ISSN 2414-3146

Received 24 April 2019
Accepted 13 May 2019

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; triaminodihydropyrimidinone; hydrogen bonds.

CCDC reference: 1915747
Structural data: full structural data are available from iucrdata.iucr.org

6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetrahydro-pyrimidin-5-aminium sulfate monohydrate

Lukas Tapmeyer* and Dragica Prill

Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 7, Frankfurt am Main, Hessen, 60438, Germany. *Correspondence e-mail: tapmeyer@chemie.uni-frankfurt.de

The title compound, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}^{2+} \cdot \mathrm{SO}_{4}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$, is the monohydrate of the commercially available compound ' $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$ '. It is obtained by reprecipitation of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$ from dilute sodium hydroxide solution with dilute sulfuric acid. The crystal structure of anhydrous 2,4,5-triamino-1,6-dihydropyrimidin-6-one sulfate is known, although called by the authors 5-amminium-6-amino-isocytosinium sulfate [Bieri et al. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England]. In the structure, the sulfate group is deprotonated, whereas one of the amino groups is protonated $\left(R_{2} \mathrm{C}-\mathrm{NH}_{3}{ }^{+}\right)$and one is rearranged to a protonated imine group $\left(R_{2} \mathrm{C}=\mathrm{NH}_{2}{ }^{+}\right)$. This arrangement is very similar to the known crystal structure of the anhydrate. Several tautomeric forms of the investigated molecule are possible, which leads to questionable proton attributions. The measured data allowed the location of all hydrogen atoms from the residual electron density. In the crystal, ions and water molecules are linked into a three-dimensional network by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Chemical scheme

OPEN \bigodot ACCESS

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\text {i }}$	0.89	2.46	$3.113(4)$	131
$\mathrm{~N} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{i}}$	0.89	1.99	$2.827(4)$	157
$\mathrm{~N} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {ii }}$	0.89	1.94	$2.788(4)$	159
$\mathrm{~N} 8-\mathrm{H} 8 C \cdots \mathrm{O} 5^{\text {iii }}$	0.89	2.13	$2.942(4)$	152
$\mathrm{~N} 9-\mathrm{H} 9 \cdots \mathrm{O} 4^{\text {iv }}$	$0.82(4)$	$1.93(4)$	$2.739(5)$	$168(4)$
$\mathrm{N} 10-\mathrm{H} 10 \cdots \mathrm{O} 2$	$0.88(4)$	$1.87(4)$	$2.677(4)$	$152(3)$
$\mathrm{N} 10-\mathrm{H} 10 \cdots \mathrm{O} 4$	$0.88(4)$	$2.58(5)$	$3.329(4)$	$143(4)$
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 2$	$0.80(5)$	$2.56(7)$	$3.106(6)$	$126(5)$
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 1^{\mathrm{v}}$	$0.80(5)$	$2.29(5)$	$2.956(4)$	$142(5)$
$\mathrm{N} 11-\mathrm{H} 11 B \cdots \mathrm{O} 3^{\text {iv }}$	$0.89(6)$	$2.00(6)$	$2.845(6)$	$158(5)$
$\mathrm{N} 13-\mathrm{H} 13 A \cdots \mathrm{O} W 1^{\text {ii }}$	$0.98(6)$	$1.98(7)$	$2.924(5)$	$161(5)$
$\mathrm{N} 13-\mathrm{H} 13 B \cdots \mathrm{O} 4$	$0.91(5)$	$2.10(5)$	$2.961(4)$	$156(5)$
$\mathrm{O} W 1-\mathrm{H} W 12 \cdots \mathrm{O} 2$	$0.96(6)$	$2.10(6)$	$2.798(4)$	$128(5)$
$\mathrm{O} W 1-\mathrm{H} W 11 \cdots \mathrm{O} W 1^{\text {vi }}$	$0.96(3)$	$2.59(5)$	$3.390(5)$	$141(3)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii)
$x, y-1, z+1$; (iv) $x, y-1, z ;(\mathrm{v})-x+1,-y+1,-z ;$ (vi) $-x+2,-y+1,-z$.
molecule (Fig. 1). The present tautomer is the 2,4,5-triamino-1,6-dihydropyrimidin-6-one. The molecule is almost planar [r.m.s. deviation $=0.026 \AA$, maximum deviation 0.046 (4) \AA for N13], except for the amino group H atoms.

The title compound shows a layered structure with the most polar compartments oriented in the (100) plane (Fig. 2). Within the layers, the dicationic molecules form hydrogen bonds to the water molecules and to the sulfate dianions. The layers are interlinked by hydrogen bonds between the sulfate dianion and the organic dication (Table 1).

Powder data confirmed the phase identity of the single crystals with experimentally obtained bulk material. Furthermore, a commercial sample of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$ could be quantitatively analyzed by Rietveld refinement with TOPAS (Coelho, 2018; Rietveld, 2010), resulting in a composition of 76.4 (3)\% of the known anhydrate phase and $23.6(3) \%$ of the monohydrate described in this paper (Fig. 3). Since the monohydrate is a yellow solid and the anhydrous form rather colorless, the brown color of the commercial sample could be attributed to minor (and probably amorphous) impurities.

Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2
Partial packing diagram of the title compound viewed along the a axis.

Synthesis and crystallization

$5 \mathrm{~g}(\sim 20 \mathrm{mmol})$ of brown 2,4,5-triamino-6-hydroxypyrimidine sulfate $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{OH}_{2} \cdot \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$ as purchased from TCI (purity $>90.0 \%$) were dissolved under stirring at $70^{\circ} \mathrm{C}$ in 100 ml of water with 2 g of sodium hydroxide ($\sim 50 \mathrm{mmol}$). The resulting reddish orange solution (with a pH of about 910) was filtered into a solution of 2.6 g of $\mathrm{H}_{2} \mathrm{SO}_{4}(96 \%$, 25 mmol) in 900 ml water. The instantaneously formed red-tobrown aggregates were left to settle down for two h and the suspension was then filtered. The yellow filtrate was left at room temperature overnight. The formed pale-yellow crystals of the title compound were filtered off on a nutsch flask. The obtained yield for one purification cycle was about 15%. For efficiency, the filtrate can be boiled down and the brown solid precipitate can be reused in the next batch.

Figure 3
X-ray powder diagrams of (from top to bottom) the known anhydrous title compound (simulated, dark red), the vacuum-dried title compound (red), the commercial sample (black), the title compound (blue) and the pattern simulated from the title compound's single-crystal structure (dark blue).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}^{2+} \cdot \mathrm{SO}_{4}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$
M_{r}	257.24
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	296
$a, b, c(\AA)$	$7.0128(7), 7.9882(8), 9.0732(9)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$74.121(4), 86.734(4), 79.290(4)$
$V\left(\AA^{3}\right)$	$480.36(8)$
Z	2
Radiation type	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
$\mu\left(\mathrm{~mm}^{-1}\right)$	3.34
Crystal size (mm)	$0.2 \times 0.15 \times 0.1$
Data collection	Siemens Bruker CCD
Diffractometer	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2015)$
	$0.526,0.753$
$T_{\text {min }}, T_{\text {max }}$	$20827,1720,1599$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.051
$R_{\text {int }}$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.080,0.281,1.40$
No. of reflections	1720
No. of parameters	179
No. of restraints	20
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	refinement

Computer programs: APEX3 (Bruker, 2012), SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), Mercury (Macrae et al., 2008), ORTEPIII (Burnett \& Johnson, 1996) and publCIF (Westrip, 2010).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.

X-ray powder diffraction data were recorded at room temperature in transmission geometry on a Stoe Stadi-P diffractometer equipped with a curved $\mathrm{Ge}(111)$ primary monochromator and a linear position-sensitive detector, using $\mathrm{Cu} K \alpha_{1}$ radiation $(\lambda=1.5406 \AA)$. Samples were rotated in 0.7 mm glass capillaries during measurement.

Acknowledgements

The authors wish to express their gratitude to Edith Alig (Goethe-University), who provided us with the X-ray powder measurements, and to Wilhelm Maximilian Hützler, who helped with the interpretation of the single-crystal data.

References

Abbas, Z. A. A., Abu-Mejdad, N. M. J., Atwan, Z. W. \& Al-Masoudi, N. A. (2017). J. Heterocycl. Chem. 54, 895-903.

Bieri, J. H., Prewo, R. \& Linden, A. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England
Bruker (2012). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2015). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.

Coelho, A. A. (2018). J. Appl. Cryst. 51, 210-218.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Purrmann, R. (1940). Justus Liebigs Ann. Chem. 544, 182-190.
Rietveld, H. M. (2010). Z. Kristallogr. 225, 545-547.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Traube, W. (1900). Ber. Dtsch. Chem. Ges. 33, 1371-1383.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2019). 4, x190689 [https://doi.org/10.1107/S2414314619006898]

6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetrahydropyrimidin-5-aminium sulfate monohydrate

Lukas Tapmeyer and Dragica Prill

6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetrahydropyrimidin-5-aminium sulfate monohydrate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}^{2+} \cdot \mathrm{SO}_{4}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=257.24$
Triclinic, $P \overline{1}$
$a=7.0128$ (7) \AA
$b=7.9882(8) \AA$
$c=9.0732(9) \AA$
$\alpha=74.121$ (4) $^{\circ}$
$\beta=86.734(4)^{\circ}$
$\gamma=79.290(4)^{\circ}$
$V=480.36(8) \AA^{3}$

Data collection

Siemens Bruker CCD
diffractometer
Radiation source: microfocus tube ω and Phi scans
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
$T_{\text {min }}=0.526, T_{\text {max }}=0.753$
20827 measured reflections
$Z=2$
$F(000)=268$
$D_{\mathrm{x}}=1.778 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 9522 reflections
$\theta=2.5-69.4^{\circ}$
$\mu=3.34 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, pale yellow
$0.2 \times 0.15 \times 0.1 \mathrm{~mm}$

1720 independent reflections
1599 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=71.1^{\circ}, \theta_{\text {min }}=5.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.080$
$w R\left(F^{2}\right)=0.281$
$S=1.40$
1720 reflections
179 parameters
20 restraints
Hydrogen site location: mixed

H atoms treated by a mixture of independent
\quad and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.2 P)^{2}\right]$
\quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.63 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.04 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL2018
\quad (Sheldrick, 2015b),
$\quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}{ }^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: $0.081(15)$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All H atoms could be located by difference Fourier synthesis. Subsequently, H atoms bound to N atoms were refined using a riding model with the amino $\mathrm{N}-\mathrm{H}$ distances constrained to $0.85 \AA$ and the imino $\mathrm{N}-\mathrm{H}$ distances constrained to $0.88 \AA$. For the H atoms of the amino groups, free rotation about their local threefold axis was allowed and their isotropic displacement parameters were set to $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$. The coordinates of the H atoms of the water molecules were refined with the $\mathrm{O}-\mathrm{H}$ distances restrained to 0.84 (1) \AA and the $\mathrm{H}-\mathrm{H}$ distance restrained to 1.4 (1) \AA. Their isotropic displacement parameters were coupled to the equivalent isotropic displacement parameters of the O atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
S1	$0.29190(9)$	$0.72804(10)$	$0.15928(8)$	$0.0303(6)$
O2	$0.3943(4)$	$0.5471(3)$	$0.1724(3)$	$0.0397(8)$
O3	$0.4276(3)$	$0.8537(4)$	$0.1119(3)$	$0.0389(8)$
O4	$0.2063(4)$	$0.7360(4)$	$0.3111(3)$	$0.0430(8)$
O5	$0.1362(4)$	$0.7771(4)$	$0.0452(3)$	$0.0418(8)$
O6	$0.2171(5)$	$-0.1764(4)$	$0.6728(3)$	$0.0520(9)$
N8	$0.2102(4)$	$0.0973(4)$	$0.8136(3)$	$0.0338(8)$
H8A	0.098160	0.160461	0.833726	0.051^{*}
H8B	0.307806	0.133069	0.847810	0.051^{*}
H8C	0.211936	-0.016627	0.859976	0.051^{*}
N9	$0.2573(4)$	$0.0009(4)$	$0.4352(3)$	$0.0354(8)$
H9	$0.237(4)$	$-0.085(5)$	$0.410(4)$	$0.028(10)^{*}$
N10	$0.2669(4)$	$0.2969(4)$	$0.3967(3)$	$0.0369(8)$
H10	$0.2779(14)$	$0.401(6)$	$0.335(6)$	$0.076(17)^{*}$
N11	$0.2988(6)$	$0.1773(6)$	$0.1914(4)$	$0.0481(10)$
H11A	$0.325(7)$	$0.261(8)$	$0.128(6)$	$0.055(15)^{*}$
H11B	$0.325(7)$	$0.092(7)$	$0.143(6)$	$0.053(14)^{*}$
C12	$0.2422(5)$	$0.2849(5)$	$0.5513(4)$	$0.0340(9)$
N13	$0.2327(5)$	$0.4357(4)$	$0.5902(4)$	$0.0412(9)$
H13A	$0.200(8)$	$0.434(8)$	$0.697(7)$	$0.073(17)^{*}$
H13B	$0.225(7)$	$0.546(7)$	$0.525(6)$	$0.054(13)^{*}$
C14	$0.2309(4)$	$0.1216(5)$	$0.6496(4)$	$0.0310(9)$
C15	$0.2338(5)$	$-0.0280(5)$	$0.5956(4)$	$0.0348(9)$
C16	$0.2728(5)$	$0.1591(5)$	$0.3394(4)$	$0.0353(9)$
OW1	$0.7873(5)$	$0.5365(4)$	$0.0944(3)$	$0.0496(9)$
HW12	$0.687(8)$	$0.467(8)$	$0.119(11)$	$0.16(4)^{*}$
HW11	$0.916(4)$	$0.473(7)$	$0.089(8)$	$0.11(2)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0287(8)$	$0.0328(8)$	$0.0267(8)$	$-0.0044(5)$	$0.0017(4)$	$-0.0048(5)$
O2	$0.0407(14)$	$0.0326(15)$	$0.0406(14)$	$-0.0032(11)$	$0.0047(10)$	$-0.0041(11)$

O3	$0.0345(13)$	$0.0414(15)$	$0.0413(15)$	$-0.0126(11)$	$0.0060(11)$	$-0.0094(11)$
O4	$0.0493(16)$	$0.0475(17)$	$0.0340(14)$	$-0.0118(12)$	$0.0090(12)$	$-0.0135(13)$
O5	$0.0341(13)$	$0.0532(18)$	$0.0351(14)$	$-0.0035(11)$	$-0.0040(10)$	$-0.0090(12)$
O6	$0.075(2)$	$0.0427(18)$	$0.0351(15)$	$-0.0137(15)$	$0.0071(13)$	$-0.0042(13)$
N8	$0.0305(14)$	$0.0418(18)$	$0.0259(15)$	$-0.0051(12)$	$-0.0006(11)$	$-0.0046(13)$
N9	$0.0453(16)$	$0.0334(18)$	$0.0261(16)$	$-0.0069(13)$	$0.0025(12)$	$-0.0063(13)$
N10	$0.0466(17)$	$0.0348(18)$	$0.0274(16)$	$-0.0073(13)$	$0.0027(12)$	$-0.0056(13)$
N11	$0.070(2)$	$0.043(2)$	$0.0274(16)$	$-0.0072(17)$	$0.0056(15)$	$-0.0061(17)$
C12	$0.0307(15)$	$0.040(2)$	$0.0272(17)$	$-0.0040(14)$	$0.0026(13)$	$-0.0050(15)$
N13	$0.061(2)$	$0.0304(18)$	$0.0309(16)$	$-0.0055(14)$	$0.0007(14)$	$-0.0073(13)$
C14	$0.0297(15)$	$0.0329(19)$	$0.0258(17)$	$-0.0026(13)$	$-0.0013(12)$	$-0.0018(14)$
C15	$0.0351(16)$	$0.035(2)$	$0.0270(17)$	$0.0000(14)$	$-0.0019(13)$	$0.0009(14)$
C16	$0.0362(17)$	$0.040(2)$	$0.0274(16)$	$-0.0037(14)$	$0.0023(13)$	$-0.0074(15)$
OW1	$0.0542(18)$	$0.0508(19)$	$0.0437(17)$	$-0.0107(14)$	$0.0046(14)$	$-0.0125(14)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1-O2	1.466 (3)	N10-C12	1.382 (4)
S1-O5	1.471 (2)	N10-H10	0.88 (4)
S1-O3	1.473 (2)	N11-C16	1.316 (5)
S1-04	1.484 (3)	N11-H11A	0.80 (6)
O6-C15	1.223 (5)	N11-H11B	0.89 (5)
N8-C14	1.449 (4)	C12-N13	1.335 (5)
N8-H8A	0.8900	C12-C14	1.377 (5)
N8-H8B	0.8900	N13-H13A	0.98 (6)
N8-H8C	0.8900	N13-H13B	0.91 (5)
N9-C16	1.343 (5)	C14-C15	1.407 (5)
N9-C15	1.415 (4)	OW1-HW12	0.953 (10)
N9-H9	0.82 (3)	OW1-HW11	0.954 (10)
N10-C16	1.333 (5)		
O2-S1-O5	110.53 (16)	C16-N11-H11B	128 (3)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	110.29 (15)	H11A-N11-H11B	102 (5)
$\mathrm{O} 5-\mathrm{S} 1-\mathrm{O} 3$	108.68 (14)	N13-C12-C14	126.4 (3)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4$	108.20 (15)	N13-C12-N10	115.6 (3)
O5-S1-O4	109.32 (14)	C14-C12-N10	118.0 (3)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 4$	109.81 (14)	$\mathrm{C} 12-\mathrm{N} 13-\mathrm{H} 13 \mathrm{~A}$	117 (4)
C14-N8-H8A	109.5	C12-N13-H13B	126 (3)
C14-N8-H8B	109.5	H13A-N13-H13B	115 (4)
H8A-N8-H8B	109.5	C12-C14-C15	121.8 (3)
C14-N8-H8C	109.5	C12-C14-N8	121.3 (3)
H8A-N8-H8C	109.5	C15-C14-N8	116.9 (3)
H8B-N8-H8C	109.5	O6-C15-C14	126.6 (3)
C16-N9-C15	123.3 (3)	O6-C15-N9	118.4 (3)
C16-N9-H9	125 (3)	C14-C15-N9	115.0 (3)
C15-N9-H9	110 (3)	N11-C16-N10	120.3 (4)
C16-N10-C12	122.8 (3)	N11-C16-N9	120.6 (4)
C16-N10-H10	120 (4)	N10-C16-N9	119.0 (3)

$\mathrm{C} 12-\mathrm{N} 10-\mathrm{H} 10$	$117(4)$	HW12-OW1-HW11	$116(5)$
$\mathrm{C} 16-\mathrm{N} 11-\mathrm{H} 11 \mathrm{~A}$	$128(4)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 8 — \mathrm{H} 8 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.89	2.46	$3.113(4)$	131
$\mathrm{~N} 8 — \mathrm{H} 8 A \cdots \mathrm{O} 5^{\mathrm{i}}$	0.89	1.99	$2.827(4)$	157
$\mathrm{~N} 8 — \mathrm{H} 8 B \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.89	1.94	$2.788(4)$	159
$\mathrm{~N} 8 — \mathrm{H} 8 C \cdots \mathrm{O} 5^{\mathrm{iii}}$	0.89	2.13	$2.942(4)$	152
$\mathrm{~N} 9 — \mathrm{H} 9 \cdots \mathrm{O} 4^{\mathrm{iv}}$	$0.82(4)$	$1.93(4)$	$2.739(5)$	$168(4)$
$\mathrm{N} 10 — \mathrm{H} 10 \cdots \mathrm{O} 2$	$0.88(4)$	$1.87(4)$	$2.677(4)$	$152(3)$
$\mathrm{N} 10 — \mathrm{H} 10 \cdots \mathrm{O} 4$	$0.88(4)$	$2.58(5)$	$3.329(4)$	$143(4)$
$\mathrm{N} 11 — \mathrm{H} 11 A \cdots \mathrm{O} 2$	$0.80(5)$	$2.56(7)$	$3.106(6)$	$126(5)$
$\mathrm{N} 11 — \mathrm{H} 11 A \cdots \mathrm{O} W 1^{\mathrm{v}}$	$0.80(5)$	$2.29(5)$	$2.956(4)$	$142(5)$
$\mathrm{N} 11 — \mathrm{H} 11 B \cdots \mathrm{O} 3^{\mathrm{iv}}$	$0.89(6)$	$2.00(6)$	$2.845(6)$	$158(5)$
$\mathrm{N} 13 — \mathrm{H} 13 A \cdots \mathrm{O} W 1^{\mathrm{ii}}$	$0.98(6)$	$1.98(7)$	$2.924(5)$	$161(5)$
$\mathrm{N} 13 — \mathrm{H} 13 B \cdots \mathrm{O} 4$	$0.91(5)$	$2.10(5)$	$2.961(4)$	$156(5)$
$\mathrm{O} W 1 — \mathrm{H} W 12 \cdots \mathrm{O} 2$	$0.96(6)$	$2.10(6)$	$2.798(4)$	$128(5)$
$\mathrm{O} W 1 — \mathrm{H} W 11 \cdots \mathrm{O} W 1^{\text {vi }}$	$0.96(3)$	$2.59(5)$	$3.390(5)$	$141(3)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y-1, z+1$; (iv) $x, y-1, z$; (v) $-x+1,-y+1,-z$; (vi) $-x+2,-y+1,-z$.

