organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Eth­­oxy-5-phenyl-1H-1,2,4-triazole

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 March 2019; accepted 19 March 2019; online 2 April 2019)

The title compound, C10H11N3O, crystallizes in the triclinic space group P[\overline{1}] with Z′ = 2. The two independent mol­ecules (A and B) differ in the orientation of the phenyl rings with respect to the plane of the triazine ring, with an interplanar angle of 11.45 (6)° in mol­ecule A and 19.71 (5)° in mol­ecule B, in the opposite sense. In the crystal, classical N—H⋯N hydrogen bonds cross-link the mol­ecules to form chains parallel to the b axis. Two additional `weak' C—H⋯O hydrogen bonds link the chains to form layers parallel to (101).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyano­ketene S,S-acetals and cyano­ketene N,S-acetals are important synthetic inter­mediates (Elgemeie et al., 2015[Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659-673.], 2016[Elgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211-222.], 2017[Elgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug Des. Dev. Ther. 11, 3389-3399.], 2018[Elgemeie, G. H., Abu-Zaied, M. A. & Nawwar, G. H. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 112-123.]) that have been used as building blocks to assemble a wide range of heterocyclic compounds (Azzam et al. 2017a[Azzam, R. A., Elgemeie, G. H., Ramadan, R. & Jones, P. G. (2017a). Acta Cryst. E73, 752-754.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1820-1822.], 2019[Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367-371.]; Azzam & Elgemeie, 2019[Azzam, R. A. & Elgemeie, G. H. (2019). Med. Chem. Res. 28, 62-70.]); they are also of general inter­est in medicinal chemistry (Abu-Zaied & Elgemeie, 2017[Abu-Zaied, M. A. & Elgemeie, G. H. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 713-725.], 2018[Abu-Zaied, M. A. & Elgemeie, G. H. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 67-77.]; Elgemeie et al. 2017c[Elgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017c). Nucleosides Nucleotides Nucleic Acids, 36, 198-212.]). Recently, we have reported the synthesis of various anti­metabolic agents starting from cyano­ketene N,S-acetals (Elgemeie et al. 2006[Elgemeie, G. H., Elzanaty, A. M., Elghandour, A. H. & Ahmed, S. A. (2006). Synth. Commun. 36, 825-834.], 2009[Elgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781-1792.]), cyano­ketene S,S-acetals (Elgemeie et al., 2003a[Elgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003a). Synth. Commun. 33, 2095-2101.], 2017d[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017d). Nucleosides Nucleotides Nucleic Acids, 36, 213-223.]), and cyano­ketene N,N-acetals (Elgemeie et al., 2003b[Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2003b). Synth. Commun. 33, 1659-1664.]). As a part of this programme, the reaction of (E)-ethyl 3-benzamido-2-cyano-3-(methyl­thio)­acrylate (1) with hydrazine was investigated (Fig. 1[link]). This gave a product whose mass spectrum was not consistent with the proposed pyrazole structure (3). Other spectroscopic measurements did not allow us to identify the product unambiguously and therefore the X-ray crystal structure was determined, confirming the exclusive presence of the triazole derivative (7) as sole product in the solid state. The formation of (7) is assumed to proceed via initial addition of the basic N atom of hydrazine to the double bond of (1), followed by formation of adduct (4) and elimination of ethyl cyano­acetate. From adduct (4), the favoured, kinetically and thermodynamically controlled product (7) is formed.

[Figure 1]
Figure 1
Reaction scheme.

Compound (7) crystallizes with two mol­ecules (A and B) in the asymmetric unit, linked by the hydrogen bond N1—H01⋯N4′ (Table 1[link] and Fig. 2[link]). The triazine rings of the two mol­ecules subtend an inter­planar angle of 74.75 (4)°. The asymmetric unit was chosen so that the mol­ecules are linked by a hydrogen bond, but the best least-squares fit (r.m.s. deviation 0.057 Å excluding C12, C13, C15, C16) is obtained when one mol­ecule is inverted (Fig. 3[link]). The mol­ecules differ in the orientation of the phenyl ring, whereby the inter­planar angle to the triazine ring is 11.45 (6)° in mol­ecule A (unprimed atoms) but 19.71 (5)° in mol­ecule B (in the opposite sense).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯N4′ 0.94 (2) 1.94 (2) 2.866 (1) 170 (1)
N1′—H01′⋯N4i 0.90 (2) 2.02 (2) 2.916 (1) 176 (1)
C13—H13⋯O1′ii 0.95 2.55 3.478 (2) 165
C15′—H15′⋯N2iii 0.95 2.52 3.463 (2) 172
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x, -y, -z+1.
[Figure 2]
Figure 2
A view of the mol­ecular structures of the two independent mol­ecules of compound (7), with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a classical hydrogen bond (Table 1[link]).
[Figure 3]
Figure 3
Least-squares fit of all non-hydrogen atoms, except C12, C13, C15 and C16, of inverted mol­ecule A (dashed lines) on mol­ecule B.

In the crystal, mol­ecules are linked by two classical hydrogen bonds, N1—H01⋯N4′ (within the asymmetric unit) and N1′—H01⋯N4 (by b-axis translation), to form chains parallel to the b axis. Weak inter­molecular hydrogen bonds, C13—H13⋯O1′ and C15′—H15′⋯N2 (for operators see Table 1[link]) cross-link these chains to form layers parallel to (101) (Table 1[link] and Fig. 4[link]).

[Figure 4]
Figure 4
Packing diagram of compound (7), viewed perpendicular to plane (101). Classical hydrogen bonds are indicated by thick dashed lines, C—H⋯X inter­actions by thin dashed lines (see Table 1[link]). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

The Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains no other example of a 1,2,4-triazine, unsubstituted at N1, with an oxygen substituent at C3. There are eight examples of a 1,2,4-triazine with a phenyl substituent at C5: refcodes DIWZOA (Othman et al., 2014a[Othman, R. Ben , Marchivie, M., Suzenet, F. & Routier, S. (2014b). Acta Cryst. E70, o622--o623.]), DOLCAJ (Dolzhenko et al., 2009[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009). Acta Cryst. E65, o126.]), HIYTAM (Othman et al., 2014a[Othman, R., Massip, S., Marchivie, M., Jarry, C., Vercouillie, J., Chalon, S., Guillaumet, G., Suzenet, F. & Routier, S. (2014b). Eur. J. Org. Chem. pp. 3225-3231.]), IBOMAP (two polymorphs of the 3,5-diphenyl derivative; Brough et al., 2011[Brough, P., Gambarelli, S., Jacquot, J.-F., Grand, A., Pécaut, J. & Rey, P. (2011). Chem. Eur. J. 17, 11250-11257.] and Sudheendran et al., 2014[Sudheendran, K., Schmidt, D., Frey, W., Conrad, J. & Beifuss, U. (2014). Tetrahedron, 70, 1635-1645.]), LAGCAX (Carlsen et al., 1991[Carlsen, P. H. J., Gautun, O. R., Samuelsen, E. J., Mårdalen, J., Helgesson, G. & Jagner, S. (1991). Phys. Scr. 44, 214-216.]), SISNIS (Buzykin et al., 2006[Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2006). Russ. J. Gen. Chem. 76, 1471-1486.]), URELIN (Zhu et al., 2011[Zhu, A.-X., Liu, J.-N., Li, Z., Wang, H.-C. & Du, Y.-C. (2011). Acta Cryst. E67, o1208.]), XUHBEJ (De Rosa et al., 2014[De Rosa, M., Arnold, D. & Yennawar, H. (2014). Tetrahedron Lett. 55, 5491-5494.]).

Synthesis and crystallization

Hydrazine hydrate (1 mmol) was added to a solution of (E)-ethyl 3-benzamido-2-cyano-3-(methyl­thio)­acrylate (1) (1 mmol) in ethanol (20 ml) containing a few drops of piperidine. The mixture was heated under reflux with continuous stirring for 2 h, then poured onto ice. The solid product was filtered off, dried and recrystallized from ethanol to afford compound (7) as colourless crystals (yield 60%, m.p. 393 K). 1H NMR (400 MHz, DMSO): δ 1.37 (t, 3H, CH3), 4.34 (q, 2H, CH2), 7.47–7.93 (m, 5H, Ph), 13.72 (s, H, NH-triazole). Analysis: calculated for C10H11N3O (189.21): C, 63.48; H, 5.86; N, 22.21. Found: C, 63.25; H, 5.62; N, 22.44.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H11N3O
Mr 189.22
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.0664 (4), 10.0476 (5), 12.5229 (5)
α, β, γ (°) 79.554 (4), 81.137 (4), 70.517 (5)
V3) 936.17 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.74
Crystal size (mm) 0.20 × 0.10 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Atlas Nova
Absorption correction Multi-scan (SADABS; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarton, England.])
Tmin, Tmax 0.937, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 30281, 3894, 3397
Rint 0.043
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.05
No. of reflections 3894
No. of parameters 263
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

3-Ethoxy-5-phenyl-1H-1,2,4-triazole top
Crystal data top
C10H11N3OZ = 4
Mr = 189.22F(000) = 400
Triclinic, P1Dx = 1.343 Mg m3
a = 8.0664 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.0476 (5) ÅCell parameters from 16098 reflections
c = 12.5229 (5) Åθ = 3.6–76.1°
α = 79.554 (4)°µ = 0.74 mm1
β = 81.137 (4)°T = 100 K
γ = 70.517 (5)°Lath, colourless
V = 936.17 (8) Å30.20 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Nova
diffractometer
3894 independent reflections
Radiation source: micro-focus sealed X-ray tube3397 reflections with I > 2σ(I)
Detector resolution: 10.3543 pixels mm-1Rint = 0.043
ω–scanθmax = 76.3°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Rigaku OD, 2015)
h = 1010
Tmin = 0.937, Tmax = 1.000k = 1211
30281 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.2414P]
where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.6131 (0.0016) x + 0.4132 (0.0052) y - 0.6162 (0.0069) z = 2.2732 (0.0040)

* 0.0019 (0.0006) N1 * 0.0006 (0.0006) N2 * -0.0028 (0.0006) C3 * 0.0038 (0.0006) N4 * -0.0035 (0.0006) C5

Rms deviation of fitted atoms = 0.0028

6.9734 (0.0022) x - 1.5826 (0.0053) y - 1.2344 (0.0061) z = 0.9885 (0.0034)

Angle to previous plane (with approximate esd) = 11.449 ( 0.057 )

* 0.0008 (0.0008) C11 * -0.0011 (0.0009) C12 * 0.0011 (0.0009) C13 * -0.0008 (0.0009) C14 * 0.0004 (0.0009) C15 * -0.0004 (0.0009) C16

Rms deviation of fitted atoms = 0.0008

3.3871 (0.0042) x + 1.0816 (0.0053) y + 11.8627 (0.0024) z = 4.1527 (0.0012)

Angle to previous plane (with approximate esd) = 77.006 ( 0.042 )

* 0.0001 (0.0006) N1' * -0.0006 (0.0006) N2' * 0.0009 (0.0007) C3' * -0.0008 (0.0006) N4' * 0.0004 (0.0006) C5'

Rms deviation of fitted atoms = 0.0006

3.7369 (0.0034) x + 4.3701 (0.0047) y + 11.6356 (0.0025) z = 4.0750 (0.0012)

Angle to previous plane (with approximate esd) = 19.712 ( 0.046 )

* -0.0014 (0.0008) C11' * 0.0001 (0.0008) C12' * 0.0008 (0.0009) C13' * -0.0005 (0.0009) C14' * -0.0008 (0.0009) C15' * 0.0017 (0.0008) C16'

Rms deviation of fitted atoms = 0.0010

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30398 (12)0.33959 (10)0.29129 (7)0.0186 (2)
H010.309 (2)0.2538 (18)0.2700 (13)0.033 (4)*
N20.31227 (12)0.34480 (10)0.39915 (7)0.0189 (2)
C30.30430 (14)0.47855 (12)0.39607 (9)0.0173 (2)
N40.29269 (12)0.55939 (10)0.29610 (7)0.0184 (2)
C50.29156 (14)0.46660 (12)0.23169 (9)0.0176 (2)
C60.31423 (15)0.44416 (12)0.58656 (9)0.0205 (2)
H6A0.3677660.4777940.6381320.025*
H6B0.3903140.3466890.5749710.025*
C70.13224 (15)0.44054 (13)0.63501 (9)0.0245 (2)
H7A0.0554410.5376040.6434880.037*
H7B0.1402880.3811700.7065240.037*
H7C0.0828100.4005000.5864890.037*
C110.27486 (14)0.49708 (12)0.11405 (9)0.0191 (2)
C120.29281 (16)0.62379 (13)0.05453 (9)0.0236 (2)
H120.3140850.6913400.0903160.028*
C130.27955 (17)0.65127 (13)0.05738 (10)0.0259 (3)
H130.2923180.7374450.0979860.031*
C140.24777 (16)0.55318 (13)0.10967 (9)0.0251 (3)
H140.2383240.5724150.1859990.030*
C150.22973 (18)0.42703 (14)0.05082 (10)0.0286 (3)
H150.2082920.3598300.0869080.034*
C160.24296 (17)0.39880 (13)0.06086 (10)0.0256 (3)
H160.2302760.3124030.1010830.031*
O10.30570 (10)0.53820 (8)0.48320 (6)0.01994 (18)
N1'0.34778 (13)0.16318 (10)0.26565 (8)0.0196 (2)
H01'0.325 (2)0.2465 (18)0.2761 (12)0.030 (4)*
N2'0.51220 (13)0.15849 (10)0.21821 (8)0.0208 (2)
C3'0.49143 (15)0.02159 (12)0.21179 (9)0.0196 (2)
N4'0.33042 (13)0.06147 (10)0.25005 (7)0.0197 (2)
C5'0.24252 (15)0.03317 (12)0.28387 (8)0.0185 (2)
C6'0.78367 (15)0.05107 (13)0.12871 (10)0.0240 (2)
H6'10.8085900.1474140.1715310.029*
H6'20.8791390.0128010.1358390.029*
C7'0.78071 (18)0.06106 (14)0.01023 (10)0.0293 (3)
H7'10.6860860.0988500.0032460.044*
H7'20.8945820.1247600.0170450.044*
H7'30.7595570.0339520.0324400.044*
C11'0.05810 (15)0.00021 (12)0.33152 (8)0.0192 (2)
C12'0.05513 (16)0.13969 (12)0.31547 (10)0.0238 (2)
H12'0.0122500.2128090.2742910.029*
C13'0.23009 (16)0.17204 (13)0.35957 (10)0.0263 (3)
H13'0.3067040.2674000.3484840.032*
C14'0.29414 (16)0.06579 (13)0.41993 (10)0.0248 (3)
H14'0.4141840.0883740.4499390.030*
C15'0.18179 (16)0.07356 (13)0.43617 (10)0.0248 (2)
H15'0.2252430.1463910.4773160.030*
C16'0.00612 (16)0.10682 (12)0.39246 (9)0.0227 (2)
H16'0.0703710.2021760.4040350.027*
O1'0.61578 (11)0.04083 (9)0.17153 (7)0.02334 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0236 (5)0.0149 (5)0.0175 (4)0.0067 (4)0.0006 (3)0.0030 (3)
N20.0221 (4)0.0173 (5)0.0173 (4)0.0064 (4)0.0009 (3)0.0029 (3)
C30.0169 (5)0.0172 (5)0.0179 (5)0.0059 (4)0.0001 (4)0.0032 (4)
N40.0201 (4)0.0162 (4)0.0189 (4)0.0065 (4)0.0003 (3)0.0023 (3)
C50.0170 (5)0.0151 (5)0.0201 (5)0.0053 (4)0.0003 (4)0.0025 (4)
C60.0223 (5)0.0222 (6)0.0169 (5)0.0072 (4)0.0023 (4)0.0017 (4)
C70.0237 (6)0.0266 (6)0.0224 (5)0.0088 (5)0.0002 (4)0.0018 (4)
C110.0196 (5)0.0177 (5)0.0191 (5)0.0053 (4)0.0002 (4)0.0028 (4)
C120.0315 (6)0.0178 (5)0.0221 (5)0.0088 (5)0.0018 (4)0.0030 (4)
C130.0345 (6)0.0185 (6)0.0225 (6)0.0083 (5)0.0006 (5)0.0008 (4)
C140.0310 (6)0.0242 (6)0.0180 (5)0.0065 (5)0.0024 (4)0.0016 (4)
C150.0426 (7)0.0235 (6)0.0232 (6)0.0133 (5)0.0065 (5)0.0040 (5)
C160.0364 (6)0.0206 (6)0.0224 (6)0.0132 (5)0.0038 (5)0.0008 (4)
O10.0254 (4)0.0186 (4)0.0173 (4)0.0088 (3)0.0012 (3)0.0034 (3)
N1'0.0228 (5)0.0154 (5)0.0210 (4)0.0077 (4)0.0003 (3)0.0028 (3)
N2'0.0231 (5)0.0182 (5)0.0216 (4)0.0083 (4)0.0004 (4)0.0030 (4)
C3'0.0246 (5)0.0181 (5)0.0176 (5)0.0091 (4)0.0010 (4)0.0025 (4)
N4'0.0249 (5)0.0160 (5)0.0188 (4)0.0079 (4)0.0006 (3)0.0026 (3)
C5'0.0257 (5)0.0145 (5)0.0159 (5)0.0070 (4)0.0030 (4)0.0016 (4)
C6'0.0232 (5)0.0223 (6)0.0267 (6)0.0088 (5)0.0002 (4)0.0033 (4)
C7'0.0347 (6)0.0254 (6)0.0260 (6)0.0094 (5)0.0032 (5)0.0043 (5)
C11'0.0239 (5)0.0176 (5)0.0170 (5)0.0074 (4)0.0026 (4)0.0030 (4)
C12'0.0269 (6)0.0173 (6)0.0267 (6)0.0081 (5)0.0023 (4)0.0000 (4)
C13'0.0256 (6)0.0186 (6)0.0321 (6)0.0045 (5)0.0026 (5)0.0016 (5)
C14'0.0231 (5)0.0244 (6)0.0257 (6)0.0073 (5)0.0000 (4)0.0031 (5)
C15'0.0291 (6)0.0205 (6)0.0247 (6)0.0107 (5)0.0014 (4)0.0008 (4)
C16'0.0273 (6)0.0164 (5)0.0232 (5)0.0063 (4)0.0011 (4)0.0017 (4)
O1'0.0261 (4)0.0192 (4)0.0264 (4)0.0113 (3)0.0036 (3)0.0049 (3)
Geometric parameters (Å, º) top
N1—C51.3372 (14)N1'—C5'1.3372 (14)
N1—N21.3739 (13)N1'—N2'1.3795 (13)
N1—H010.935 (17)N1'—H01'0.898 (17)
N2—C31.3176 (15)N2'—C3'1.3179 (15)
C3—O11.3399 (13)C3'—O1'1.3428 (14)
C3—N41.3610 (14)C3'—N4'1.3576 (15)
N4—C51.3418 (14)N4'—C5'1.3407 (15)
C5—C111.4670 (15)C5'—C11'1.4656 (15)
C6—O11.4537 (13)C6'—O1'1.4477 (14)
C6—C71.5092 (15)C6'—C7'1.5095 (17)
C6—H6A0.9900C6'—H6'10.9900
C6—H6B0.9900C6'—H6'20.9900
C7—H7A0.9800C7'—H7'10.9800
C7—H7B0.9800C7'—H7'20.9800
C7—H7C0.9800C7'—H7'30.9800
C11—C121.3940 (16)C11'—C12'1.3958 (16)
C11—C161.3949 (17)C11'—C16'1.3964 (16)
C12—C131.3921 (16)C12'—C13'1.3861 (17)
C12—H120.9500C12'—H12'0.9500
C13—C141.3857 (18)C13'—C14'1.3903 (17)
C13—H130.9500C13'—H13'0.9500
C14—C151.3864 (17)C14'—C15'1.3893 (17)
C14—H140.9500C14'—H14'0.9500
C15—C161.3892 (16)C15'—C16'1.3896 (17)
C15—H150.9500C15'—H15'0.9500
C16—H160.9500C16'—H16'0.9500
C5—N1—N2110.54 (9)C5'—N1'—N2'110.63 (9)
C5—N1—H01130.1 (10)C5'—N1'—H01'130.4 (10)
N2—N1—H01119.4 (10)N2'—N1'—H01'118.8 (10)
C3—N2—N1101.40 (9)C3'—N2'—N1'100.98 (9)
N2—C3—O1124.72 (10)N2'—C3'—O1'125.44 (10)
N2—C3—N4116.09 (10)N2'—C3'—N4'116.40 (10)
O1—C3—N4119.19 (10)O1'—C3'—N4'118.16 (10)
C5—N4—C3102.22 (9)C5'—N4'—C3'102.35 (9)
N1—C5—N4109.75 (9)N1'—C5'—N4'109.64 (10)
N1—C5—C11123.83 (10)N1'—C5'—C11'124.66 (10)
N4—C5—C11126.40 (10)N4'—C5'—C11'125.69 (10)
O1—C6—C7110.87 (9)O1'—C6'—C7'110.59 (10)
O1—C6—H6A109.5O1'—C6'—H6'1109.5
C7—C6—H6A109.5C7'—C6'—H6'1109.5
O1—C6—H6B109.5O1'—C6'—H6'2109.5
C7—C6—H6B109.5C7'—C6'—H6'2109.5
H6A—C6—H6B108.1H6'1—C6'—H6'2108.1
C6—C7—H7A109.5C6'—C7'—H7'1109.5
C6—C7—H7B109.5C6'—C7'—H7'2109.5
H7A—C7—H7B109.5H7'1—C7'—H7'2109.5
C6—C7—H7C109.5C6'—C7'—H7'3109.5
H7A—C7—H7C109.5H7'1—C7'—H7'3109.5
H7B—C7—H7C109.5H7'2—C7'—H7'3109.5
C12—C11—C16119.61 (10)C12'—C11'—C16'119.52 (11)
C12—C11—C5120.15 (10)C12'—C11'—C5'119.52 (10)
C16—C11—C5120.24 (10)C16'—C11'—C5'120.96 (10)
C13—C12—C11119.94 (11)C13'—C12'—C11'120.06 (11)
C13—C12—H12120.0C13'—C12'—H12'120.0
C11—C12—H12120.0C11'—C12'—H12'120.0
C14—C13—C12120.13 (11)C12'—C13'—C14'120.41 (11)
C14—C13—H13119.9C12'—C13'—H13'119.8
C12—C13—H13119.9C14'—C13'—H13'119.8
C13—C14—C15120.14 (11)C15'—C14'—C13'119.69 (11)
C13—C14—H14119.9C15'—C14'—H14'120.2
C15—C14—H14119.9C13'—C14'—H14'120.2
C14—C15—C16120.06 (12)C14'—C15'—C16'120.25 (11)
C14—C15—H15120.0C14'—C15'—H15'119.9
C16—C15—H15120.0C16'—C15'—H15'119.9
C15—C16—C11120.12 (11)C15'—C16'—C11'120.06 (11)
C15—C16—H16119.9C15'—C16'—H16'120.0
C11—C16—H16119.9C11'—C16'—H16'120.0
C3—O1—C6115.05 (9)C3'—O1'—C6'116.23 (9)
C5—N1—N2—C30.12 (11)C5'—N1'—N2'—C3'0.07 (12)
N1—N2—C3—O1179.17 (10)N1'—N2'—C3'—O1'179.42 (10)
N1—N2—C3—N40.36 (12)N1'—N2'—C3'—N4'0.15 (12)
N2—C3—N4—C50.68 (12)N2'—C3'—N4'—C5'0.17 (13)
O1—C3—N4—C5178.88 (9)O1'—C3'—N4'—C5'179.43 (10)
N2—N1—C5—N40.55 (12)N2'—N1'—C5'—N4'0.03 (12)
N2—N1—C5—C11178.03 (9)N2'—N1'—C5'—C11'178.84 (10)
C3—N4—C5—N10.70 (12)C3'—N4'—C5'—N1'0.11 (12)
C3—N4—C5—C11177.83 (10)C3'—N4'—C5'—C11'178.90 (10)
N1—C5—C11—C12169.05 (11)N1'—C5'—C11'—C12'159.54 (11)
N4—C5—C11—C1212.60 (17)N4'—C5'—C11'—C12'19.07 (17)
N1—C5—C11—C1610.20 (17)N1'—C5'—C11'—C16'20.26 (17)
N4—C5—C11—C16168.14 (11)N4'—C5'—C11'—C16'161.13 (11)
C16—C11—C12—C130.25 (18)C16'—C11'—C12'—C13'0.19 (17)
C5—C11—C12—C13179.02 (10)C5'—C11'—C12'—C13'179.61 (11)
C11—C12—C13—C140.28 (18)C11'—C12'—C13'—C14'0.02 (19)
C12—C13—C14—C150.25 (19)C12'—C13'—C14'—C15'0.09 (19)
C13—C14—C15—C160.2 (2)C13'—C14'—C15'—C16'0.07 (18)
C14—C15—C16—C110.2 (2)C14'—C15'—C16'—C11'0.28 (18)
C12—C11—C16—C150.18 (18)C12'—C11'—C16'—C15'0.34 (17)
C5—C11—C16—C15179.08 (11)C5'—C11'—C16'—C15'179.46 (10)
N2—C3—O1—C60.91 (15)N2'—C3'—O1'—C6'2.20 (16)
N4—C3—O1—C6178.61 (9)N4'—C3'—O1'—C6'178.24 (9)
C7—C6—O1—C384.57 (11)C7'—C6'—O1'—C3'87.32 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···N40.94 (2)1.94 (2)2.866 (1)170 (1)
N1—H01···N4i0.90 (2)2.02 (2)2.916 (1)176 (1)
C13—H13···O1ii0.952.553.478 (2)165
C15—H15···N2iii0.952.523.463 (2)172
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x, y, z+1.
 

References

First citationAbu-Zaied, M. A. & Elgemeie, G. H. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 713–725.  Web of Science CAS PubMed Google Scholar
First citationAbu-Zaied, M. A. & Elgemeie, G. H. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 67–77.  Web of Science CAS PubMed Google Scholar
First citationAzzam, R. A. & Elgemeie, G. H. (2019). Med. Chem. Res. 28, 62–70.  Web of Science CrossRef CAS Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Ramadan, R. & Jones, P. G. (2017a). Acta Cryst. E73, 752–754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrough, P., Gambarelli, S., Jacquot, J.-F., Grand, A., Pécaut, J. & Rey, P. (2011). Chem. Eur. J. 17, 11250–11257.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBuzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2006). Russ. J. Gen. Chem. 76, 1471–1486.  Web of Science CrossRef CAS Google Scholar
First citationCarlsen, P. H. J., Gautun, O. R., Samuelsen, E. J., Mårdalen, J., Helgesson, G. & Jagner, S. (1991). Phys. Scr. 44, 214–216.  CrossRef CAS Web of Science Google Scholar
First citationDe Rosa, M., Arnold, D. & Yennawar, H. (2014). Tetrahedron Lett. 55, 5491–5494.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009). Acta Cryst. E65, o126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. A. & Nawwar, G. H. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 112–123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug Des. Dev. Ther. 11, 3389–3399.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., El-Ezbawy, S. R. & Sood, S. A. (2003a). Synth. Commun. 33, 2095–2101.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2003b). Synth. Commun. 33, 1659–1664.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elsayed, S. H. & Hassan, A. S. (2009). Synth. Commun. 39, 1781–1792.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elzanaty, A. M., Elghandour, A. H. & Ahmed, S. A. (2006). Synth. Commun. 36, 825–834.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017c). Nucleosides Nucleotides Nucleic Acids, 36, 198–212.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017d). Nucleosides Nucleotides Nucleic Acids, 36, 213–223.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOthman, R. Ben , Marchivie, M., Suzenet, F. & Routier, S. (2014b). Acta Cryst. E70, o622--o623.  Google Scholar
First citationOthman, R., Massip, S., Marchivie, M., Jarry, C., Vercouillie, J., Chalon, S., Guillaumet, G., Suzenet, F. & Routier, S. (2014b). Eur. J. Org. Chem. pp. 3225–3231.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationSudheendran, K., Schmidt, D., Frey, W., Conrad, J. & Beifuss, U. (2014). Tetrahedron, 70, 1635–1645.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, A.-X., Liu, J.-N., Li, Z., Wang, H.-C. & Du, Y.-C. (2011). Acta Cryst. E67, o1208.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds