organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

n-Decyl­tri­methyl­ammonium bromide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The Pennsylvania State University, University Park PA 16802, USA, and bDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park PA 16802, USA
*Correspondence e-mail: hpy1@psu.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 25 June 2019; accepted 28 June 2019; online 12 July 2019)

The title compound, C13H30N+·Br (systematic name: N,N,N-trimethyl-1-deca­naminium bromide), forms crystals having a bilayer structure, comprised of layers of tri­methyl­ammonium cations and bromide anions separated by the inter-digitated n-decyl groups of the cation; close ammonium-methyl-C—H⋯Br contacts connect the ions. The n-decyl chain adopts a slightly distorted all-trans conformation. The n-decyl chain exhibits positional disorder with all atoms at half occupancy. The sample was a racemic twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

One component of the statistically disordered n-decyl chain in the cation along with the bromide counter-ion are shown in Fig. 1[link]. The cation comprises an n-decyl chain bound to a trimethyl ammonium group at one end (cation). The bromide counter-ion is in close proximity to the cation. The ionic aggregate spans much of the c axis of the unit cell. In the crystal, Fig. 2[link], a bilayer structure comprised of layers of tri­methyl­amino groups packed closely with bromide anions separated by the inter­digitated `all-trans' n-decyl chains of the cations; the maximum deviation from the ideal 180° torsion angle is −162 (2)° for C7—C8—C9—C10. Close ammonium-methyl-C—H⋯Br links connect the ions, Table 1[link]. The packing motif is similar to those of longer n-alkyl­tetra­methyl­ammonium bromides summarized in Alonso et al. (2009[Alonso, B., Massiot, D., Florian, P., Paradies, H. H., Gaveau, P. & Mineva, T. (2009). J. Phys. Chem. B, 113, 11906-11920.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Br1i 0.96 2.89 3.82 (2) 162
Symmetry code: (i) x-1, y, z.
[Figure 1]
Figure 1
The asymmetric unit of the title salt, [C13H30N]Br, showing one conformation of the statistically disordered n-decyl chain. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Schematic packing diagram showing one orientation of the statistically disordered n-decyl chains only. The alternating hydro­phobic and hydro­philic regions of the structure are clearly evident.

Synthesis and crystallization

The sample (>99% purity) was obtained from TCI, and needle-shaped colourless crystals were grown by slow evaporation of its ethyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Positional disorder in the n-decyl chain was resolved over two positions of equal occupancy. Further, an inversion matrix was used to address racemic twinning; the major fraction = 0.57 (4).

Table 2
Experimental details

Crystal data
Chemical formula C13H30N+·Br
Mr 280.28
Crystal system, space group Monoclinic, C2
Temperature (K) 298
a, b, c (Å) 5.6390 (9), 7.2545 (12), 19.586 (3)
β (°) 98.186 (3)
V3) 793.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.57
Crystal size (mm) 0.28 × 0.08 × 0.01
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.097, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 3515, 1803, 1477
Rint 0.052
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.07
No. of reflections 1803
No. of parameters 139
No. of restraints 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.36
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.0 (3)
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N,N,N-Trimethyl-1-decanaminium top
Crystal data top
C13H30N+·BrF(000) = 300
Mr = 280.28Dx = 1.174 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 5.6390 (9) ÅCell parameters from 1233 reflections
b = 7.2545 (12) Åθ = 2.8–27.3°
c = 19.586 (3) ŵ = 2.57 mm1
β = 98.186 (3)°T = 298 K
V = 793.1 (2) Å3Needle, colorless
Z = 20.28 × 0.08 × 0.01 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
1803 independent reflections
Radiation source: fine-focus sealed tube1477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 2.1°
phi and ω scansh = 76
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 99
Tmin = 0.097, Tmax = 0.9l = 2525
3515 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0839P)2 + 0.1533P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.44 e Å3
1803 reflectionsΔρmin = 0.36 e Å3
139 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
118 restraintsExtinction coefficient: 0.017 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0 (3)
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The H atoms were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.97 Å (methylene) and 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(methylene-C) or 1.5Ueq(methyl-C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.41220 (13)1.006 (3)0.09518 (3)0.0629 (3)0.50
N10.7948 (10)0.495 (4)0.1062 (2)0.0455 (13)0.50
C10.387 (4)0.520 (5)0.7267 (6)0.143 (8)0.50
H1A0.42990.64800.73310.215*0.50
H1B0.51920.44480.74620.215*0.50
H1C0.25040.49440.74920.215*0.50
C20.327 (3)0.480 (5)0.6504 (10)0.080 (6)0.50
H2A0.16760.52910.63650.096*0.50
H2B0.31230.34680.64670.096*0.50
C30.483 (3)0.542 (5)0.5916 (7)0.086 (5)0.50
H3A0.46180.67430.58640.103*0.50
H3B0.64970.52280.61070.103*0.50
C40.454 (3)0.465 (4)0.5214 (9)0.085 (5)0.50
H4A0.28880.48520.50080.102*0.50
H4B0.47750.33290.52530.102*0.50
C50.613 (3)0.537 (4)0.4721 (8)0.084 (6)0.50
H5A0.77330.48870.48440.100*0.50
H5B0.62040.67040.47490.100*0.50
C60.508 (5)0.475 (4)0.3944 (9)0.106 (6)0.50
H6A0.50930.34210.38930.127*0.50
H6B0.34560.52010.38100.127*0.50
C70.672 (5)0.562 (5)0.3553 (12)0.121 (7)0.50
H7A0.83680.52850.37200.145*0.50
H7B0.65590.69490.35510.145*0.50
C80.58800.48000.28600.092 (6)0.50
H8A0.57580.34730.29050.110*0.50
H8B0.42960.52710.26910.110*0.50
C90.7516 (13)0.523 (5)0.2354 (3)0.074 (4)0.50
H9A0.89170.44430.24450.089*0.50
H9B0.80490.64970.24190.089*0.50
C100.6380 (8)0.497 (5)0.1611 (3)0.0502 (13)0.50
H10A0.55080.38130.15830.060*0.50
H10B0.52080.59420.15010.060*0.50
C110.9609 (19)0.338 (4)0.1088 (6)0.058 (3)0.50
H11A1.07530.34530.15000.087*0.50
H11B1.04340.34120.06910.087*0.50
H11C0.87230.22500.10880.087*0.50
C120.6316 (10)0.504 (5)0.0383 (2)0.0638 (14)0.50
H12A0.53300.39560.03300.096*0.50
H12B0.72610.51060.00130.096*0.50
H12C0.53160.61140.03740.096*0.50
C130.941 (2)0.672 (4)0.1112 (8)0.061 (3)0.50
H13A0.83470.77600.10440.091*0.50
H13B1.04440.67180.07630.091*0.50
H13C1.03520.67970.15590.091*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0516 (4)0.0489 (4)0.0914 (5)0.0035 (9)0.0210 (3)0.0014 (10)
N10.0364 (18)0.041 (3)0.060 (2)0.011 (5)0.0113 (17)0.003 (5)
C10.29 (2)0.089 (12)0.065 (4)0.070 (18)0.062 (8)0.000 (9)
C20.083 (6)0.072 (15)0.096 (8)0.014 (8)0.048 (6)0.029 (8)
C30.087 (6)0.099 (14)0.079 (6)0.007 (7)0.036 (6)0.004 (7)
C40.070 (8)0.095 (12)0.104 (6)0.004 (6)0.057 (5)0.018 (6)
C50.075 (8)0.094 (17)0.093 (5)0.007 (7)0.048 (5)0.025 (7)
C60.181 (13)0.061 (15)0.080 (6)0.016 (9)0.029 (7)0.015 (7)
C70.193 (19)0.092 (12)0.086 (7)0.027 (10)0.048 (10)0.018 (8)
C80.070 (4)0.127 (15)0.079 (6)0.042 (9)0.014 (4)0.031 (8)
C90.070 (3)0.097 (10)0.056 (3)0.017 (7)0.012 (3)0.018 (7)
C100.044 (2)0.053 (3)0.057 (2)0.007 (6)0.0199 (17)0.003 (6)
C110.048 (5)0.056 (5)0.065 (5)0.011 (4)0.009 (4)0.009 (4)
C120.061 (3)0.081 (4)0.052 (2)0.024 (6)0.015 (2)0.011 (7)
C130.049 (5)0.052 (4)0.093 (7)0.007 (4)0.048 (4)0.003 (5)
Geometric parameters (Å, º) top
N1—C101.485 (8)C6—C71.43 (3)
N1—C111.473 (18)C7—H7A0.9700
N1—C121.507 (7)C7—H7B0.9700
N1—C131.518 (18)C7—C81.50 (2)
C1—H1A0.9600C8—H8A0.9700
C1—H1B0.9600C8—H8B0.9700
C1—H1C0.9600C8—C91.479 (10)
C1—C21.51 (2)C9—H9A0.9700
C2—H2A0.9700C9—H9B0.9700
C2—H2B0.9700C9—C101.518 (9)
C2—C31.61 (2)C10—H10A0.9700
C3—H3A0.9700C10—H10B0.9700
C3—H3B0.9700C11—H11A0.9600
C3—C41.47 (2)C11—H11B0.9600
C4—H4A0.9700C11—H11C0.9600
C4—H4B0.9700C12—H12A0.9600
C4—C51.500 (14)C12—H12B0.9600
C5—H5A0.9700C12—H12C0.9600
C5—H5B0.9700C13—H13A0.9600
C5—C61.62 (2)C13—H13B0.9600
C6—H6A0.9700C13—H13C0.9600
C6—H6B0.9700
C10—N1—C12106.6 (4)C5—C6—H6A111.4
C10—N1—C13108.7 (12)C5—C6—H6B111.4
C11—N1—C10115.0 (13)H6A—C6—H6B109.3
C11—N1—C12111.5 (11)C7—C6—C5101.7 (19)
C11—N1—C13108.4 (5)C7—C6—H6A111.4
C12—N1—C13106.2 (12)C7—C6—H6B111.4
C1—C2—H2A105.9C6—C7—H7A111.9
C1—C2—H2B105.9C6—C7—H7B111.9
C1—C2—C3125.7 (17)C6—C7—C899.5 (18)
H2A—C2—H2B106.2H7A—C7—H7B109.6
C3—C2—H2A105.9C8—C7—H7A111.9
C3—C2—H2B105.9C8—C7—H7B111.9
C2—C3—H3A106.3C7—C8—H8A109.2
C2—C3—H3B106.3C7—C8—H8B109.2
H3A—C3—H3B106.4H8A—C8—H8B107.9
C4—C3—C2124.1 (16)C9—C8—C7112.1 (14)
C4—C3—H3A106.3C9—C8—H8A109.2
C4—C3—H3B106.3C9—C8—H8B109.2
C3—C4—H4A107.8C8—C9—H9A108.9
C3—C4—H4B107.8C8—C9—H9B108.9
C3—C4—C5118.1 (13)C8—C9—C10113.5 (7)
H4A—C4—H4B107.1H9A—C9—H9B107.7
C5—C4—H4A107.8C10—C9—H9A108.9
C5—C4—H4B107.8C10—C9—H9B108.9
C4—C5—H5A109.7N1—C10—C9118.8 (5)
C4—C5—H5B109.7N1—C10—H10A107.6
C4—C5—C6109.7 (12)N1—C10—H10B107.6
H5A—C5—H5B108.2C9—C10—H10A107.6
C6—C5—H5A109.7C9—C10—H10B107.6
C6—C5—H5B109.7H10A—C10—H10B107.0
C1—C2—C3—C4165 (2)C7—C8—C9—C10162 (2)
C2—C3—C4—C5180.0 (19)C8—C9—C10—N1167 (2)
C3—C4—C5—C6166 (2)C11—N1—C10—C966 (2)
C4—C5—C6—C7177.3 (18)C12—N1—C10—C9169.5 (18)
C5—C6—C7—C8172.7 (15)C13—N1—C10—C955 (2)
C6—C7—C8—C9171 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Br1i0.962.893.82 (2)162
Symmetry code: (i) x1, y, z.
 

Acknowledgements

MS acknowledges support from the US Department of Energy, Office of Science of Basic Energy Sciences, Condensed Phase and Inter­facial Mol­ecular Science during this research.

Funding information

Funding for this research was provided by: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Condensed Phase and Interfacial Molecular Science (award No. DE-SC0019200 to Mark Maroncelli).

References

First citationAlonso, B., Massiot, D., Florian, P., Paradies, H. H., Gaveau, P. & Mineva, T. (2009). J. Phys. Chem. B, 113, 11906–11920.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds