organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(1R*,2R*)-1,2-Dihy­dr­oxy-1,2-di­hydro­naph­thal­en-1-yl]ethan-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alan.lough@utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 April 2019; accepted 1 May 2019; online 10 May 2019)

The crystal structure of the centrosymmetic title compound, C12H12O3, confirms the relative stereochemistry. The 1,2-di­hydro­benzene ring is in a flattened half-chair conformation. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into layers lying parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In past years, our research group has investigated the effects of various C1-substituted oxabenzonorbornadienes (OBDs) on controlling the regioselectivity of ring-opening reactions (Ballantine et al., 2009[Ballantine, M., Menard, M. L. & Tam, W. (2009). J. Org. Chem. 74, 7570-7573.]; Edmunds et al., 2015[Edmunds, M., Menard, M. L. & Tam, W. (2015). Synth. Commun. 45, 458-466.], 2016[Edmunds, M., Raheem, M.-A., Boutin, R., Tait, K. & Tam, W. (2016). Beilstein J. Org. Chem. 12, 239-244.]; Raheem et al., 2014[Raheem, M.-A., Edmunds, M. & Tam, W. (2014). Can. J. Chem. 92, 888-895.]). Very recently, Yang et al. (2019[Yang, X., Yang, W., Yao, Y., Deng, Y. & Yang, D. (2019). Org. Chem. Front. 6, 1151-1156.]) reported the first iridium-catalysed ring-opening reaction of oxa/aza benzonorbornadienes with various alcohol nucleophiles. Based upon these findings, we set out to determine the effect of C1 substitution on controlling the regioselectivity of this reaction on unsymmetrical OBDs. The reaction of the C1-substituted OBD (I) with water in the presence of [Ir(COD)Cl]2 and tetra­butyl­ammonium iodide afforded exclusively the C2 regioisomer (II) in an 85% yield (Fig. 1[link]). The relative stereochemistry of the diol system was determined by single-crystal X-ray analysis: of the cis or trans isomers potentially formed, only the trans stereoisomer was obtained.

[Figure 1]
Figure 1
The reaction scheme.

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The 1,2-di­hydro­benzene ring is in a flattened half-chair conformation. Atoms C3/C3/C5/C10 are essentially planar and atoms C1 and C2 deviate from this plane by −0.248 (1) and 0.149 (1) Å, respectively. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules (Table 1[link], Fig. 3[link]) forming a two-dimensional network lying parallel to (001).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.85 (2) 2.08 (2) 2.5970 (13) 118.2 (17)
O1—H1O⋯O3i 0.85 (2) 2.44 (2) 2.9568 (13) 119.8 (17)
O2—H2O⋯O1ii 0.87 (2) 1.92 (2) 2.7825 (12) 172.5 (16)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.

Synthesis and crystallization

To a 100 ml round-bottom flask open to air was added tetra­butyl­ammonium iodide (TBAI) (989 mg, 1 equiv), oxabenzonorbornadiene (I) (2.68 mmol), and [Ir(COD)Cl]2 (36 mg, 2 mol%) dissolved in a 40 ml 2:1 dioxane:water mixture. This reaction was left to stir at 353 K for 45 min, after which it was cooled to room temperature and diluted in EtOAc (20 ml) and subsequently washed with EtOAc (3 × 15 ml). The combined organic layers were concentrated and the crude reaction mixture was purified by flash chromatography (EtOAc:hexa­nes 1:2) to obtain the ring-opened product II (462 mg, 2.26 mmol, 85%) as a white solid. The product was recrystallized from the mixed solvents of EtOAc:hexa­nes (2.5:7.5 v:v) to give product II as colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H12O3
Mr 204.22
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 10.8313 (4), 7.6180 (3), 24.1463 (8)
V3) 1992.38 (13)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.80
Crystal size (mm) 0.21 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.683, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 13267, 1782, 1742
Rint 0.022
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.05
No. of reflections 1782
No. of parameters 145
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

1-[(1R*,2R*)-1,2-Dihydroxy-1,2-dihydronaphthalen-1-yl]ethan-1-one top
Crystal data top
C12H12O3Dx = 1.362 Mg m3
Mr = 204.22Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9970 reflections
a = 10.8313 (4) Åθ = 3.7–67.5°
b = 7.6180 (3) ŵ = 0.80 mm1
c = 24.1463 (8) ÅT = 150 K
V = 1992.38 (13) Å3Shard, colourless
Z = 80.21 × 0.18 × 0.16 mm
F(000) = 864
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
1742 reflections with I > 2σ(I)
Radiation source: Bruker ImuS with multi-layer opticsRint = 0.022
φ and ω scansθmax = 67.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.683, Tmax = 0.753k = 99
13267 measured reflectionsl = 2828
1782 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.8018P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1782 reflectionsΔρmax = 0.16 e Å3
145 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms bonded to C atoms were placed in calculated positions and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to O atoms were refined independently with an isotropic displacement parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42766 (8)0.51398 (11)0.41021 (3)0.0251 (2)
H1O0.352 (2)0.490 (3)0.4061 (8)0.061 (6)*
O20.52984 (8)0.27780 (12)0.49706 (3)0.0271 (2)
H2O0.5500 (15)0.340 (2)0.5260 (8)0.049 (5)*
O30.29996 (8)0.22665 (14)0.40191 (4)0.0383 (3)
C10.49858 (10)0.35827 (15)0.40262 (4)0.0199 (3)
C20.59229 (10)0.35080 (14)0.45046 (4)0.0210 (3)
H2A0.6149060.4743830.4600490.025*
C30.70942 (11)0.25496 (15)0.43728 (5)0.0254 (3)
H3A0.7579060.2113440.4670360.031*
C40.74845 (11)0.22829 (15)0.38585 (5)0.0253 (3)
H4A0.8252810.1709660.3801120.030*
C50.67633 (11)0.28480 (14)0.33766 (5)0.0217 (3)
C60.72385 (11)0.27239 (16)0.28412 (5)0.0283 (3)
H6A0.8028880.2213660.2784690.034*
C70.65723 (12)0.33359 (18)0.23898 (5)0.0326 (3)
H7A0.6903140.3236340.2026790.039*
C80.54248 (12)0.40913 (18)0.24702 (5)0.0310 (3)
H8A0.4975890.4539200.2163160.037*
C90.49282 (11)0.41954 (16)0.29999 (5)0.0248 (3)
H9A0.4133610.4696730.3052350.030*
C100.55839 (10)0.35729 (14)0.34528 (4)0.0194 (3)
C110.41033 (11)0.19854 (17)0.40406 (4)0.0246 (3)
C120.46253 (12)0.01786 (16)0.40624 (5)0.0286 (3)
H12A0.4020260.0656510.3915280.043*
H12B0.4819060.0125460.4447070.043*
H12C0.5380210.0128470.3839220.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (4)0.0274 (5)0.0270 (4)0.0081 (4)0.0010 (3)0.0028 (3)
O20.0353 (5)0.0279 (5)0.0180 (4)0.0033 (4)0.0008 (3)0.0007 (3)
O30.0209 (5)0.0464 (6)0.0476 (6)0.0060 (4)0.0021 (4)0.0026 (4)
C10.0189 (5)0.0200 (6)0.0208 (6)0.0022 (4)0.0004 (4)0.0005 (4)
C20.0230 (6)0.0207 (5)0.0192 (5)0.0001 (4)0.0007 (4)0.0001 (4)
C30.0239 (6)0.0238 (6)0.0287 (6)0.0040 (5)0.0063 (5)0.0010 (5)
C40.0197 (5)0.0221 (6)0.0342 (6)0.0041 (5)0.0001 (5)0.0009 (5)
C50.0222 (6)0.0171 (5)0.0258 (6)0.0023 (4)0.0026 (4)0.0019 (4)
C60.0271 (6)0.0262 (6)0.0316 (6)0.0028 (5)0.0089 (5)0.0049 (5)
C70.0383 (7)0.0364 (7)0.0230 (6)0.0114 (6)0.0086 (5)0.0031 (5)
C80.0348 (7)0.0368 (7)0.0212 (6)0.0089 (6)0.0027 (5)0.0040 (5)
C90.0234 (6)0.0270 (6)0.0242 (6)0.0039 (5)0.0017 (4)0.0021 (5)
C100.0204 (5)0.0170 (5)0.0207 (6)0.0034 (4)0.0007 (4)0.0005 (4)
C110.0240 (6)0.0327 (7)0.0172 (5)0.0052 (5)0.0009 (4)0.0013 (5)
C120.0352 (7)0.0260 (6)0.0246 (6)0.0093 (5)0.0022 (5)0.0012 (5)
Geometric parameters (Å, º) top
O1—C11.4250 (13)C5—C61.3949 (17)
O1—H1O0.85 (2)C5—C101.4038 (16)
O2—C21.4258 (14)C6—C71.3878 (19)
O2—H2O0.87 (2)C6—H6A0.9500
O3—C111.2157 (15)C7—C81.3834 (19)
C1—C101.5287 (14)C7—H7A0.9500
C1—C21.5387 (15)C8—C91.3898 (17)
C1—C111.5477 (16)C8—H8A0.9500
C2—C31.4979 (16)C9—C101.3875 (16)
C2—H2A1.0000C9—H9A0.9500
C3—C41.3273 (18)C11—C121.4890 (18)
C3—H3A0.9500C12—H12A0.9800
C4—C51.4661 (17)C12—H12B0.9800
C4—H4A0.9500C12—H12C0.9800
C1—O1—H1O109.2 (14)C7—C6—H6A119.6
C2—O2—H2O107.7 (12)C5—C6—H6A119.6
O1—C1—C10110.42 (9)C8—C7—C6119.78 (11)
O1—C1—C2106.85 (9)C8—C7—H7A120.1
C10—C1—C2113.59 (9)C6—C7—H7A120.1
O1—C1—C11108.58 (9)C7—C8—C9120.04 (11)
C10—C1—C11106.15 (9)C7—C8—H8A120.0
C2—C1—C11111.19 (9)C9—C8—H8A120.0
O2—C2—C3112.29 (9)C10—C9—C8120.51 (11)
O2—C2—C1107.09 (9)C10—C9—H9A119.7
C3—C2—C1114.66 (9)C8—C9—H9A119.7
O2—C2—H2A107.5C9—C10—C5119.81 (10)
C3—C2—H2A107.5C9—C10—C1119.68 (10)
C1—C2—H2A107.5C5—C10—C1120.41 (10)
C4—C3—C2122.89 (11)O3—C11—C12122.53 (12)
C4—C3—H3A118.6O3—C11—C1117.90 (12)
C2—C3—H3A118.6C12—C11—C1119.54 (10)
C3—C4—C5121.86 (11)C11—C12—H12A109.5
C3—C4—H4A119.1C11—C12—H12B109.5
C5—C4—H4A119.1H12A—C12—H12B109.5
C6—C5—C10118.94 (11)C11—C12—H12C109.5
C6—C5—C4121.28 (11)H12A—C12—H12C109.5
C10—C5—C4119.76 (10)H12B—C12—H12C109.5
C7—C6—C5120.88 (11)
O1—C1—C2—O282.61 (10)C8—C9—C10—C1175.77 (11)
C10—C1—C2—O2155.38 (9)C6—C5—C10—C91.80 (16)
C11—C1—C2—O235.72 (12)C4—C5—C10—C9176.51 (11)
O1—C1—C2—C3152.09 (9)C6—C5—C10—C1174.58 (10)
C10—C1—C2—C330.08 (13)C4—C5—C10—C17.11 (15)
C11—C1—C2—C389.58 (11)O1—C1—C10—C939.09 (14)
O2—C2—C3—C4143.39 (11)C2—C1—C10—C9159.09 (10)
C1—C2—C3—C420.86 (16)C11—C1—C10—C978.42 (12)
C2—C3—C4—C52.66 (18)O1—C1—C10—C5144.53 (10)
C3—C4—C5—C6173.34 (11)C2—C1—C10—C524.52 (14)
C3—C4—C5—C104.93 (17)C11—C1—C10—C597.96 (11)
C10—C5—C6—C71.26 (17)O1—C1—C11—O311.68 (13)
C4—C5—C6—C7177.03 (11)C10—C1—C11—O3107.04 (12)
C5—C6—C7—C80.46 (19)C2—C1—C11—O3128.96 (11)
C6—C7—C8—C91.64 (19)O1—C1—C11—C12170.17 (10)
C7—C8—C9—C101.10 (18)C10—C1—C11—C1271.11 (12)
C8—C9—C10—C50.64 (17)C2—C1—C11—C1252.88 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.85 (2)2.08 (2)2.5970 (13)118.2 (17)
O1—H1O···O3i0.85 (2)2.44 (2)2.9568 (13)119.8 (17)
O2—H2O···O1ii0.87 (2)1.92 (2)2.7825 (12)172.5 (16)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z+1.
 

References

First citationBallantine, M., Menard, M. L. & Tam, W. (2009). J. Org. Chem. 74, 7570–7573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2018). APEX3, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationEdmunds, M., Menard, M. L. & Tam, W. (2015). Synth. Commun. 45, 458–466.  Web of Science CrossRef CAS Google Scholar
First citationEdmunds, M., Raheem, M.-A., Boutin, R., Tait, K. & Tam, W. (2016). Beilstein J. Org. Chem. 12, 239–244.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaheem, M.-A., Edmunds, M. & Tam, W. (2014). Can. J. Chem. 92, 888–895.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X., Yang, W., Yao, Y., Deng, Y. & Yang, D. (2019). Org. Chem. Front. 6, 1151–1156.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds