4)	0.063 (3)
H74	1.1050	0.6493	0.3868	0.075*
C75	1.0384 (8)	0.5884 (5)	0.3603 (4)	0.062 (3)
H75	1.0807	0.5547	0.3712	0.074*
C76	0.9594 (7)	0.5823 (5)	0.3336 (4)	0.051 (2)
H76	0.9503	0.5445	0.3267	0.061*
C81	0.7131 (7)	0.5724 (4)	0.2411 (3)	0.0430 (18)
	× /	× /		. ,

C82	0.7677 (8)	0.5718 (5)	0.1945 (4)	0.055 (2)
H82	0.8382	0.5869	0.1839	0.066*
C83	0.7160 (10)	0.5486 (6)	0.1641 (4)	0.076 (4)
H83	0.7518	0.5488	0.1332	0.091*
C84	0.6111 (10)	0.5252 (6)	0.1803 (4)	0.069(3)
H84	0.5756	0.5112	0.1598	0.083*
C85	0.5603 (8)	0.5229 (5)	0.2264 (4)	0.054 (2)
H85	0.4911	0.5056	0.2376	0.065*
C86	0.6105 (8)	0.5461 (4)	0.2566 (3)	0.048(2)
H86	0.5745	0.5439	0.2880	0.058*
C91	1 0570 (6)	0.7889(4)	0 1714 (3)	0.0426 (18)
C92	1.0951 (8)	0.7641(5)	0.2157(4)	0.057(2)
H92	1.0531 (0)	0.7273	0.2394	0.068*
C93	1 1799 (8)	0.7950 (6)	0.2235(4)	0.065(3)
H93	1 2046	0.7793	0.2529	0.078*
C94	1 2294 (9)	0.8496 (6)	0.2329 0.1877 (5)	0.070(3)
H94	1.2291 (9)	0.8695	0.1077 (5)	0.084*
C95	1.2070	0.8738(5)	0.1448 (4)	0.001
H95	1 2242	0.9107	0.1214	0.085*
C96	1 1056 (8)	0.8438(4)	0.1356 (4)	0.003
H96	1 0809	0.8602	0.1062	0.064*
C101	0.8797 (8)	0.7190(4)	0.1031(3)	0.048(2)
C102	0.7785 (8)	0.7347(5)	0.0919(4)	0.055(2)
H102	0.7359	0.7588	0.1082	0.067*
C103	0.7325 (10)	0.7135 (6)	0.0559(4)	0.068(3)
H103	0.6742	0.7216	0.0499	0.082*
C104	0.8068(11)	0.6813 (6)	0.0297 (4)	0.073(3)
H104	0.7837	0.6697	0.0047	0.087*
C105	0.9062(11)	0.6662.(6)	0.0404(4)	0.074(3)
H105	0.9495	0.6437	0.0228	0.089*
C106	0.9416 (9)	0.6841(5)	0.0768 (3)	0.061(3)
H106	1 0082	0.6728	0.0840	0.073*
C111	0 7347 (7)	0.8370(3)	0.2667 (3)	0.0381 (16)
C112	0.7317(7) 0.8420(7)	0.8577(4)	0.2586(4)	0.0501(10)
H112	0.8918	0.8432	0.2375	0.059*
C113	0.8751 (9)	0.8988(5)	0.2812 (4)	0.061(2)
H113	0.9461	0.9126	0.2751	0.073*
C114	0.8003 (10)	0.9193(5)	0.3133 (4)	0.062 (3)
H114	0.8225	0.9463	0.3292	0.075*
C115	0.6950 (10)	0.9010 (5)	0.3223 (4)	0.063 (3)
H115	0.6462	0.9160	0.3435	0.076*
C116	0.6616 (7)	0.8593 (4)	0.2989 (3)	0.0464 (19)
H116	0.5902	0.8463	0.3048	0.056*
C121	0.5757 (6)	0.7688 (4)	0.1895 (3)	0.0426 (18)
C122	0.5423 (9)	0.7101 (5)	0.1885 (4)	0.059 (2)
H122	0.5680	0.6731	0.2072	0.071*
C123	0.4694 (10)	0.7072 (7)	0.1589 (5)	0.083 (4)
H123	0.4454	0.6678	0.1584	0.100*

C124	0.4320 (10)	0.7613 (8)	0.1305 (5)	0.087 (4)
H124	0.3832	0.7588	0.1109	0.105*
C125	0.4670 (11)	0.8184 (7)	0.1314 (5)	0.085 (4)
H125	0.4418	0.8550	0.1118	0.102*
C126	0.5386(7)	0.8246 (5)	0.1601 (3)	0.057 (2)
H126	0.5616	0.8645	0.1602	0.069*
C131	0.6942 (6)	0.1170 (4)	0.1885(3)	0.0403(17)
C132	0.6642(8)	0.0536(4)	0.2194(3)	0.050(2)
H132	0.7000	0.0356	0.2452	0.060*
C133	0.5837 (8)	0.0180(4)	0.2123(3)	0.052(2)
Н133	0.5655	-0.0234	0.2327	0.052 (2)
C134	0.5055 0.5304 (7)	0.029(4)	0.2327 0.1738 (3)	0.002
C135	0.5584(7)	0.0439(4) 0.1073(4)	0.1730(3) 0.1414(3)	0.049(2) 0.050(2)
H135	0.5384 (7)	0.1075 (4)	0.1414(3) 0.1155	0.050 (2)
C136	0.5228 0.6403(7)	0.1244	0.1135	0.000
U136	0.6403 (7)	0.1419 (4)	0.1439(3) 0.1273	0.0471(19)
C141	1.0062(7)	0.1023 0.2723(4)	0.1273 0.1241 (2)	0.037°
C141	1.0002(7)	0.3733(4) 0.4200(5)	0.1241(3) 0.1261(4)	0.0422(18)
U142	1.0027 (10)	0.4290 (3)	0.1501 (4)	0.007 (3)
H142	0.9702	0.4282	0.1070	0.081*
U143	1.0464 (9)	0.4864 (5)	0.1024 (4)	0.060 (3)
H143	1.0469	0.5231	0.111/	$0.0/3^{*}$
C144	1.0883 (9)	0.48/6 (5)	0.0556 (4)	0.065 (3)
C145	1.0922 (14)	0.4341 (7)	0.0419 (4)	0.109 (6)
H145	1.1220	0.4358	0.0097	0.131*
C146	1.0509 (13)	0.3761 (6)	0.0766 (4)	0.088 (5)
H146	1.0537	0.3392	0.0674	0.105*
C151	1.2490 (6)	0.2693 (4)	0.3237 (3)	0.0384 (16)
C152	1.2898 (6)	0.2426 (4)	0.3669 (3)	0.0412 (17)
H152	1.2587	0.2045	0.3892	0.049*
C153	1.3735 (7)	0.2706 (4)	0.3773 (3)	0.0463 (19)
H153	1.4004	0.2513	0.4057	0.056*
C154	1.4175 (7)	0.3281 (4)	0.3451 (3)	0.0453 (19)
C155	1.3805 (8)	0.3572 (4)	0.3020 (3)	0.053 (2)
H155	1.4119	0.3956	0.2806	0.063*
C156	1.2969 (7)	0.3286 (4)	0.2913 (3)	0.0450 (18)
H156	1.2713	0.3482	0.2626	0.054*
C161	0.8993 (6)	0.0382 (4)	0.3930 (3)	0.0371 (16)
C162	0.9148 (7)	-0.0261 (4)	0.3990 (3)	0.0460 (19)
H162	0.9659	-0.0375	0.3765	0.055*
C163	0.8553 (7)	-0.0731 (5)	0.4378 (4)	0.053 (2)
H163	0.8642	-0.1158	0.4410	0.064*
C164	0.7826(7)	-0.0550 (5)	0.4718 (3)	0.052 (2)
C165	0.7663 (8)	0.0082 (5)	0.4683 (3)	0.054 (2)
H165	0.7175	0.0192	0.4918	0.065*
C166	0.8253 (7)	0.0546 (4)	0.4284 (3)	0.049 (2)
H166	0.8156	0.0973	0.4252	0.058*
C171	1.1827 (6)	0.2638 (4)	0.1918 (3)	0.0391 (16)
C172	1.2421 (7)	0.3176 (5)	0.1589 (4)	0.060 (3)
	× /	× /		~ /

H172	1.2168	0.3581	0.1548	0.072*
C173	1.3397 (9)	0.3091 (7)	0.1326 (5)	0.092 (5)
H173	1.3811	0.3444	0.1113	0.110*
C174	1.3762 (10)	0.2487 (7)	0.1376 (5)	0.093 (5)
H174	1.4416	0.2437	0.1197	0.111*
C175	1.3174 (9)	0.1979 (6)	0.1681 (5)	0.079 (4)
H175	1.3415	0.1576	0.1706	0.095*
C176	1.2206 (8)	0.2041 (5)	0.1965 (4)	0.060 (3)
H176	1.1818	0.1683	0.2185	0.072*
C181	0.9551 (7)	0.3364 (3)	0.2637 (3)	0.0391 (17)
C182	1 0012 (8)	0.3577(4)	0.2963(3)	0.050(2)
H182	1.0671	0 3444	0.3032	0.060*
C183	0.9459 (10)	0.3997 (5)	0.3032	0.062(3)
H183	0.9759	0.4146	0.3403	0.002 (3)
C184	0.9739	0.4102(5)	0.3084(4)	0.074
U184	0.8481 (8)	0.4192 (5)	0.3084 (4)	0.039(3)
C195	0.8124	0.4407 0.2085 (5)	0.3230	0.071°
U185	0.8021 (8)	0.3985 (5)	0.2758 (4)	0.059 (2)
H185	0.7366	0.4125	0.2686	$0.0/1^{*}$
C186	0.8548 (7)	0.3564 (4)	0.2538 (3)	0.0467 (19)
H186	0.8238	0.3413	0.2324	0.056*
C191	0.9507 (8)	0.2102 (4)	0.1035 (3)	0.049 (2)
C192	0.9143 (10)	0.1959 (7)	0.0656 (4)	0.076 (4)
H192	0.8438	0.2020	0.0624	0.091*
C193	0.9803 (11)	0.1729 (7)	0.0324 (4)	0.087 (5)
H193	0.9538	0.1628	0.0077	0.105*
C194	1.0847 (11)	0.1650 (6)	0.0359 (4)	0.078 (4)
H194	1.1290	0.1502	0.0131	0.093*
C195	1.1240 (11)	0.1785 (7)	0.0721 (5)	0.082 (4)
H195	1.1949	0.1726	0.0747	0.098*
C196	1.0575 (9)	0.2014 (6)	0.1055 (4)	0.073 (3)
H196	1.0851	0.2112	0.1301	0.088*
C201	0.7242 (7)	0.2933 (4)	0.1644 (3)	0.0428 (17)
C202	0.7261 (9)	0.3547 (5)	0.1317 (4)	0.062 (3)
H202	0.7847	0.3713	0.1069	0.075*
C203	0.6370 (11)	0.3904 (6)	0.1374 (5)	0.081 (4)
H203	0.6361	0.4313	0.1159	0.097*
C204	0.5510 (11)	0.3661 (7)	0.1741 (6)	0.094 (5)
H204	0 4923	0 3903	0 1772	0.113*
C205	0.5515 (10)	0.3056 (6)	0.2064(6)	0.086(4)
H205	0.4935	0.2899	0.2317	0.104*
C206	0.4755 0.6354 (7)	0.2699	0.2317 0.2010 (4)	0.104
U200	0.0334 (7)	0.2080 (3)	0.2019 (4)	0.002(3)
П200 С211	0.0340	0.2273	0.2233	0.074°
C211	0.9909(7)	0.0007(4)	0.2439 (3)	0.0443(18)
U212	1.08/2 (/)	0.0462 (4)	0.2574 (4)	0.049 (2)
H212	1.1052	0.0513	0.2857	0.058*
0213	1.1560 (9)	0.0182 (5)	0.2281 (4)	0.062 (3)
H213	1.2203	0.0048	0.2372	0.075*
C214	1.1319 (10)	0.0101 (5)	0.1871 (4)	0.072 (3)

H214	1.1797	-0.0080	0.1677	0.086*
C215	1.0343 (13)	0.0291 (6)	0.1736 (5)	0.083 (4)
H215	1.0160	0.0221	0.1459	0.099*
C216	0.9649 (9)	0.0583 (5)	0.2017 (4)	0.062 (3)
H216	0.9012	0.0722	0.1922	0.074*
C221	0.7505 (6)	0.1336 (4)	0.3154 (3)	0.0341 (15)
C222	0.6784 (7)	0.0820 (5)	0.3385 (4)	0.051 (2)
H222	0.6981	0.0418	0.3377	0.061*
C223	0.5787 (7)	0.0889 (5)	0.3625 (4)	0.058 (2)
H223	0.5310	0.0539	0.3771	0.069*
C224	0.5507 (8)	0.1474 (5)	0.3647 (4)	0.065 (3)
H224	0.4830	0.1528	0.3803	0.078*
C225	0.6214 (10)	0.1981 (5)	0.3440 (5)	0.090 (5)
H225	0.6021	0.2377	0.3467	0.108*
C226	0.7209 (8)	0.1923 (5)	0.3193 (4)	0.063 (3)
H226	0.7680	0.2277	0.3052	0.075*
C231	1.2017 (7)	0.0948 (4)	0.3484 (4)	0.051 (2)
C232	1.2911 (8)	0.1118 (6)	0.3122 (4)	0.063 (3)
H232	1.3010	0.1532	0.2908	0.076*
C233	1.3675 (10)	0.0675 (7)	0.3073 (6)	0.087 (4)
H233	1.4271	0.0789	0.2823	0.105*
C234	1.3527 (12)	0.0057 (7)	0.3406 (7)	0.093 (5)
H234	1.4024	-0.0242	0.3377	0.111*
C235	1.2655 (11)	-0.0104 (6)	0.3774 (6)	0.085 (4)
H235	1.2575	-0.0509	0.4002	0.102*
C236	1.1899 (9)	0.0324 (5)	0.3812 (5)	0.068 (3)
H236	1.1297	0.0201	0.4057	0.081*
C241	0.9942 (7)	0.1796 (5)	0.4103 (3)	0.047 (2)
C242	1.0056 (9)	0.1470 (6)	0.4588 (4)	0.068 (3)
H242	1.0575	0.1176	0.4647	0.081*
C243	0.9389 (10)	0.1589 (8)	0.4981 (4)	0.085 (4)
H243	0.9467	0.1369	0.5301	0.102*
C244	0.8630 (10)	0.2015 (7)	0.4912 (4)	0.079 (4)
H244	0.8190	0.2083	0.5182	0.095*
C245	0.8512 (9)	0.2346 (5)	0.4442 (4)	0.063 (3)
H245	0.8001	0.2647	0.4395	0.076*
C246	0.9144 (8)	0.2240 (5)	0.4033 (4)	0.058 (2)
H246	0.9042	0.2460	0.3717	0.069*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0393 (3)	0.0463 (3)	0.0369 (2)	-0.0038 (2)	-0.0011 (2)	-0.0105 (2)
Sn2	0.0409 (3)	0.0325 (2)	0.0440 (3)	0.00332 (19)	-0.0103 (2)	-0.0128 (2)
Sn3	0.0433 (3)	0.0479 (3)	0.0354 (2)	-0.0048 (2)	0.0008 (2)	-0.0152 (2)
Sn4	0.0445 (3)	0.0325 (2)	0.0388 (2)	0.0047 (2)	-0.0107 (2)	-0.01275 (19)
Sn5	0.0436 (3)	0.0432 (3)	0.0358 (2)	0.0043 (2)	-0.0069 (2)	-0.0149 (2)
Sn6	0.0393 (2)	0.0316 (2)	0.0386 (2)	-0.00328 (19)	0.00257 (19)	-0.01300 (19)

Sn7	0.0387 (3)	0.0444 (3)	0.0370 (2)	0.0014 (2)	-0.0065 (2)	-0.0077 (2)
Sn8	0.0356 (2)	0.0324 (2)	0.0421 (3)	-0.00186 (19)	0.00093 (19)	-0.0123 (2)
C11	0.096 (3)	0.193 (5)	0.068 (2)	-0.042 (3)	-0.0097 (18)	0.003 (3)
Cl2	0.0784 (18)	0.103 (2)	0.098 (2)	0.0123 (17)	-0.0334 (17)	-0.059 (2)
C13	0.120 (3)	0.0676 (19)	0.120 (3)	-0.0009 (19)	-0.056 (2)	-0.0277 (19)
Cl11	0.0672 (16)	0.108 (2)	0.095 (2)	0.0040 (16)	0.0029 (15)	-0.060 (2)
Cl12	0.095 (2)	0.074 (2)	0.143 (4)	0.0091 (18)	0.021 (2)	-0.035 (2)
C113	0.101 (3)	0.213 (6)	0.0637 (19)	0.032 (3)	-0.0133 (19)	-0.008(3)
Cl21	0.144 (5)	0.207 (7)	0.189 (6)	0.019 (5)	-0.065 (5)	-0.076 (6)
C122	0.238 (8)	0.149 (5)	0.204 (7)	0.067 (5)	-0.140 (6)	-0.089(5)
C123	0.171 (5)	0.172 (5)	0.079 (2)	-0.051 (4)	-0.003(3)	-0.028(3)
01	0.033 (2)	0.034 (3)	0.029 (2)	0.002 (2)	0.0024 (19)	-0.0066 (19)
02	0.035 (3)	0.044 (3)	0.029 (2)	-0.005(2)	0.007 (2)	-0.007 (2)
03	0.038 (3)	0.037 (3)	0.033 (2)	-0.004(2)	-0.007(2)	-0.014(2)
04	0.040 (3)	0.035 (3)	0.031 (2)	-0.009(2)	-0.005(2)	-0.006(2)
011	0.047 (3)	0.035 (3)	0.038 (3)	0.004 (2)	-0.007(2)	-0.005(2)
018	0.061 (4)	0.069 (5)	0.060 (4)	0.011(3)	-0.002(3)	-0.026(4)
019	0.066 (5)	0.059(5)	0.086 (5)	0.018(4)	-0.006(4)	-0.017(4)
021	0.050(3)	0.050(3)	0.036(3)	-0.002(3)	-0.009(2)	-0.011(2)
028	0.107(7)	0.108 (8)	0.051(4)	0.032(6)	-0.023(5)	-0.005(5)
029	0.099 (7)	0.058 (5)	0.077(5)	0.020 (5)	-0.008(5)	0.009 (4)
031	0.055(3)	0.031(3)	0.046(3)	0.001(2)	-0.004(3)	-0.009(2)
038	0.092 (6)	0.066(5)	0.103(7)	0.035(5)	0.001 (5)	-0.005(5)
039	0.060(5)	0.091(7)	0.127(8)	0.021(5)	0.011(5)	-0.009(6)
041	0.050(3)	0.051(7)	0.037(3)	0.021(3)	-0.005(2)	-0.014(3)
048	0.031(3) 0.103(7)	0.055(5)	0.037(3)	0.007(5)	-0.002(2)	-0.006(4)
049	0.138 (9)	0.074 (6)	0.050(0)	0.019(6)	0.002(0)	0.000(4)
0131	0.053(3)	0.07 + (0) 0.035 (3)	0.030(3)	-0.003(2)	-0.011(3)	-0.003(7)
0138	0.091 (6)	0.059(5)	0.040(3) 0.104(7)	-0.027(4)	-0.019(5)	-0.007(2)
0139	0.051(0) 0.067(5)	0.037(3)	0.104(7)	-0.020(4)	-0.020(5)	-0.022(5)
0141	0.007(3)	0.00+(0)	0.10 + (7) 0.028(2)	0.020(4)	0.020(3)	-0.0022(3)
0148	0.052 (5)	0.045(3)	0.020(2)	-0.016(4)	0.000(2)	-0.010(4)
0140	0.095(0)	0.034(3)	0.069 (0)	-0.081(10)	0.013(3)	-0.010(4)
0151	0.204(17)	0.033(0)	0.009(0)	-0.006(2)	-0.007(2)	-0.002(0)
0151	0.040(3)	0.042(3)	0.041(3) 0.057(4)	-0.000(2) -0.013(4)	-0.007(2) -0.017(3)	-0.002(2)
0150	0.072(3)	0.071(3)	0.037(4)	-0.013(4)	-0.002(4)	-0.022(4)
0159	0.009(4)	0.030(4) 0.041(2)	0.079(3)	-0.010(3)	-0.008(4)	-0.013(4)
0101	0.047(3)	0.041(3)	0.033(3)	-0.048(6)	-0.003(2)	-0.008(2)
0108	0.098 (0)	0.108(7)	0.031(4)	-0.048(0)	0.009(4)	-0.010(4)
N17	0.087(0)	0.000(5)	0.062(0)	-0.050(4)	-0.000(3)	-0.020(4)
INI / N27	0.000(5)	0.030 (3)	0.030 (4)	0.014(4)	-0.011(4)	-0.029(4)
IN27	0.054 (5)	0.0//(6)	0.051(5)	0.018(4)	0.005 (4)	0.006 (4)
IN 5 /	0.009 (6)	0.060 (5)	0.072(6)	0.024 (5)	-0.018(5)	-0.022(5)
N47	0.090 (7)	0.063 (6)	0.058 (5)	-0.001(5)	-0.002(5)	0.001 (4)
N137	0.056 (5)	0.063 (5)	0.066 (5)	-0.007(4)	-0.009 (4)	-0.023 (4)
N147	0.114 (9)	0.061 (6)	0.059 (6)	-0.026 (6)	0.008 (6)	-0.001(5)
N157	0.047 (4)	0.045 (4)	0.056 (4)	-0.004 (3)	0.000 (3)	-0.024 (3)
N167	0.069 (6)	0.078 (7)	0.046 (5)	-0.031(5)	-0.016 (4)	0.006 (4)
Cl	0.053 (5)	0.059 (6)	0.067 (6)	0.006 (4)	-0.018 (5)	-0.024(5)

C2	0.049 (5)	0.069 (7)	0.059 (6)	0.001 (5)	-0.005 (4)	-0.019 (5)
C3	0.167 (19)	0.137 (16)	0.090 (11)	-0.006 (14)	-0.047 (12)	-0.047 (11)
C11	0.043 (4)	0.033 (4)	0.038 (4)	0.000 (3)	-0.005(3)	-0.010(3)
C12	0.050 (5)	0.040 (4)	0.045 (4)	-0.001 (4)	-0.005 (4)	-0.013 (3)
C13	0.049 (4)	0.044 (4)	0.039 (4)	0.005 (4)	-0.005(3)	-0.016 (3)
C14	0.042 (4)	0.053 (5)	0.041 (4)	0.008 (4)	-0.011(3)	-0.023 (4)
C15	0.061 (5)	0.044 (5)	0.050 (5)	0.012 (4)	-0.016 (4)	-0.012(4)
C16	0.049 (5)	0.040 (4)	0.040 (4)	0.001 (4)	-0.008(3)	-0.002(3)
C21	0.033 (3)	0.040 (4)	0.037 (4)	0.003 (3)	0.000 (3)	-0.007(3)
C22	0.039 (4)	0.037 (4)	0.055 (5)	0.005 (3)	-0.005(3)	-0.018(4)
C23	0.045 (5)	0.047 (5)	0.059 (5)	-0.001(4)	0.001 (4)	-0.006(4)
C24	0.047 (5)	0.057 (5)	0.038 (4)	0.017 (4)	0.004 (4)	0.001 (4)
C25	0.052 (5)	0.069 (6)	0.047 (5)	0.014 (4)	-0.015(4)	-0.018(4)
C26	0.044(4)	0.043(4)	0.047(4)	0.003(3)	-0.008(3)	-0.013(4)
C31	0.055(5)	0.036(4)	0.046(4)	-0.001(4)	-0.005(4)	-0.018(3)
C32	0.052(5)	0.046 (5)	0.057(5)	-0.003(4)	-0.008(4)	-0.010(4)
C33	0.040(4)	0.061 (6)	0.057(5)	0.000(4)	-0.004(4)	-0.017(4)
C34	0.059(5)	0.001(0)	0.057(5)	0.000(1)	-0.015(4)	-0.018(4)
C35	0.064 (6)	0.045(5)	0.055(5)	0.016(1) 0.006(4)	-0.008(4)	-0.010(4)
C36	0.061(0)	0.013(0)	0.057(5)	0.006 (4)	-0.005(4)	-0.015(4)
C41	0.000(9) 0.048(4)	0.033(1) 0.044(4)	0.037(3)	0.000(1) 0.010(4)	-0.011(3)	-0.011(3)
C42	0.057(5)	0.050(5)	0.049(5)	0.010(1)	0.001(0)	-0.014(4)
C43	0.057(5)	0.055 (6)	0.019(5)	0.000(1)	-0.001(4)	-0.012(4)
C44	0.064 (6)	0.025(0)	0.050(5)	0.010(1)	-0.001(4)	-0.007(4)
C45	0.001(0)	0.061 (6)	0.021(5)	-0.003(5)	0.001(1)	-0.010(4)
C46	0.000(7) 0.078(7)	0.001(0) 0.053(5)	0.010(3) 0.037(4)	0.005(5)	0.011(5) 0.003(4)	-0.008(4)
C51	0.047(4)	0.069(5)	0.037(1)	0.009(4)	-0.002(3)	-0.021(4)
C52	0.055(5)	0.000(5)	0.050(1) 0.051(5)	0.003(1)	-0.011(4)	-0.019(4)
C53	0.065 (6)	0.063 (6)	0.071(7)	0.012(1)	-0.017(5)	-0.030(5)
C54	0.081 (8)	0.121(11)	0.059(6)	0.029(8)	-0.021(6)	-0.050(7)
C55	0.066 (7)	0.123 (11)	0.044 (5)	-0.003(7)	-0.001(5)	-0.024(6)
C56	0.050(5)	0.090 (8)	0.043(5)	-0.001(5)	0.005(4)	-0.014(5)
C61	0.037(4)	0.046(5)	0.074 (6)	-0.010(4)	0.003(4)	-0.027(4)
C62	0.027(1)	0.050(6)	0.099(8)	-0.003(4)	0.005(5)	-0.020(6)
C63	0.050 (6)	0.053 (6)	0.144 (13)	-0.008(5)	0.007(7)	-0.031(7)
C64	0.048 (6)	0.100(11)	0.169 (16)	-0.014(7)	0.010 (8)	-0.086(11)
C65	0.052 (6)	0.116(12)	0.111 (10)	0.002 (7)	-0.019(6)	-0.064(9)
C66	0.045(5)	0.076 (7)	0.087 (8)	0.004 (5)	-0.011(5)	-0.039(6)
C71	0.036(4)	0.045(4)	0.038(4)	-0.003(3)	-0.003(3)	-0.012(3)
C72	0.064 (6)	0.047(5)	0.045(4)	0.001 (4)	-0.010(4)	-0.016(4)
C73	0.069(7)	0.070(7)	0.066 (6)	-0.015(5)	-0.021(5)	-0.022(5)
C74	0.049(5)	0.080(7)	0.060 (6)	-0.001(5)	-0.021(4)	-0.017(5)
C75	0.054(5)	0.057(6)	0.076(7)	0.020(5)	-0.023(5)	-0.017(5)
C76	0.039(4)	0.049(5)	0.063(5)	0.013(4)	-0.015(4)	-0.012(4)
C81	0.046 (4)	0.031 (4)	0.052(5)	-0.003(3)	-0.009(4)	-0.013(3)
C82	0.061 (5)	0.050(5)	0.063(5)	-0.008(4)	-0.002(4)	-0.037(4)
C83	0.086 (8)	0.088 (9)	0.065 (6)	-0.016(7)	0.002 (6)	-0.048(6)
C84	0.083(7)	0.000(7)	0.061 (6)	-0.020(6)	-0.002(0)	-0.037(5)
~~ .	0.000 (7)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.001 (0)	0.020(0)	0.000 (0)	0.007 (0)

C85	0.047 (5)	0.054 (5)	0.063 (6)	-0.008(4)	-0.013 (4)	-0.019 (4)
C86	0.060 (5)	0.038 (4)	0.051 (5)	-0.005 (4)	-0.009 (4)	-0.022(4)
C91	0.042 (4)	0.038 (4)	0.050 (4)	-0.007(3)	0.001 (3)	-0.023(4)
C92	0.051 (5)	0.057 (6)	0.059 (5)	-0.008(4)	-0.007 (4)	-0.017(5)
C93	0.057 (6)	0.076 (7)	0.061 (6)	-0.009(5)	-0.009(5)	-0.023(5)
C94	0.064 (6)	0.068(7)	0.084(8)	-0.017(5)	-0.010(6)	-0.033(6)
C95	0.087(8)	0.060 (6)	0.063 (6)	-0.025(6)	-0.004(6)	-0.014(5)
C96	0.062(0)	0.041(5)	0.002(0)	-0.026(0)	0.000(4)	-0.010(4)
C101	0.061(5)	0.011(5)	0.032(3)	-0.002(4)	0.000(1) 0.003(4)	-0.019(4)
C101	0.002(5)	0.031(5)	0.055(4)	0.002(4)	-0.015(4)	-0.036(5)
C102	0.030(3)	0.071(0)	0.053(5)	0.003(4)	-0.019(4)	-0.038(6)
C103	0.070(7)	0.092(8)	0.037(0)	0.001(0)	-0.017(5)	-0.038(0)
C104	0.093(8)	0.083(8)	0.058(0)	0.009(7)	0.027(0)	0.040(0)
C105	0.090(9)	0.085(8)	0.032(6)	0.029(7)	-0.014(0)	-0.034(0)
C100	0.076(7)	0.007(0)	0.040(3)	0.018(3)	-0.012(3)	-0.027(3)
CIII	0.054 (4)	0.025(3)	0.037(4)	-0.001(3)	-0.013(3)	-0.010(3)
CH2	0.052 (5)	0.039 (4)	0.063 (5)	0.002 (4)	-0.011 (4)	-0.025 (4)
CII3	0.059 (6)	0.051 (6)	0.076 (7)	-0.002 (4)	-0.020 (5)	-0.021(5)
C114	0.092 (8)	0.048 (5)	0.059 (6)	0.003 (5)	-0.033 (5)	-0.024 (4)
C115	0.092 (8)	0.052 (6)	0.050 (5)	-0.006 (5)	-0.005 (5)	-0.027 (4)
C116	0.051 (5)	0.039 (4)	0.046 (4)	0.002 (4)	-0.001 (4)	-0.014 (4)
C121	0.039 (4)	0.051 (5)	0.040 (4)	0.005 (3)	-0.007(3)	-0.018 (4)
C122	0.069 (6)	0.053 (6)	0.065 (6)	-0.009(5)	-0.022 (5)	-0.026 (5)
C123	0.076 (8)	0.096 (10)	0.095 (9)	-0.005 (7)	-0.042 (7)	-0.041 (8)
C124	0.068 (7)	0.133 (13)	0.075 (8)	0.005 (8)	-0.038 (6)	-0.038 (8)
C125	0.075 (8)	0.104 (11)	0.067 (7)	0.012 (7)	-0.034 (6)	0.000(7)
C126	0.047 (5)	0.074 (7)	0.051 (5)	0.013 (4)	-0.022 (4)	-0.011 (5)
C131	0.044 (4)	0.040 (4)	0.039 (4)	0.003 (3)	-0.008 (3)	-0.015 (3)
C132	0.067 (6)	0.038 (4)	0.045 (4)	-0.009 (4)	-0.014 (4)	-0.010 (4)
C133	0.057 (5)	0.043 (5)	0.053 (5)	-0.011 (4)	-0.007 (4)	-0.014 (4)
C134	0.046 (4)	0.046 (5)	0.055 (5)	-0.005 (4)	0.004 (4)	-0.023 (4)
C135	0.047 (5)	0.048 (5)	0.051 (5)	0.002 (4)	-0.004 (4)	-0.011 (4)
C136	0.052 (5)	0.032 (4)	0.056 (5)	0.000 (3)	-0.004(4)	-0.015 (4)
C141	0.044 (4)	0.042 (4)	0.039 (4)	-0.007(3)	-0.004(3)	-0.013 (3)
C142	0.105 (9)	0.044 (5)	0.044 (5)	0.003 (5)	0.009 (5)	-0.012 (4)
C143	0.078 (7)	0.039 (5)	0.055 (5)	0.000 (5)	0.005 (5)	-0.012 (4)
C144	0.070 (7)	0.057 (6)	0.055 (6)	-0.017 (5)	0.002 (5)	-0.006(5)
C145	0.177 (16)	0.085 (9)	0.050 (6)	-0.068 (10)	0.035 (8)	-0.029 (6)
C146	0.142 (12)	0.064 (7)	0.046 (5)	-0.034(8)	0.020(7)	-0.023(5)
C151	0.040 (4)	0.036 (4)	0.037 (4)	0.001 (3)	-0.004(3)	-0.010(3)
C152	0.045 (4)	0.034(4)	0.042(4)	0.002(3)	0.000(3)	-0.011(3)
C153	0.051(5)	0.048(5)	0.040(4)	0.002(0)	-0.005(3)	-0.015(4)
C154	0.031(3)	0.049(5)	0.047(4)	0.003(1)	0.002(3)	-0.021(4)
C155	0.060(5)	0.040(4)	0.048(5)	-0.014(4)	0.002(3)	-0.009(4)
C156	0.000(3)	0.040(4)	0.043(4)	-0.004(3)	-0.008(3)	-0.003(3)
C161	0.034(4)	0.038 (4)	0.030(4)	-0.007(3)	-0.012(3)	-0.003(3)
C162	0.034(4)	0.030(4)	0.039(4)	-0.002(3)	-0.012(3)	-0.010(3)
C162	0.0+5(+)	0.077(3)	0.040(4)		-0.017(3)	-0.008(4)
C105	0.0+3(3)	0.047(3)	0.002(3)		-0.017(4)	0.000(4)
C104	0.031 (3)	0.050(5)	0.040(4)	-0.018 (4)	-0.013 (4)	0.005 (4)

C165	0.056 (5)	0.067 (6)	0.040 (4)	-0.017 (5)	0.001 (4)	-0.023 (4)
C166	0.047 (5)	0.044 (5)	0.053 (5)	-0.004 (4)	-0.002 (4)	-0.017 (4)
C171	0.029 (3)	0.047 (4)	0.040 (4)	-0.001(3)	-0.005 (3)	-0.012(3)
C172	0.039 (4)	0.069 (7)	0.057 (5)	-0.014 (4)	0.002 (4)	-0.003(5)
C173	0.049 (6)	0.092 (10)	0.096 (9)	-0.013(6)	0.023 (6)	0.008 (8)
C174	0.052 (6)	0.103 (11)	0.100 (10)	0.010(7)	0.027 (7)	-0.020(8)
C175	0.056 (6)	0.072 (8)	0.098 (9)	0.025 (6)	0.008 (6)	-0.021(7)
C176	0.049 (5)	0.053 (5)	0.066 (6)	0.006 (4)	0.012 (4)	-0.016(5)
C181	0.050 (4)	0.027 (3)	0.040 (4)	-0.004(3)	0.002 (3)	-0.015(3)
C182	0.060 (5)	0.034(4)	0.058 (5)	0.008 (4)	-0.006(4)	-0.022(4)
C183	0.097 (8)	0.050(5)	0.043(5)	0.000(1)	-0.006(5)	-0.024(4)
C184	0.063 (6)	0.028(5) 0.048(5)	0.062(6)	0.009(4)	0.000(2)	-0.024(4)
C185	0.055(5)	0.010(5)	0.002(0)	0.007(4)	-0.002(5)	-0.024(5)
C186	0.030(3)	0.030(5) 0.044(5)	0.072(0)	0.007(1) 0.005(3)	0.002(3)	-0.019(4)
C101	0.063(5)	0.011(5)	0.030(3)	-0.010(4)	0.000(1)	-0.017(4)
C192	0.003(3)	0.000(0)	0.057 (6)	-0.017(7)	0.000(4) 0.004(5)	-0.045(6)
C193	0.070(7)	0.100(10) 0.123(11)	0.057 (0)	-0.036(8)	0.013 (6)	-0.059(7)
C193	0.094(9)	0.123(11) 0.074(8)	0.058 (6)	-0.007(7)	0.013(0)	-0.036(7)
C194	0.033(3)	0.074(8) 0.103(10)	0.038(0)	0.007(7)	-0.001(6)	-0.055(8)
C195	0.077 (8)	0.103(10)	0.078(8)	0.028(7)	-0.012(5)	-0.050(3)
C190	0.030(0)	0.104(10)	0.073(7)	0.023(0)	-0.012(3)	-0.030(7)
C201	0.043(4)	0.041(4)	0.047(4)	0.009(3)	-0.002(5)	-0.013(3)
C202	0.003(0)	0.031(0)	0.000(0)	0.008(3)	-0.008(3) -0.024(7)	-0.012(3)
C203	0.082(8)	0.000(7)	0.097(9)	0.027(0)	-0.024(7)	-0.024(7)
C204	0.077(8)	0.090(10)	0.147(14) 0.121(11)	0.042 (8)	-0.033(9)	-0.0/3(10)
C205	0.067(7)	0.068(8)	0.121(11)	0.004 (6)	0.025 (7)	-0.04/(8)
C206	0.041(5)	0.057(6)	0.087(7)	0.009 (4)	-0.003(5)	-0.027(5)
C211 C212	0.046 (4)	0.037(4)	0.051(4)	0.000(3)	0.001 (4)	-0.020(4)
C212	0.049 (5)	0.035 (4)	0.060 (5)	0.003 (3)	-0.003 (4)	-0.016 (4)
C213	0.065 (6)	0.051 (6)	0.063 (6)	0.019 (5)	-0.002 (5)	-0.011(5)
C214	0.086 (8)	0.056 (6)	0.070 (7)	0.029 (6)	0.001 (6)	-0.023(5)
C215	0.123 (11)	0.066 (7)	0.066 (7)	0.018 (7)	-0.007 (7)	-0.036 (6)
C216	0.078 (7)	0.054 (6)	0.069 (6)	0.014 (5)	-0.016 (5)	-0.038 (5)
C221	0.029 (3)	0.040 (4)	0.034 (3)	0.007 (3)	-0.008 (3)	-0.012 (3)
C222	0.037 (4)	0.047 (5)	0.065 (5)	-0.004(4)	-0.003 (4)	-0.015 (4)
C223	0.043 (5)	0.055 (6)	0.064 (6)	-0.009(4)	0.003 (4)	-0.008(5)
C224	0.043 (5)	0.071 (7)	0.069 (6)	0.006 (5)	0.007 (4)	-0.014 (5)
C225	0.081 (8)	0.047 (6)	0.119 (10)	0.018 (6)	0.041 (8)	-0.028 (6)
C226	0.058 (6)	0.041 (5)	0.079 (7)	-0.005 (4)	0.023 (5)	-0.022 (5)
C231	0.045 (4)	0.043 (5)	0.072 (6)	0.010 (4)	-0.025 (4)	-0.019 (4)
C232	0.046 (5)	0.070 (7)	0.082 (7)	0.018 (5)	-0.021 (5)	-0.031 (6)
C233	0.055 (6)	0.108 (11)	0.127 (12)	0.025 (7)	-0.026 (7)	-0.074 (10)
C234	0.082 (9)	0.074 (9)	0.156 (15)	0.037 (7)	-0.063 (10)	-0.062 (10)
C235	0.082 (9)	0.049 (6)	0.144 (13)	0.018 (6)	-0.069 (9)	-0.032 (7)
C236	0.062 (6)	0.051 (6)	0.098 (8)	0.006 (5)	-0.041 (6)	-0.020 (6)
C241	0.044 (4)	0.057 (5)	0.037 (4)	-0.010 (4)	-0.003 (3)	-0.014 (4)
C242	0.062 (6)	0.099 (9)	0.044 (5)	0.003 (6)	-0.023 (4)	-0.017 (5)
C243	0.071 (7)	0.144 (13)	0.043 (5)	0.008 (8)	-0.012 (5)	-0.032 (7)
C244	0.067 (7)	0.115 (11)	0.064 (7)	-0.010 (7)	0.008 (5)	-0.054 (7)

data reports

C245	0.064 (6)	0.059 (6)	0.070 (6)	-0.003(5)	0.004 (5)	-0.037 (5)
C246	0.066 (6)	0.052 (5)	0.055 (5)	-0.003 (5)	0.005 (4)	-0.025 (4)

Geometric parameters (Å, °)

Sn1—O1	1.993 (4)	С92—Н92	0.9300
Sn1—O11	2.071 (5)	С92—С93	1.372 (14)
Sn1—O21	2.293 (6)	С93—Н93	0.9300
Sn1—C51	2.087 (9)	C93—C94	1.395 (15)
Sn1—C61	2.127 (8)	C94—H94	0.9300
Sn2—O1	2.049 (5)	C94—C95	1.369 (17)
Sn2—O2	2.112 (5)	С95—Н95	0.9300
Sn2—O21	2.243 (6)	C95—C96	1.395 (14)
Sn2—C71	2.090 (8)	С96—Н96	0.9300
Sn2—C81	2.113 (8)	C101—C102	1.409 (14)
Sn3—O2	1.995 (4)	C101—C106	1.394 (13)
Sn3—O31	2.095 (6)	C102—H102	0.9300
Sn3—O41	2.268 (6)	C102—C103	1.409 (13)
Sn3—C91	2.103 (8)	С103—Н103	0.9300
Sn3—C101	2.096 (9)	C103—C104	1.366 (16)
Sn4—O1	2.098 (5)	C104—H104	0.9300
Sn4—O2	2.029 (6)	C104—C105	1.380 (17)
Sn4—O41	2.305 (6)	C105—H105	0.9300
Sn4—C111	2.102 (7)	C105—C106	1.381 (15)
Sn4—C121	2.112 (8)	C106—H106	0.9300
Sn5—O3	2.011 (5)	C111—C112	1.408 (12)
Sn5—O131	2.099 (5)	C111—C116	1.398 (11)
Sn5—O141	2.303 (6)	C112—H112	0.9300
Sn5—C191	2.101 (8)	C112—C113	1.377 (13)
Sn5—C201	2.094 (8)	С113—Н113	0.9300
Sn6—O3	2.031 (5)	C113—C114	1.388 (16)
Sn6—O4	2.089 (5)	C114—H114	0.9300
Sn6—O141	2.266 (6)	C114—C115	1.367 (16)
Sn6—C171	2.117 (7)	C115—H115	0.9300
Sn6—C181	2.125 (7)	C115—C116	1.407 (13)
Sn7—O4	2.011 (5)	C116—H116	0.9300
Sn7—O151	2.081 (5)	C121—C122	1.378 (13)
Sn7—O161	2.290 (6)	C121—C126	1.406 (13)
Sn7—C231	2.106 (9)	C122—H122	0.9300
Sn7—C241	2.074 (8)	C122—C123	1.389 (15)
Sn8—O3	2.103 (5)	С123—Н123	0.9300
Sn8—O4	2.040 (5)	C123—C124	1.370 (19)
Sn8—O161	2.243 (5)	C124—H124	0.9300
Sn8—C211	2.130 (8)	C124—C125	1.35 (2)
Sn8—C221	2.095 (7)	C125—H125	0.9300
Cl1—C1	1.708 (11)	C125—C126	1.377 (15)
Cl2—C1	1.746 (10)	С126—Н126	0.9300
Cl3—C1	1.759 (11)	C131—C132	1.427 (11)

C111—C2	1.741 (10)	C131—C136	1.412 (12)
Cl12—C2	1.745 (12)	C132—H132	0.9300
Cl13—C2	1.723 (11)	C132—C133	1.380 (12)
Cl21—C3	1.71 (2)	С133—Н133	0.9300
C122 - C3	1 75 (2)	C133—C134	1 394 (14)
C123-C3	1 699 (16)	C_{134} C_{135}	1401(12)
011-011	1 328 (10)	C135—H135	0.9300
018-017	1.320(10) 1.231(11)	C_{135} C_{136}	1 386 (13)
019 - N17	1 228 (11)	C136—H136	0.9300
021-021	1 360 (10)	$C_{141} - C_{142}$	1.376(13)
$021 \ 021$ $028 \ N27$	1.300(10) 1.215(14)	C141 - C142	1.375(13)
020 - N27	1.213(14) 1.244(13)	C142 - H142	0.9300
0.25 - 1.27 0.31 - 0.31	1.244(13) 1.317(11)	C142 - C142	1 391 (13)
038—N37	1.317(11) 1.225(12)	C143 - H143	0.9300
030 N37	1.223(12) 1.221(13)	C143 - C144	1.358(14)
039-1037	1.221(13) 1.364(10)	C144 - C145	1.338(14) 1.357(17)
O48 N47	1.304(10) 1.227(13)	$C_{145} = C_{145}$	0.0300
O40 = N47	1.227(13) 1.210(13)	C145 - C146	1.403(15)
049 - 1047	1.219(13) 1.218(10)	C145 - C140	1.403(13)
0131 - 0131	1.318(10) 1.214(12)	$C_{140} = 11140$	1.404(12)
O130 - N137	1.214(12) 1.240(12)	C151 - C152	1.404(12) 1.424(10)
O139 - N137	1.240(12) 1.356(10)	$C_{151} = C_{150}$	1.424(10)
0141 - 0141	1.330(10) 1.215(12)	C152—H152	0.9300
0140-N147	1.213(13) 1.228(14)	C152—C155	1.303(12)
0149—N14/	1.228 (14)	С153—Н153	0.9300
0151-0151	1.322(10)	C153—C154	1.379 (12)
0158—N157	1.231(11)	C154—C155	1.385 (13)
0159—N157	1.222(10)	С155—Н155	0.9300
0161 - 0161	1.330 (9)		1.372 (13)
0168—N167	1.226 (14)	C156—H156	0.9300
0169—N16/	1.240 (13)	C161 - C162	1.395 (12)
N17	1.462 (11)	C161 - C166	1.401 (12)
N27—C24	1.447 (12)	С162—Н162	0.9300
N37—C34	1.448 (13)	C162—C163	1.386 (12)
N47—C44	1.459 (13)	C163—H163	0.9300
N137—C134	1.437 (12)	C163—C164	1.381 (14)
N147—C144	1.469 (12)	C164—C165	1.389 (14)
N157—C154	1.455 (11)	С165—Н165	0.9300
N167—C164	1.465 (11)	C165—C166	1.391 (12)
C1—H1	0.9800	С166—Н166	0.9300
C2—H2	0.9800	C171—C172	1.402 (12)
C3—H3	0.9800	C171—C176	1.379 (13)
C11—C12	1.392 (11)	С172—Н172	0.9300
C11—C16	1.419 (11)	C172—C173	1.389 (15)
C12—H12	0.9300	С173—Н173	0.9300
C12—C13	1.379 (12)	C173—C174	1.388 (19)
С13—Н13	0.9300	C174—H174	0.9300
C13—C14	1.374 (12)	C174—C175	1.333 (18)
C14—C15	1.397 (13)	С175—Н175	0.9300

C15—H15	0.9300	C175—C176	1.393 (13)
C15—C16	1.376 (13)	C176—H176	0.9300
C16—H16	0.9300	C181—C182	1.387 (12)
C21—C22	1.407 (11)	C181—C186	1.408 (12)
C21—C26	1.395 (12)	C182—H182	0.9300
С22—Н22	0.9300	C182—C183	1.407 (12)
C22—C23	1.394 (13)	C183—H183	0.9300
С23—Н23	0.9300	C183—C184	1.377 (16)
C23—C24	1.389 (15)	C184—H184	0.9300
C24—C25	1.386 (14)	C184—C185	1.384 (15)
C25—H25	0.9300	C185—H185	0.9300
C25—C26	1.385 (13)	C185—C186	1.390 (12)
C26—H26	0.9300	C186—H186	0.9300
$C_{31} - C_{32}$	1402(12)	C191 - C192	1 383 (13)
$C_{31} - C_{36}$	1430(12)	C191 - C196	1 391 (14)
C32—H32	0.9300	C192—H192	0.9300
C_{32} C_{33}	1410(13)	C192 - C193	1 381 (16)
C33_H33	0.9300	C192—H193	0.9300
C_{33} C_{34}	1 383 (13)	C193—C194	1 366 (19)
C_{34} C_{35}	1.380(14)	C194 H194	0.0300
$C_{35} = H_{35}$	0.0300	C194 - C195	1 351 (18)
C35_C36	1 386 (13)	$C_{195} = 0_{195}$	0.0300
C36 H36	0.0300	C195—11195	1.385(14)
C_{30}	1.401(12)	C106 H106	0.0200
C41 - C42	1.401(12)	С190—П190	0.9300
$C_{41} = C_{40}$	1.394 (12)	$C_{201} - C_{202}$	1.398 (13)
C42—H42	0.9300	$C_{201} - C_{206}$	1.406 (13)
C42 - C43	1.393 (13)	C202—H202	0.9300
C43—H43	0.9300	$C_{202} - C_{203}$	1.401 (16)
C43—C44	1.389 (13)	C203—H203	0.9300
C44—C45	1.383 (15)	C203—C204	1.37 (2)
С45—Н45	0.9300	С204—Н204	0.9300
C45—C46	1.368 (14)	C204—C205	1.38 (2)
C46—H46	0.9300	С205—Н205	0.9300
C51—C52	1.403 (13)	C205—C206	1.362 (15)
C51—C56	1.406 (12)	С206—Н206	0.9300
С52—Н52	0.9300	C211—C212	1.394 (13)
C52—C53	1.400 (14)	C211—C216	1.385 (13)
С53—Н53	0.9300	С212—Н212	0.9300
C53—C54	1.368 (17)	C212—C213	1.390 (13)
C54—H54	0.9300	С213—Н213	0.9300
C54—C55	1.376 (18)	C213—C214	1.341 (16)
С55—Н55	0.9300	C214—H214	0.9300
C55—C56	1.392 (15)	C214—C215	1.403 (19)
С56—Н56	0.9300	C215—H215	0.9300
C61—C62	1.385 (14)	C215—C216	1.390 (15)
C61—C66	1.390 (15)	C216—H216	0.9300
С62—Н62	0.9300	C221—C222	1.388 (11)
C62—C63	1.373 (16)	C221—C226	1.383 (12)

С63—Н63	0.9300	С222—Н222	0.9300
C63—C64	1.37 (2)	C222—C223	1.375 (12)
С64—Н64	0.9300	С223—Н223	0.9300
C64—C65	1.43 (2)	C223—C224	1.357 (15)
С65—Н65	0.9300	C224—H224	0.9300
C65—C66	1.394 (16)	C224—C225	1.358 (15)
С66—Н66	0.9300	С225—Н225	0.9300
C71—C72	1.395 (12)	C225—C226	1.374 (13)
C71—C76	1.383 (12)	С226—Н226	0.9300
С72—Н72	0.9300	C231—C232	1.375 (15)
С72—С73	1.408 (14)	C231—C236	1.409 (14)
С73—Н73	0.9300	С232—Н232	0.9300
C73—C74	1.376 (16)	C232—C233	1.404 (15)
С74—Н74	0.9300	С233—Н233	0.9300
C74—C75	1.373 (15)	C233—C234	1.40 (2)
С75—Н75	0.9300	C234—H234	0.9300
C75 - C76	1 407 (14)	$C_{234} - C_{235}$	1.37(2)
C76—H76	0.9300	C235—H235	0.9300
C81 - C82	1 411 (12)	$C_{235} - C_{236}$	1.367(17)
$C_{81} - C_{86}$	1.382(12)	С236—Н236	0.9300
C82 - H82	0.9300	$C_{241} - C_{242}$	1406(13)
C82 - C83	1 398 (14)	$C_{241} - C_{246}$	1.100(19) 1 414 (14)
C83—H83	0.9300	C242—H242	0.9300
C83 - C84	1 391 (16)	$C_{242} - C_{243}$	1 389 (16)
C84—H84	0.9300	C_{243} H243	0.9300
C84 - C85	1 362 (14)	$C_{243} = C_{243} = C_{244}$	1349(19)
C85_H85	0.9300	$C_{243} = C_{244}$	0.9300
$C_{85} - C_{86}$	1 385 (12)	$C_{244} = C_{245}$	1.372(17)
C86—H86	0.9300	C_{245} H245	0.9300
C91-C92	1 407 (14)	$C_{245} = C_{245}$	1.392(13)
C91 - C96	1 396 (12)	C246_H246	0.9300
	1.590 (12)	6240 11240	0.9500
O1—Sn1—O11	79.7 (2)	C81—C86—C85	121.2 (9)
O1—Sn1—O21	71.0 (2)	С81—С86—Н86	119.4
O1—Sn1—C51	112.9 (3)	С85—С86—Н86	119.4
O1—Sn1—C61	115.4 (3)	C92—C91—Sn3	116.6 (6)
O11—Sn1—O21	150.6 (2)	C96—C91—Sn3	123.2 (7)
O11—Sn1—C51	102.1 (3)	C96—C91—C92	120.3 (8)
O11—Sn1—C61	100.1 (3)	С91—С92—Н92	120.4
C51—Sn1—O21	91.7 (3)	C93—C92—C91	119.2 (9)
C51—Sn1—C61	129.5 (4)	С93—С92—Н92	120.4
C61—Sn1—O21	90.5 (3)	С92—С93—Н93	119.6
O1—Sn2—O2	72.52 (19)	С92—С93—С94	120.8 (11)
O1—Sn2—O21	71.1 (2)	С94—С93—Н93	119.6
O1—Sn2—C71	113.0 (3)	С93—С94—Н94	120.0
O1—Sn2—C81	105.7 (3)	C95—C94—C93	119.9 (10)
O2—Sn2—O21	143.2 (2)	С95—С94—Н94	120.0
O2—Sn2—C81	99.3 (3)	С94—С95—Н95	119.6

C71—Sn2—O2	97.5 (3)	C94—C95—C96	120.8 (10)
C71—Sn2—O21	91.1 (3)	С96—С95—Н95	119.6
C71—Sn2—C81	140.9 (3)	С91—С96—Н96	120.5
C81—Sn2—O21	96.1 (3)	C95—C96—C91	118.9 (10)
O2—Sn3—O31	79.0 (2)	С95—С96—Н96	120.5
O2—Sn3—O41	71.3 (2)	C102—C101—Sn3	119.8 (6)
O2—Sn3—C91	113.9 (3)	C106—C101—Sn3	121.8 (8)
O2—Sn3—C101	111.7 (3)	C106—C101—C102	118.0 (9)
O31—Sn3—O41	150.3 (2)	C101—C102—H102	120.2
O31—Sn3—C91	96.1 (3)	C103—C102—C101	119.5 (9)
C91—Sn3—O41	94.0 (3)	C103—C102—H102	120.2
C101—Sn3—O31	98.0 (3)	C102—C103—H103	119.6
C101—Sn3—O41	94.8 (3)	C104—C103—C102	120.8 (11)
C101—Sn3—C91	134.0 (3)	C104—C103—H103	119.6
O1—Sn4—O41	143.2 (2)	C103—C104—H104	120.1
O1—Sn4—C111	102.0 (2)	C103—C104—C105	119.8 (10)
O1—Sn4—C121	101.0 (3)	C105—C104—H104	120.1
O2—Sn4—O1	73.19 (19)	C104—C105—H105	119.8
O2—Sn4—O41	70.0 (2)	C104—C105—C106	120.5 (11)
O2—Sn4—C111	111.7 (3)	C106—C105—H105	119.8
O2—Sn4—C121	112.4 (3)	C101—C106—H106	119.4
C111—Sn4—O41	92.3 (3)	C105—C106—C101	121.3 (11)
C111—Sn4—C121	134.4 (3)	C105—C106—H106	119.4
C121—Sn4—O41	92.2 (3)	C112—C111—Sn4	118.4 (6)
O3—Sn5—O131	79.8 (2)	C116—C111—Sn4	123.7 (6)
O3—Sn5—O141	70.83 (19)	C116—C111—C112	117.9 (8)
O3—Sn5—C191	110.1 (3)	C111—C112—H112	119.1
O3—Sn5—C201	113.8 (3)	C113—C112—C111	121.7 (9)
O131—Sn5—O141	150.4 (2)	C113—C112—H112	119.1
O131—Sn5—C191	98.5 (3)	C112—C113—H113	120.7
C191—Sn5—O141	94.6 (3)	C112—C113—C114	118.6 (10)
C201—Sn5—O131	97.7 (3)	C114—C113—H113	120.7
C201—Sn5—O141	91.4 (3)	C113—C114—H114	119.0
C201—Sn5—C191	135.2 (4)	C115—C114—C113	122.1 (9)
O3—Sn6—O4	72.3 (2)	C115—C114—H114	119.0
O3—Sn6—O141	71.3 (2)	C114—C115—H115	120.5
O3—Sn6—C171	113.7 (3)	C114—C115—C116	119.0 (10)
O3—Sn6—C181	111.1 (3)	C116—C115—H115	120.5
O4—Sn6—O141	143.5 (2)	C111—C116—C115	120.6 (9)
O4—Sn6—C171	100.0 (3)	C111—C116—H116	119.7
O4—Sn6—C181	101.4 (3)	C115—C116—H116	119.7
C171—Sn6—O141	92.8 (3)	C122—C121—Sn4	118.5 (7)
C171—Sn6—C181	134.4 (3)	C122—C121—C126	120.4 (9)
C181—Sn6—O141	93.3 (3)	C126—C121—Sn4	120.9 (7)
O4—Sn7—O151	79.3 (2)	C121—C122—H122	120.6
O4—Sn7—O161	71.32 (19)	C121—C122—C123	118.8 (11)
O4—Sn7—C231	116.1 (3)	C123—C122—H122	120.6
O4—Sn7—C241	113.7 (3)	C122—C123—H123	119.4

O151—Sn7—O161	150.5 (2)	C124—C123—C122	121.2 (12)
O151—Sn7—C231	100.3 (3)	C124—C123—H123	119.4
C231—Sn7—O161	90.5 (3)	C123—C124—H124	120.4
C241—Sn7—O151	102.3 (3)	C125—C124—C123	119.2 (11)
C241—Sn7—O161	91.9 (3)	C125—C124—H124	120.4
C241—Sn7—C231	128.1 (4)	C124—C125—H125	118.8
O3—Sn8—O161	143.2 (2)	C124—C125—C126	122.5 (12)
O3—Sn8—C211	99.1 (3)	C126—C125—H125	118.8
O4—Sn8—O3	71.8 (2)	C121—C126—H126	121.0
O4—Sn8—O161	71.8 (2)	C125—C126—C121	117.9 (11)
O4—Sn8—C211	107.2 (3)	C125—C126—H126	121.0
O4—Sn8—C221	114.5 (3)	O131—C131—C132	118.4 (8)
C211—Sn8—O161	96.6 (3)	O131—C131—C136	124.3 (8)
C221—Sn8—O3	98.0 (2)	C136—C131—C132	117.3 (8)
C221—Sn8—O161	92.1 (2)	C131—C132—H132	118.9
C221—Sn8—C211	138.0 (3)	C133—C132—C131	122.1 (9)
Sn1—O1—Sn2	118.0 (2)	C133—C132—H132	118.9
Sn1—O1—Sn4	135.0 (3)	С132—С133—Н133	121.0
Sn2—O1—Sn4	107.0 (2)	C132—C133—C134	118.1 (8)
Sn3—O2—Sn2	132.8 (3)	C134—C133—H133	121.0
Sn3—O2—Sn4	119.5 (3)	C133—C134—N137	118.6 (8)
Sn4—O2—Sn2	107.2 (2)	C133—C134—C135	122.3 (9)
Sn5—O3—Sn6	118.7 (2)	C135—C134—N137	119.1 (9)
Sn5—O3—Sn8	133.2 (2)	C134—C135—H135	120.7
Sn6—O3—Sn8	107.8 (2)	C136—C135—C134	118.6 (9)
Sn7—O4—Sn6	134.7 (3)	C136—C135—H135	120.7
Sn7—O4—Sn8	117.3 (2)	C131—C136—H136	119.3
Sn8—O4—Sn6	108.1 (2)	C135—C136—C131	121.5 (8)
C11—O11—Sn1	127.7 (5)	C135—C136—H136	119.3
Sn2-O21-Sn1	99.6 (2)	0141 - C141 - C142	121.6 (8)
$C_{21} = O_{21} = S_{n1}$	130.2 (5)	0141 - C141 - C146	120.5 (8)
$C_{21} = O_{21} = S_{n2}$	125.2(5)	C146-C141-C142	117.9 (9)
$C_{31} = O_{31} = S_{n3}$	132.6 (5)	C141 - C142 - H142	119.0
Sn3—041—Sn4	99.0 (2)	C141 - C142 - C143	122.0 (9)
C41—O41—Sn3	132.0 (5)	C143 - C142 - H142	119.0
C41—O41—Sn4	129.0 (5)	C142—C143—H143	120.8
$C_{131} - O_{131} - S_{n5}$	132.9 (5)	C144 - C143 - C142	118.5 (10)
Sn6—0141—Sn5	99.1 (2)	C144—C143—H143	120.8
C141—O141—Sn5	134.5 (5)	C143—C144—N147	118.8 (11)
C141 - O141 - Sn6	126.0 (5)	C143—C144—C145	121.6 (10)
$C_{151} - O_{151} - S_{n7}$	127.8 (5)	C145—C144—N147	119.5(10)
Sn8—0161—Sn7	99.5 (2)	C144—C145—H145	120.4
$C_{161} - O_{161} - S_{n7}$	1313(5)	C144 - C145 - C146	1193(10)
C161—O161—Sn8	125.2 (5)	C146—C145—H145	120.4
018—N17—C14	118.4 (8)	C141 - C146 - C145	120.7 (11)
019—N17—018	122.8 (8)	C141—C146—H146	119.7
019—N17—C14	118.8 (8)	C145—C146—H146	119.7
028—N27—029	121 9 (10)	0151—C151—C152	125.1 (7)

O28—N27—C24	118.7 (11)	O151—C151—C156	117.7 (7)
O29—N27—C24	119.3 (11)	C152—C151—C156	117.1 (8)
O38—N37—C34	118.5 (10)	C151—C152—H152	118.9
O39—N37—O38	122.2 (10)	C153—C152—C151	122.1 (8)
O39—N37—C34	119.3 (10)	C153—C152—H152	118.9
O48—N47—C44	119.0 (9)	C152—C153—H153	120.5
O49—N47—O48	125.2 (10)	C152—C153—C154	119.0 (9)
O49—N47—C44	115.8 (10)	C154—C153—H153	120.5
O138—N137—O139	121.7 (10)	C153—C154—N157	119.7 (8)
0138—N137—C134	120.0 (10)	C153—C154—C155	121.7 (9)
0139 N137 C134	118 2 (9)	C155 - C154 - N157	1185(8)
0148 N147 0149	123.1(10)	C154 - C155 - H155	120.4
0148 N147 C144	119.6 (10)	C156-C155-C154	119 3 (8)
0149 N147 C144	117.3 (11)	C156—C155—H155	120.4
0158 - N157 - C154	118 4 (8)	C151—C156—H156	119.6
0159 - N157 - 0158	122 7 (8)	C155 - C156 - C151	120.8 (8)
0159 - N157 - C154	122.7(0) 118.9(8)	C155 - C156 - H156	119.6
0168 - N167 - 0169	1234(9)	0161 - C161 - C162	119.0 119.7(7)
0168 - N167 - C164	123.4(9) 117.2(10)	0161 - C161 - C162	119.7(7) 121.7(7)
0169 - N167 - C164	117.2(10) 119.3(10)	C_{162} C_{161} C_{166} C_{1	121.7(7)
$C_{11} - C_{12}$	112.6 (6)	C161 - C162 - H162	110.0 (0)
$C_{11} = C_{12} = C_{12}$	112.0(0) 111.2(6)	$C_{101} = C_{102} = 11102$	117.4
	108.0	$C_{103} - C_{102} - C_{101}$	119.4
C_{12} C_{1} C_{13}	108.0 (6)	$C_{103} = C_{102} = H_{102}$	112.4
$C_{12} = C_1 = C_{13}$	108.9 (0)	$C_{102} = C_{103} = 11103$	120.0 118.4.(0)
$C_{12} = C_1 = H_1$	108.0	C164 - C163 - C162	110.4 (9)
$C_{111} = C_{12} = C_{112}$	108.0	$C_{104} = C_{105} = 11105$	120.8 117.0(10)
$C_{111} = C_2 = C_{112}$	109.5 (0)	$C_{103} = C_{104} = M_{107}$	117.9(10) 122.6(8)
$C_{112} C_{2} H_{2}$	107.8	$C_{105} = C_{104} = C_{105}$	122.0(8)
$C_{112} - C_2 - C_{112}$	107.8	C164 = C165 = H165	119.3 (10)
$C_{113} = C_2 = C_{112}$	112.0(0) 111.7(7)	$C_{104} = C_{105} = 1105$	121.1 117.0(0)
$C_{113} = C_2 = C_{112}$	111.7 (7)	$C_{104} = C_{105} = C_{100}$	117.5 (5)
$C_{113} - C_{2} - H_{2}$	107.0 110.8(10)	С160—С165—Н165	121.1
$C_{121} = C_{3} = C_{122}$	106.7	$C_{101} = C_{100} = 11100$	119.4 121.2(0)
$C_{121} - C_{3} - H_{3}$	106.7	C105 - C100 - C101	121.2 (9)
$C_{122} = C_{3} = C_{13}$	100.7 114.2(12)	C103 - C100 - 11100	119.4 121.2(7)
$C_{123} = C_{3} = C_{121}$	114.2(13) 111.2(11)	C172 - C171 - S10	121.2(7)
$C_{123} = C_{3} = C_{122}$	111.5 (11)	C176 - C171 - C172	110.0(0)
$C_{123} - C_{3} - H_{3}$	100.7 123.7(7)	C170 - C171 - C172	120.0 (8)
011 - 011 - 012	123.7(7)	C1/1 - C1/2 - H1/2	120.9
	117.3(7)	C173 - C172 - C171	118.5 (11)
$C_{12} - C_{11} - C_{10}$	119.0 (8)	C173 - C172 - H172	120.9
C12 - C12 - C12	119.5	С172—С173—П173	119.5
$C_{13} = C_{12} = C_{11}$	121.4 (0)	C1/4 - C1/3 - C1/2 C174 - C173 - H173	121.0 (11) 110.5
$C_{13} = C_{12} = \Pi_{12}$	117.5	$C1/4 - C1/3 - \Pi1/3$ C172 - C174 - U174	117.3
C_{12} $-C_{13}$ $-C_{13}$ C_{12}	120.7	$C_{1/3}$ $C_{1/4}$ C_{173} C_{174} C_{173}	120.1 110.2(10)
$C_{14} = C_{13} = C_{12}$	110.0 (0)	$C_{1/3} - C_{1/4} - C_{1/3}$	119.0 (10) 120.1
$C_{14} = C_{13} = \Pi_{13}$	120.7	$C1/3 - C1/4 - \Pi1/4$	120.1
U13-U14-N1/	119./ (0)	$U_1/4 - U_1/3 - \Pi_1/3$	119.5

C12 C14 C15	122.2 (9)	0174 0175 0176	101 4 (10)
	122.2 (8)	C1/4 - C1/5 - C1/6	121.4 (12)
C15—C14—N17	118.1 (8)	C1/6—C1/5—H1/5	119.3
C14—C15—H15	120.5	C171—C176—C175	119.6 (10)
C16—C15—C14	119.0 (8)	C171—C176—H176	120.2
C16—C15—H15	120.5	C175—C176—H176	120.2
С11—С16—Н16	120.1	C182—C181—Sn6	122.4 (7)
C15—C16—C11	119.8 (8)	C182—C181—C186	120.3 (8)
C15—C16—H16	120.1	C186—C181—Sn6	117.3 (6)
O21—C21—C22	118.8 (8)	C181—C182—H182	120.7
O21—C21—C26	122.2 (8)	C181—C182—C183	118.5 (9)
$C_{26} = C_{21} = C_{22}$	118 9 (8)	C183 - C182 - H182	120.7
C_{21} C_{22} H_{22}	119.7	C182 - C183 - H183	119.6
C^{23} C^{22} C^{21}	120.6 (0)	$C_{102} = C_{103} = C_{103} = C_{103}$	120.0(10)
$C_{23} = C_{22} = C_{21}$	110.7	C184 C183 U182	110.6
$C_{23} = C_{22} = H_{22}$	120.0	$C_{104} = C_{105} = 11105$	119.0
$C_{22} = C_{23} = C_{23}$	110.9	$C_{183} = C_{184} = C_{185}$	119.0
$C_{24} = C_{23} = C_{22}$	118.2 (9)	C183 - C184 - C183	120.8 (9)
С24—С23—Н23	120.9	C185—C184—H184	119.6
C23—C24—N27	117.9 (10)	C184—C185—H185	120.4
C25—C24—N27	119.2 (10)	C184—C185—C186	119.3 (10)
C25—C24—C23	122.8 (9)	C186—C185—H185	120.4
C24—C25—H25	121.0	C181—C186—H186	119.9
C26—C25—C24	118.0 (9)	C185—C186—C181	120.2 (9)
С26—С25—Н25	121.0	C185—C186—H186	119.9
C21—C26—H26	119.3	C192—C191—Sn5	124.4 (8)
C25—C26—C21	121.5 (9)	C192—C191—C196	116.4 (10)
C25—C26—H26	119.3	C196—C191—Sn5	119.0 (7)
O31—C31—C32	123.5 (8)	C191—C192—H192	119.3
O31—C31—C36	118.7 (8)	C193—C192—C191	121.4 (12)
C32—C31—C36	117.8 (9)	C193—C192—H192	119.3
$C_{31} - C_{32} - H_{32}$	1197	C192—C193—H193	120.0
$C_{31} - C_{32} - C_{33}$	120.6 (9)	C194 - C193 - C192	120.1(11)
C_{33} C_{32} H_{32}	119.7	C194 - C193 - H193	120.1 (11)
$C_{32} = C_{32} = H_{32}$	120.5	$C_{103} = C_{103} = H_{104}$	110 7
$C_{32} = C_{33} = C_{33}$	120.3	$C_{195} - C_{194} - C_{194}$	119.7
$C_{34} = C_{33} = C_{32}$	119.0 (9)	$C_{195} = C_{194} = C_{195}$	120.0 (10)
С34—С35—П35	120.3	C193—C194—H194	119.7
$C_{33} = C_{34} = N_{37}$	117.9 (9)	C194—C195—H195	120.4
$C_{35} = C_{34} = N_{37}$	119.7 (9)	C194—C195—C196	119.1 (13)
C35—C34—C33	122.5 (9)	С196—С195—Н195	120.4
C34—C35—H35	120.7	C191—C196—H196	118.8
C34—C35—C36	118.7 (9)	C195—C196—C191	122.3 (12)
С36—С35—Н35	120.7	C195—C196—H196	118.8
С31—С36—Н36	119.3	C202—C201—Sn5	121.3 (7)
C35—C36—C31	121.4 (9)	C202—C201—C206	120.7 (9)
С35—С36—Н36	119.3	C206—C201—Sn5	118.0 (7)
O41—C41—C42	121.0 (8)	C201—C202—H202	121.1
O41—C41—C46	120.1 (8)	C201—C202—C203	117.9 (11)
C46—C41—C42	118.9 (8)	C203—C202—H202	121.1
C41—C42—H42	119.7	С202—С203—Н203	119.5

C43—C42—C41	120.6 (8)	C204—C203—C202	121.0 (12)
C43—C42—H42	119.7	С204—С203—Н203	119.5
C42—C43—H43	120.5	C203—C204—H204	120.0
C44—C43—C42	118.9 (9)	C203—C204—C205	120.0 (12)
C44—C43—H43	120.5	C205—C204—H204	120.0
C43—C44—N47	118.3 (10)	C204—C205—H205	119.4
C45—C44—N47	121.3 (9)	C206—C205—C204	121.2 (12)
C45—C44—C43	120 4 (9)	C206—C205—H205	119.4
C44-C45-H45	119.6	$C_{201} - C_{206} - H_{206}$	120.4
C_{A6} C_{A5} C_{A4}	120.7(0)	C_{205} C_{206} C_{201}	120.1
$C_{46} = C_{45} = U_{45}$	120.7 (9)	$C_{205} = C_{206} = C_{201}$	119.2 (11)
C40 - C45 - H45	119.0	$C_{203} = C_{200} = H_{200}$	120.4
C41 - C40 - H40	119.8	C212—C211—Sn8	110.9 (6)
C45—C46—C41	120.3 (10)	C216—C211—Sn8	122.4 (7)
С45—С46—Н46	119.8	C216—C211—C212	119.4 (9)
C52—C51—Sn1	118.8 (6)	C211—C212—H212	120.2
C52—C51—C56	118.5 (9)	C213—C212—C211	119.5 (10)
C56—C51—Sn1	122.6 (8)	C213—C212—H212	120.2
С51—С52—Н52	119.7	С212—С213—Н213	119.2
C53—C52—C51	120.6 (9)	C214—C213—C212	121.6 (11)
С53—С52—Н52	119.7	C214—C213—H213	119.2
С52—С53—Н53	120.1	C213—C214—H214	120.2
C54—C53—C52	119.9 (11)	C213—C214—C215	119.7 (10)
C54—C53—H53	120.1	C215—C214—H214	120.2
C53—C54—H54	119.8	C214—C215—H215	120.1
C_{53} C_{54} C_{55}	120.5(11)	C_{216} C_{215} C_{214}	120.1 119.9(12)
$C_{55} C_{54} C_{55}$	110.8	$C_{216} C_{215} C_{214}$	120.1
$C_{55} - C_{54} - H_{55}$	119.0	$C_{210} - C_{213} - H_{213}$	120.1
$C_{54} = C_{55} = C_{56}$	119.5	$C_{211} = C_{216} = C_{215}$	119.9 (12)
$C_{54} = C_{55} = C_{50}$	121.0 (11)	$C_{211} - C_{210} - H_{210}$	120.1
C30-C33-H35	119.5	C215—C216—H216	120.1
С51—С56—Н56	120.2	C222—C221—Sn8	124.0 (6)
C55—C56—C51	119.6 (11)	C226—C221—Sn8	117.9 (6)
С55—С56—Н56	120.2	C226—C221—C222	117.8 (8)
C62—C61—Sn1	121.5 (8)	С221—С222—Н222	119.2
C62—C61—C66	120.1 (10)	C223—C222—C221	121.7 (9)
C66—C61—Sn1	118.2 (7)	С223—С222—Н222	119.2
С61—С62—Н62	119.7	С222—С223—Н223	120.4
C63—C62—C61	120.6 (13)	C224—C223—C222	119.3 (9)
С63—С62—Н62	119.7	С224—С223—Н223	120.4
С62—С63—Н63	119.6	C223—C224—H224	120.0
C64—C63—C62	120.7 (13)	C223—C224—C225	120.1 (9)
C64-C63-H63	119.6	C225—C224—H224	120.0
C63—C64—H64	120.0	$C_{224} C_{225} H_{225}$	119.2
C_{63} C_{64} C_{65}	1199(12)	C_{224} C_{225} C_{226}	121.5 (10)
C65 C64 H64	120.0	$C_{224} = C_{225} = C_{226}$	110.2
C64 C65 U65	120.0	$C_{220} - C_{223} - H_{223}$	117.2
	120.7	$C_{221} - C_{220} - \Pi_{220}$	120.2
	110.0 (14)	(223 - (220 - (221)))	119.0 (9)
С66—С65—Н65	120.7	C225—C226—H226	120.2
C61—C66—C65	120.0 (12)	C232—C231—Sn7	119.5 (8)

С61—С66—Н66	120.0	C232—C231—C236	118.5 (10)
С65—С66—Н66	120.0	C236—C231—Sn7	121.8 (8)
C72—C71—Sn2	116.1 (7)	C231—C232—H232	119.6
C76—C71—Sn2	124.6 (7)	C231—C232—C233	120.7 (12)
C76—C71—C72	119.3 (9)	С233—С232—Н232	119.6
С71—С72—Н72	120.2	С232—С233—Н233	120.5
C71—C72—C73	119.6 (10)	C232—C233—C234	119.0 (14)
С73—С72—Н72	120.2	С234—С233—Н233	120.5
С72—С73—Н73	120.0	С233—С234—Н234	119.9
C74—C73—C72	120.0 (10)	C235—C234—C233	120.1 (12)
С74—С73—Н73	120.0	С235—С234—Н234	119.9
С73—С74—Н74	119.4	С234—С235—Н235	119.7
C75—C74—C73	121.1 (10)	C234—C235—C236	120.6 (13)
С75—С74—Н74	119.4	С236—С235—Н235	119.7
С74—С75—Н75	120.5	C231—C236—H236	119.5
C74—C75—C76	119.0 (9)	C235—C236—C231	121.0 (13)
С76—С75—Н75	120.5	С235—С236—Н236	119.5
C71—C76—C75	121.0 (9)	C242—C241—Sn7	122.4 (8)
С71—С76—Н76	119.5	C242—C241—C246	118.0 (9)
С75—С76—Н76	119.5	C246—C241—Sn7	119.4 (6)
C82—C81—Sn2	121.8 (6)	C241—C242—H242	120.1
C86—C81—Sn2	119.0 (6)	C243—C242—C241	119.7 (12)
C86—C81—C82	118.0 (8)	C243—C242—H242	120.1
C81—C82—H82	119.9	C242—C243—H243	119.0
C83—C82—C81	120.2 (9)	C244—C243—C242	121.9 (11)
С83—С82—Н82	119.9	C244—C243—H243	119.0
С82—С83—Н83	120.1	C243—C244—H244	120.2
C84—C83—C82	119.8 (10)	C243—C244—C245	119.6 (10)
С84—С83—Н83	120.1	C245—C244—H244	120.2
C83—C84—H84	120.1	C244—C245—H245	119.4
C85—C84—C83	119.8 (10)	C244—C245—C246	121.2 (11)
С85—С84—Н84	120.1	С246—С245—Н245	119.4
С84—С85—Н85	119.6	C241—C246—H246	120.2
C84—C85—C86	120.8 (9)	C245—C246—C241	119.6 (10)
С86—С85—Н85	119.6	C245—C246—H246	120.2

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	D—H···A
C82—H82···O31	0.93	2.35	3.144 (13)	143
C116—H116…O11	0.93	2.55	3.289 (11)	137
C182—H182…O151	0.93	2.52	3.259 (12)	137
С216—Н216…О131	0.93	2.37	3.161 (13)	143
C3—H3…O148 ⁱ	0.98	2.44	3.27 (2)	143
C16—H16…O138 ⁱⁱ	0.93	2.60	3.301 (13)	133
C22—H22···O159 ⁱ	0.93	2.47	3.388 (11)	168
C84—H84····O39 ⁱ	0.93	2.55	3.264 (16)	134
C94—H94…O138 ⁱⁱⁱ	0.93	2.57	3.470 (16)	162

data reports

C96—H96····O49 ^{iv}	0.93	2.53	3.305 (14)	142
С156—Н156…О38	0.93	2.53	3.271 (13)	136
C162—H162···O19 ^v	0.93	2.43	3.343 (12)	168
C202—H202···O149 ^{vi}	0.93	2.53	3.293 (16)	139

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*+1, *y*+1, *z*; (iv) -*x*+2, -*y*+2, -*z*; (v) *x*+1, *y*-1, *z*; (vi) -*x*+2, -*y*+1, -*z*.