ISSN 2414-3146

Received 24 April 2019
Accepted 1 May 2019

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; thiazole.

CCDC reference: 1913473

Structural data: full structural data are available from iucrdata.iucr.org

2-Amino-5,5-dimethylthiazol-4(5H)-one

Daniel Josey, Nathaniel Shank* and Clifford W. Padgett

Georgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA. *Correspondence e-mail: nshank@georgiasouthern.edu

Our work exploring the synthesis and optimization of increasingly hindered thiols led to the synthesis and crystal structure determination of the title compound, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$, a dimethly-substituted 4-thiazolidinone. The molecular packing exhibits a herringbone pattern with the zigzag running along the b-axis direction; the compound crystallizes as chains of hydrogen-bonded dimers formed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, which build centrosymmetric $R_{2}^{2}(8)$ ring motifs in the crystal.

Chemical scheme

Structure description

As a result of their impressive array of biological responses and potential uses in medicine, 4-thiazolidinones and their derivatives have been extensively investigated in recent years. Their wide range of biological relevance includes anticancer, antiviral, antibacterial (Tripathi et al., 2014), analgesic (Kumar \& Patil, 2017) and antipsychotic (Kaur et al., 2010) properties. The synthesis of these five-membered heterocyclic rings is well documented, and the majority of derivatives follow concise synthetic routes and provide generally good yields. However, access to new derivatives is desirable to enable researchers to further explore the utility of these biologically interesting pharmacophores. The title compound provides an avenue for a new substitution pattern that is not often seen in the literature, namely, a geminal dialkyl substitution at the 5-position on the ring. This motif may provide a unique utility since a more thermodynamically favored confirmation may result because of steric hindrance, especially if the thiazolidinone is further substituted at the 2- and/or N-positions (Vigorita et al. 1979).

Herein we report the crystal structure of 2-amino-5,5-dimethylthiazol-4(5H)-one (Fig. 1). The molecule is nearly planar, with the thiazole ring r.m.s.d. being $0.027 \AA$. In the crystal, the molecules form hydrogen-bonded dimers. The hydrogen bonding occurs between the N atoms of the thiazole ring and the amino group with an $R(8)$ synthon. The hydrogen bond between N 2 and $\mathrm{N} 1{ }^{\mathrm{ii}}$ is characterized by an $\mathrm{N} 2 \cdots \mathrm{~N} 1$ separation of

01
Figure 1
A view of the molecular structure of the title compound, with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
2.938 (3) Å [symmetry code: (ii) $-x+1,-y+1,-z$; Table 1], with $R_{2}^{2}(8)$ ring motifs (Fig. 2). A secondary $\mathrm{N} 2 \cdots \mathrm{O} 1$ hydrogen bond also involves the amino group and the O1 atom on a neighboring thiazole ring, forming a $C(6)$ motif. This hydrogen bond between N 2 and $\mathrm{O} 1^{\mathrm{i}}$ is characterized by an $\mathrm{N} 2 \cdots \mathrm{O} 1$ separation of 2.820 (3) \AA [symmetry code: (i) $x+1$, y, z; Table 1]. This $C_{1}^{1}(6)$ hydrogen-bonding motif stitches the dimers into a chain running parallel to the a axis, Fig. 2. The crystal structure exhibits a herringbone pattern with the blocks consisting of the chains of hydrogen-bonded dimers, with the zigzag running along the b-axis direction. There are no other short contacts or $\pi-\pi$ interactions observed in the crystal.

Synthesis and crystallization

A round-bottom flask was equipped with a stir bar and reflux condenser and then charged with 1.0 g ($6.0 \mathrm{mmol}, 1.0$ equiv.) of 2-bromo-2-methylpropionic acid. The solid was heated to $100^{\circ} \mathrm{C}$, at which point $0.57 \mathrm{~g}(7.5 \mathrm{mmol}, 1.25$ equiv.) of thiourea was added. The whole was heated to $200^{\circ} \mathrm{C}$ for 1 h and then allowed to cool to room temperature. The resulting solid was

Figure 2
Crystal packing diagram of title compound viewed along [100]. Hydrogen bonds (Table 1) are colored red.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.93(3)$	$1.93(4)$	$2.820(3)$	$159(3)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 1^{1 i}$	$1.00(4)$	$1.95(4)$	$2.938(3)$	$170(3)$

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z$.
purified on a silica ($60 \AA, 40-63 \mathrm{~mm}$) column, eluting with methylene chloride while slowly increasing the concentration of methanol ($0-25 \%$). Crystals were obtained by slow evaporation of the eluted aliquot. Note: the two H atoms on the nitrogen are in non-degenerate equilibrium. NMR: ${ }^{1} \mathrm{H}$ NMR [300 MHz, $\left.\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right] \delta=8.96\left(b s, 0.6 \mathrm{H},-\mathrm{NH}_{2}\right), 8.72$ (bs, $1.4 \mathrm{H},-\mathrm{NH}_{2}$), $1.48\left(s, 6 \mathrm{H}, 2 \times-\mathrm{CH}_{3}\right)$ p.p.m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Georgia Southern University for support of this work.

Table 2
Experimental details.

Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$

${ }^{V}\left(\mathrm{~A}^{2}\right.$
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$
144.19

Monoclinic, $P 2_{1} / n$
173
6.9440 (8), 12.1354 (16),

$$
8.8283 \text { (11) }
$$

98.888 (11)
735.01 (16)

4
Mo $K \alpha$
0.36
$0.2 \times 0.2 \times 0.05$

Rigaku XtaLAB mini CCD
Multi-scan (CrysAlis PRO; Rigaku
OD, 2018)
0.497, 1.000

5107, 1681, 1126

0.055

0.649
0.051, 0.142, 1.08

1681
92
H atoms treated by a mixture of independent and constrained refinement
$0.26,-0.35$

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Kaur, H., Kumar, S., Vishwakarma, P., Sharma, M., Saxena, K. K. \& Kumar, A. (2010). Eur. J. Med. Chem. 45, 2777-2783.
Kumar, R. \& Patil, S. (2017). Hygeia J. Drugs Medicines, 9, 80-97.

Rigaku OD (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. \& Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52-77.
Vigorita, M. G., Chimirri, A., Grasso, S. \& Fenech, G. (1979). J. Heterocycl. Chem. 16, 1257-1261.

full crystallographic data

IUCrData (2019). 4, x190613 [https://doi.org/10.1107/S2414314619006138]

2-Amino-5,5-dimethylthiazol-4(5H)-one

Daniel Josey, Nathaniel Shank and Clifford W. Padgett

2-Amino-5,5-dimethylthiazol-4(5H)-one

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$

$M_{r}=144.19$
Monoclinic, $P 2_{1} / n$
$a=6.9440$ (8) \AA
$b=12.1354(16) \AA$
$c=8.8283(11) \AA$
$\beta=98.888(11)^{\circ}$
$V=735.01(16) \AA^{3}$
$Z=4$

Data collection

Rigaku XtaLAB mini CCD diffractometer
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source
Graphite Monochromator monochromator
Detector resolution: 13.6612 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.142$
$S=1.08$
1681 reflections
92 parameters
0 restraints
Primary atom site location: dual

$$
F(000)=304
$$

$D_{\mathrm{x}}=1.303 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1205 reflections
$\theta=2.9-26.0^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Prism, clear bluish violet
$0.2 \times 0.2 \times 0.05 \mathrm{~mm}$
$T_{\min }=0.497, T_{\max }=1.000$
5107 measured reflections
1681 independent reflections
1126 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-8 \rightarrow 8$
$k=-14 \rightarrow 15$
$l=-11 \rightarrow 10$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0472 P)^{2}+0.1833 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{2} U_{\text {eq }}$
S1	$0.65626(10)$	$0.33147(7)$	$0.36674(8)$	$0.0466(3)$
N1	$0.4105(3)$	$0.42897(19)$	$0.1509(3)$	$0.0397(6)$
C1	$0.5978(4)$	$0.4149(2)$	$0.2050(3)$	$0.0359(6)$
O1	$0.1162(3)$	$0.3771(2)$	$0.2117(3)$	$0.0605(7)$
N2	$0.7350(4)$	$0.4625(2)$	$0.1419(3)$	$0.0448(6)$
C2	$0.2946(4)$	$0.3738(2)$	$0.2359(3)$	$0.0406(7)$
C3	$0.3980(4)$	$0.3023(2)$	$0.3668(3)$	$0.0399(7)$
C4	$0.3565(5)$	$0.1815(2)$	$0.3269(4)$	$0.0562(9)$
H4A	0.397060	0.164898	0.227865	0.084^{*}
H4B	0.216548	0.167200	0.320696	0.084^{*}
H4C	0.429051	0.134683	0.406444	0.084^{*}
C5	$0.3337(5)$	$0.3342(3)$	$0.5181(4)$	$0.0555(9)$
H5A	0.399628	0.286989	0.600194	0.083^{*}
H5B	0.192333	0.324760	0.510091	0.083^{*}
H5C	0.367769	0.411367	0.541405	0.083^{*}
H2A	$0.868(5)$	$0.453(3)$	$0.170(4)$	$0.063(10)^{*}$
H2B	$0.695(5)$	$0.507(3)$	$0.047(4)$	$0.076(11)^{*}$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0359(4)$	$0.0617(5)$	$0.0390(4)$	$0.0048(3)$	$-0.0043(3)$	$0.0136(3)$
N1	$0.0319(12)$	$0.0451(14)$	$0.0409(13)$	$0.0031(10)$	$0.0019(10)$	$0.0083(11)$
C1	$0.0335(14)$	$0.0413(15)$	$0.0316(14)$	$0.0046(12)$	$0.0005(11)$	$-0.0018(12)$
O1	$0.0305(11)$	$0.0752(16)$	$0.0729(16)$	$0.0014(10)$	$-0.0013(11)$	$0.0222(13)$
N2	$0.0330(13)$	$0.0560(16)$	$0.0448(15)$	$0.0043(12)$	$0.0040(11)$	$0.0109(12)$
C2	$0.0324(14)$	$0.0459(16)$	$0.0412(16)$	$0.0017(13)$	$-0.0016(12)$	$0.0046(13)$
C3	$0.0384(15)$	$0.0439(16)$	$0.0357(15)$	$0.0008(12)$	$-0.0002(12)$	$0.0068(12)$
C4	$0.069(2)$	$0.0455(19)$	$0.0498(19)$	$-0.0033(16)$	$-0.0033(17)$	$0.0058(14)$
C5	$0.063(2)$	$0.063(2)$	$0.0428(18)$	$0.0042(17)$	$0.0143(16)$	$0.0013(15)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{S} 1-\mathrm{C} 1$	$1.746(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.525(4)$
$\mathrm{S} 1-\mathrm{C} 3$	$1.828(3)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.522(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.326(3)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 2$	$1.358(4)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9800
$\mathrm{C} 1-\mathrm{N} 2$	$1.310(4)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
$\mathrm{O} 1-\mathrm{C} 2$	$1.225(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9800
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A}$	$0.93(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9800
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~B}$	$1.00(4)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.9800
$\mathrm{C} 2-\mathrm{C} 3$	$1.533(4)$		
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 3$		$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 2$	$110.5(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$90.49(12)$	$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 4$	$112.1(3)$

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$117.4(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$120.7(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$121.8(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$126(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$118(2)$
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$115(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$116.6(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	$123.9(3)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.5(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$103.59(19)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{S} 1$	$109.7(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$108.7(2)$
$\mathrm{C} 5-\mathrm{C} 3-\mathrm{S} 1$	$111.8(2)$

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
C3-C5-H5B	109.5
C3-C5-H5C	109.5
H5A-C5-H5B	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.93(3)$	$1.93(4)$	$2.820(3)$	$159(3)$
$\mathrm{N} 2 — \mathrm{H} 2 B \cdots \mathrm{~N}^{\mathrm{ii}}$	$1.00(4)$	$1.95(4)$	$2.938(3)$	$170(3)$

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z$.

