metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′-Bis(4-bromo­phen­yl)-3,3′-di­phenyl­ferrocene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: scott.iacono@usafa.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 April 2019; accepted 9 April 2019; online 25 April 2019)

In the title compound, [Fe(C17H12Br)2], the FeII atom is sandwiched between the eclipsed five-membered rings, with Fe⋯ring centroid distances of 1.649 (3) and 1.652 (3) Å. In one of the ligands, the Br atom is disordered over two locations [site occupancies = 0.839 (2) and 0.161 (2)].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Substituted ferrocenes have been investigated for their applications in mol­ecular machines (Muraoka et al., 2003[Muraoka, T., Kinbara, K., Kobayashi, Y. & Aida, T. (2003). J. Am. Chem. Soc. 125, 5612-5613.]), as aryl­ation catalysts (Schmiel & Butenschön, 2017[Schmiel, D. & Butenschön, H. (2017). Organometallics, 36, 4979-4989.]), and to moderate the burning rates of composited solid propellants (Liu et al., 2015[Liu, X., Zhang, W., Zhang, G. & Gao, Z. (2015). New J. Chem. 39, 155-162.]). In an effort to provide a structurally simple starting material for further diversification, the title ferrocene complex, with each cyclo­penta­dienyl ligand bearing a phenyl and 4-bromo­phenyl susbstituent at its 1 and 3 positions, was synthesized.

The title compound (Fig. 1[link]) crystallizes in the ortho­rhom­bic space group Pna21 with one mol­ecule per asymmetric unit. The compound consists of two 1-(4-bromo­phen­yl)-3-phenyl­cyclo­penta­dienyl ligands with the FeII atom sandwiched between the cyclo­penta­dienyl ligands. The distances between the cyclo­penta­dienyl centroids and the FeII atom are 1.649 (3) and 1.652 (3) Å: the five-membered rings are almost eclipsed. The phenyl substituents are twisted slightly with respect to the cyclo­penta­dienyl cores, with deviations of the ring planes ranging from 10.5 (3) to 19.6 (3)°. The main disorder component of Br1 and Br1′ both lie at the same end of the mol­ecule.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. Only the primary disorder component for Br1 and associated H atoms is shown.

Synthesis and crystallization

The title compound was synthesized following a modified literature procedure (Peloquin et al., 2012[Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371-6376.]). A solution of 3-(4-bromo­phen­yl)-cyclo­pent-2-en-1-one (43.40 g, 183.0 mmol) in THF (500 ml) under N2 was added dropwise over 15 min to vigorously stirred PhMgCl in THF (2.0 M, 119.0 ml, 238.0 mmol) under N2. The resulting brown reaction mixture was allowed to stir at room temperature for 15 h under N2, exposed to air, and the THF was removed by rotary vacuum to give a brown residue. The brown residue was taken up and vigorously stirred in a mixture of water (300 ml) and Et2O (500 ml). Addition of 1 M H2SO4 (61.3 ml, 61.3 mmol) resulted in a brown Et2O layer and a clear water layer, which was stirred for an additional 5 min. The brown Et2O layer was separated and washed sequentially with saturated NaHCO3 (3 × 200 ml), water (2 × 200 ml), and saturated brine (200 ml). The organic layer was dried over anhydrous Na2SO4, filtered, and concentrated under vacuum to afford a golden-colored oil, which was recrystallized by dissolving in boiling hot absolute ethanol (300 ml) and cooling (268 K). Vacuum filtration, washing with cold absolute ethanol (20 ml), and vacuum drying afforded the target compound as yellow crystalline flakes (45.7 g, 84%). 1H NMR (500 MHz, CDCl3): δ 7.61–7.35 (m, 10H), 6.64 (d, 1H, J = 5.5 Hz), 3.56 (d, 2H, J = 17 Hz).

Metallation was accomplished via a modified literature procedure (Hosono et al., 2013[Hosono, N., Yoshihara, N., Murakami, Y. & Watanabe, T. (2013). Macromol. Chem. Phys. 214, 1356-1362.]). To a solution of 1-(4-bromo­phen­yl)-3-phenyl-cyclo­penta­diene (4.80 g, 16.2 mmol) in THF (100 ml) at 273 K, KOt-Bu (2.13 g, 19.0 mmol) was added and the mixture was allowed to gradually warm to room temperature and stir for 7 h. The resulting reddish-brown solution was added via cannula transfer to a suspension of FeCl2 (2.02 g, 15.9 mmol) in THF (50 ml) at 273 K. After stirring at room temperature under N2 for 18 hrs, 500 ml of water was added to the reaction mixture. The mixture was extracted with CH2Cl2 (2 × 250 ml), dried over MgSO4, and evaporated to dryness under reduced pressure. The resulting solid was recrystallized from Et2O solution to yield the target product as an orange solid (2.104 g, 40%). Crystals suitable for X-ray diffraction were obtained by layering a saturated di­chloro­methane solution with aceto­nitrile. 1H NMR (500 MHz, CDCl3): δ 7.26–7.16 (m, 12H), 7.01 (d, 2H, J = 9.0 Hz), 6.95 (d, 2H, J = 8.0 Hz), 4.72 (br s, 2H), 4.50 (br d, 2H, J = 10 Hz), 4.43 (br s, 2H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Atom Br1 is disordered over two positions, bound to C9 and C15, with a refined occupancy of 0.839 (2) at the C9 position.

Table 1
Experimental details

Crystal data
Chemical formula [Fe(C17H12Br)2]
Mr 648.20
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 24.2914 (17), 14.3317 (10), 7.5014 (5)
V3) 2611.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.66
Crystal size (mm) 0.19 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.50, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 53974, 6454, 5283
Rint 0.075
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.103, 1.07
No. of reflections 6454
No. of parameters 344
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.44, −0.77
Absolute structure Flack x determined using 2036 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.052 (6)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae, et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae, et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) top
Crystal data top
[Fe(C17H12Br)2]Dx = 1.649 Mg m3
Mr = 648.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 7252 reflections
a = 24.2914 (17) Åθ = 2.2–22.9°
b = 14.3317 (10) ŵ = 3.66 mm1
c = 7.5014 (5) ÅT = 100 K
V = 2611.5 (3) Å3Plate, translucent orange
Z = 40.19 × 0.14 × 0.08 mm
F(000) = 1296
Data collection top
Bruker SMART APEX CCD
diffractometer
6454 independent reflections
Radiation source: fine focus sealed tube5283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω scansh = 3232
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1919
Tmin = 0.50, Tmax = 0.75l = 99
53974 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0333P)2 + 3.9647P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 1.07Δρmax = 1.44 e Å3
6454 reflectionsΔρmin = 0.77 e Å3
344 parametersAbsolute structure: Flack x determined using 2036 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
6 restraintsAbsolute structure parameter: 0.052 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Bromine atom Br1 was modeled across two positions, bound to C9 and C15, with final refined occupancy of 0.83925 at the C9 position. An attempt to bring the Br1A-C9 bond length (1.561) to a more reasonable length was made using DFIX, but the small occupancy of the C15 site limited the effectiveness of this method. The final Flack parameter 0.052 applies only to the smaller disordered part (the main disordered part is not chiral). The main disordered part is not chiral, and any amount of chiral product would have been formed as a racemic mixture during synthesis.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.66063 (4)0.92233 (6)0.17341 (14)0.0445 (3)0.839 (2)
Br1A0.51480 (18)0.0149 (3)0.1444 (7)0.0477 (17)0.161 (2)
Br1'0.77282 (3)0.88889 (5)0.61250 (11)0.04133 (18)
Fe10.59400 (3)0.45241 (6)0.60272 (13)0.02673 (19)
C10.5686 (2)0.5472 (5)0.4128 (8)0.0302 (15)
C20.5808 (3)0.4582 (5)0.3366 (8)0.0281 (14)
H20.6082170.4467590.2489160.034*
C30.5452 (3)0.3885 (5)0.4131 (8)0.0307 (15)
C40.5123 (2)0.4359 (5)0.5433 (9)0.0290 (14)
H40.4853440.4076510.6174790.035*
C50.5263 (2)0.5305 (5)0.5434 (9)0.0336 (16)
H50.5103180.5766750.6180710.04*
C60.5919 (2)0.6370 (5)0.3646 (8)0.0280 (14)
C70.6411 (3)0.6440 (5)0.2692 (9)0.0332 (15)
H70.6605410.5885590.2398190.04*
C80.6623 (3)0.7281 (5)0.2167 (10)0.0387 (17)
H80.6961480.7310570.1536960.046*
C90.6336 (3)0.8084 (5)0.2568 (10)0.0405 (17)
H90.6474620.8669110.2176570.049*0.161 (2)
C100.5849 (3)0.8054 (5)0.3533 (10)0.0397 (17)
H100.5658610.86130.3820970.048*
C110.5646 (3)0.7206 (5)0.4065 (9)0.0351 (16)
H110.5313590.7183460.4729830.042*
C120.5403 (3)0.2908 (5)0.3615 (8)0.0331 (15)
C130.4930 (3)0.2384 (6)0.4070 (10)0.0418 (18)
H130.4651950.2667120.477610.05*
C140.4862 (3)0.1486 (6)0.3527 (12)0.054 (2)
H140.4533490.1159660.3812780.065*
C150.5274 (3)0.1046 (6)0.2552 (12)0.052 (2)
H150.5229780.0416090.2181430.062*0.839 (2)
C160.5750 (3)0.1529 (5)0.2123 (10)0.0421 (18)
H160.6034790.1227370.1475550.051*
C170.5810 (3)0.2440 (6)0.2629 (9)0.0365 (16)
H170.613640.2765240.230570.044*
C1'0.6620 (3)0.5083 (5)0.7288 (8)0.0295 (14)
C2'0.6750 (2)0.4217 (5)0.6481 (8)0.0287 (14)
H2'0.7021090.4124820.5586410.034*
C3'0.6406 (2)0.3497 (5)0.7226 (8)0.0278 (14)
C4'0.6055 (3)0.3955 (5)0.8476 (8)0.0284 (14)
H4'0.5777650.3657160.9166060.034*
C5'0.6180 (3)0.4907 (5)0.8532 (8)0.0291 (14)
H5'0.6004680.5359220.9264260.035*
C6'0.6879 (2)0.5988 (5)0.6958 (8)0.0299 (14)
C7'0.7369 (2)0.6062 (5)0.5964 (11)0.0348 (14)
H7'0.7529970.5517910.5463450.042*
C8'0.7620 (3)0.6925 (5)0.5709 (9)0.0379 (18)
H8'0.7953430.6970490.5050820.045*
C9'0.7382 (3)0.7706 (5)0.6419 (8)0.0351 (16)
C10'0.6895 (3)0.7662 (5)0.7365 (9)0.0371 (16)
H10'0.6734680.8212460.7843350.044*
C11'0.6646 (3)0.6810 (5)0.7603 (9)0.0352 (16)
H11'0.6305180.6780810.8224610.042*
C12'0.6427 (2)0.2504 (5)0.6802 (8)0.0311 (14)
C13'0.6021 (3)0.1888 (5)0.7454 (10)0.0403 (17)
H13'0.5722690.2128890.8130140.048*
C14'0.6050 (3)0.0925 (6)0.7123 (13)0.052 (2)
H14'0.5770720.0523260.7570260.062*
C15'0.6481 (3)0.0558 (5)0.6151 (13)0.0493 (18)
H15'0.6505620.0095170.5957250.059*
C16'0.6878 (4)0.1156 (6)0.5457 (10)0.048 (2)
H16'0.7171180.0910940.4760410.057*
C17'0.6849 (3)0.2106 (5)0.5778 (9)0.0360 (17)
H17'0.7124630.2501170.5289190.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0512 (5)0.0259 (4)0.0565 (6)0.0057 (4)0.0129 (4)0.0011 (4)
Br1A0.042 (3)0.042 (3)0.058 (4)0.0072 (19)0.005 (2)0.006 (2)
Br1'0.0317 (3)0.0501 (4)0.0422 (4)0.0068 (3)0.0022 (4)0.0074 (4)
Fe10.0192 (4)0.0440 (5)0.0170 (3)0.0062 (3)0.0000 (4)0.0042 (5)
C10.020 (3)0.051 (4)0.020 (3)0.009 (3)0.002 (2)0.005 (3)
C20.021 (3)0.046 (4)0.017 (3)0.008 (3)0.000 (2)0.003 (3)
C30.023 (3)0.049 (4)0.020 (3)0.006 (3)0.002 (2)0.007 (3)
C40.019 (3)0.045 (4)0.023 (3)0.001 (3)0.002 (2)0.006 (3)
C50.019 (3)0.061 (5)0.021 (3)0.014 (3)0.000 (2)0.006 (3)
C60.022 (3)0.045 (4)0.018 (3)0.011 (3)0.005 (2)0.002 (3)
C70.026 (3)0.047 (4)0.027 (3)0.003 (3)0.004 (3)0.005 (3)
C80.026 (3)0.055 (4)0.035 (4)0.006 (3)0.001 (3)0.006 (3)
C90.039 (4)0.046 (4)0.036 (4)0.000 (3)0.002 (3)0.009 (3)
C100.035 (4)0.044 (4)0.040 (4)0.009 (3)0.003 (3)0.002 (3)
C110.033 (4)0.044 (4)0.029 (3)0.002 (3)0.003 (3)0.003 (3)
C120.030 (4)0.047 (4)0.022 (3)0.004 (3)0.005 (3)0.005 (3)
C130.027 (3)0.060 (5)0.038 (4)0.000 (3)0.002 (3)0.006 (4)
C140.038 (4)0.057 (5)0.068 (6)0.011 (4)0.002 (4)0.006 (5)
C150.048 (5)0.055 (5)0.052 (5)0.010 (4)0.005 (4)0.010 (4)
C160.048 (4)0.045 (4)0.034 (4)0.006 (4)0.002 (3)0.007 (3)
C170.027 (3)0.054 (5)0.029 (4)0.004 (3)0.003 (3)0.007 (3)
C1'0.021 (3)0.046 (4)0.022 (3)0.002 (3)0.005 (2)0.002 (3)
C2'0.018 (3)0.050 (4)0.017 (3)0.008 (3)0.001 (2)0.001 (3)
C3'0.022 (3)0.044 (4)0.017 (3)0.004 (3)0.002 (2)0.004 (3)
C4'0.025 (3)0.043 (4)0.017 (3)0.004 (3)0.002 (2)0.007 (3)
C5'0.025 (3)0.044 (4)0.018 (3)0.003 (3)0.000 (2)0.001 (3)
C6'0.021 (3)0.051 (4)0.018 (3)0.005 (3)0.003 (2)0.004 (3)
C7'0.028 (3)0.045 (4)0.031 (3)0.006 (3)0.002 (3)0.002 (4)
C8'0.023 (3)0.058 (5)0.032 (5)0.004 (3)0.001 (3)0.011 (3)
C9'0.029 (3)0.050 (4)0.026 (4)0.003 (3)0.002 (3)0.004 (3)
C10'0.031 (4)0.047 (4)0.034 (4)0.003 (3)0.006 (3)0.005 (3)
C11'0.027 (3)0.046 (4)0.033 (4)0.002 (3)0.011 (3)0.001 (3)
C12'0.026 (3)0.048 (4)0.020 (3)0.008 (3)0.004 (3)0.005 (3)
C13'0.040 (4)0.047 (4)0.034 (4)0.005 (3)0.007 (3)0.001 (3)
C14'0.051 (5)0.044 (5)0.061 (6)0.002 (4)0.012 (4)0.000 (4)
C15'0.058 (4)0.046 (4)0.044 (4)0.006 (4)0.001 (5)0.003 (4)
C16'0.055 (5)0.051 (5)0.037 (4)0.018 (4)0.001 (4)0.007 (4)
C17'0.028 (3)0.054 (4)0.025 (4)0.004 (3)0.001 (3)0.007 (3)
Geometric parameters (Å, º) top
Br1—C91.868 (8)C14—C151.391 (12)
Br1A—C151.561 (9)C14—H140.95
Br1'—C9'1.906 (7)C15—C161.385 (11)
Fe1—C22.023 (6)C15—H150.95
Fe1—C4'2.029 (6)C16—C171.367 (11)
Fe1—C52.039 (6)C16—H160.95
Fe1—C5'2.042 (6)C17—H170.95
Fe1—C2'2.044 (5)C1'—C2'1.417 (9)
Fe1—C42.048 (6)C1'—C5'1.441 (9)
Fe1—C3'2.063 (6)C1'—C6'1.463 (9)
Fe1—C12.063 (6)C2'—C3'1.439 (9)
Fe1—C1'2.064 (6)C2'—H2'0.95
Fe1—C32.066 (7)C3'—C4'1.427 (9)
C1—C21.429 (10)C3'—C12'1.459 (9)
C1—C51.440 (9)C4'—C5'1.398 (9)
C1—C61.452 (10)C4'—H4'0.95
C2—C31.441 (9)C5'—H5'0.95
C2—H20.95C6'—C11'1.394 (9)
C3—C41.434 (9)C6'—C7'1.409 (9)
C3—C121.457 (10)C7'—C8'1.391 (10)
C4—C51.397 (10)C7'—H7'0.95
C4—H40.95C8'—C9'1.369 (10)
C5—H50.95C8'—H8'0.95
C6—C71.396 (9)C9'—C10'1.380 (9)
C6—C111.405 (9)C10'—C11'1.375 (10)
C7—C81.367 (10)C10'—H10'0.95
C7—H70.95C11'—H11'0.95
C8—C91.379 (10)C12'—C17'1.404 (9)
C8—H80.95C12'—C13'1.411 (10)
C9—C101.388 (10)C13'—C14'1.404 (11)
C9—H90.95C13'—H13'0.95
C10—C111.370 (10)C14'—C15'1.379 (11)
C10—H100.95C14'—H14'0.95
C11—H110.95C15'—C16'1.393 (12)
C12—C171.406 (9)C15'—H15'0.95
C12—C131.414 (10)C16'—C17'1.384 (11)
C13—C141.360 (12)C16'—H16'0.95
C13—H130.95C17'—H17'0.95
C2—Fe1—C4'158.6 (3)C9—C10—H10120.5
C2—Fe1—C568.5 (3)C10—C11—C6121.4 (6)
C4'—Fe1—C5121.9 (3)C10—C11—H11119.3
C2—Fe1—C5'160.4 (3)C6—C11—H11119.3
C4'—Fe1—C5'40.2 (3)C17—C12—C13116.4 (7)
C5—Fe1—C5'106.5 (3)C17—C12—C3122.7 (6)
C2—Fe1—C2'109.0 (2)C13—C12—C3120.9 (6)
C4'—Fe1—C2'68.3 (2)C14—C13—C12122.0 (7)
C5—Fe1—C2'158.6 (3)C14—C13—H13119.0
C5'—Fe1—C2'68.3 (2)C12—C13—H13119.0
C2—Fe1—C468.7 (3)C13—C14—C15120.0 (8)
C4'—Fe1—C4106.5 (3)C13—C14—H14120.0
C5—Fe1—C440.0 (3)C15—C14—H14120.0
C5'—Fe1—C4120.5 (3)C16—C15—C14119.7 (8)
C2'—Fe1—C4160.7 (3)C16—C15—Br1A116.9 (7)
C2—Fe1—C3'123.1 (3)C14—C15—Br1A120.8 (7)
C4'—Fe1—C3'40.8 (2)C16—C15—H15120.2
C5—Fe1—C3'158.4 (3)C14—C15—H15120.2
C5'—Fe1—C3'68.5 (3)C17—C16—C15120.2 (7)
C2'—Fe1—C3'41.0 (3)C17—C16—H16119.9
C4—Fe1—C3'123.0 (3)C15—C16—H16119.9
C2—Fe1—C140.9 (3)C16—C17—C12121.7 (7)
C4'—Fe1—C1158.6 (3)C16—C17—H17119.2
C5—Fe1—C141.1 (2)C12—C17—H17119.2
C5'—Fe1—C1122.9 (3)C2'—C1'—C5'106.8 (6)
C2'—Fe1—C1123.0 (3)C2'—C1'—C6'127.5 (6)
C4—Fe1—C168.6 (3)C5'—C1'—C6'125.8 (6)
C3'—Fe1—C1159.2 (2)C2'—C1'—Fe169.0 (3)
C2—Fe1—C1'124.2 (3)C5'—C1'—Fe168.6 (4)
C4'—Fe1—C1'68.4 (3)C6'—C1'—Fe1127.6 (4)
C5—Fe1—C1'122.2 (3)C1'—C2'—C3'109.4 (5)
C5'—Fe1—C1'41.1 (2)C1'—C2'—Fe170.6 (3)
C2'—Fe1—C1'40.4 (3)C3'—C2'—Fe170.2 (3)
C4—Fe1—C1'156.9 (3)C1'—C2'—H2'125.3
C3'—Fe1—C1'68.8 (3)C3'—C2'—H2'125.3
C1—Fe1—C1'107.5 (3)Fe1—C2'—H2'125.5
C2—Fe1—C341.2 (3)C4'—C3'—C2'105.8 (6)
C4'—Fe1—C3121.6 (3)C4'—C3'—C12'127.7 (6)
C5—Fe1—C368.3 (3)C2'—C3'—C12'126.4 (6)
C5'—Fe1—C3156.4 (3)C4'—C3'—Fe168.3 (3)
C2'—Fe1—C3124.8 (3)C2'—C3'—Fe168.8 (3)
C4—Fe1—C340.8 (3)C12'—C3'—Fe1128.2 (4)
C3'—Fe1—C3107.4 (3)C5'—C4'—C3'109.8 (6)
C1—Fe1—C369.2 (3)C5'—C4'—Fe170.4 (4)
C1'—Fe1—C3161.2 (3)C3'—C4'—Fe170.9 (3)
C2—C1—C5105.8 (6)C5'—C4'—H4'125.1
C2—C1—C6127.6 (6)C3'—C4'—H4'125.1
C5—C1—C6126.6 (6)Fe1—C4'—H4'125.2
C2—C1—Fe168.0 (4)C4'—C5'—C1'108.2 (6)
C5—C1—Fe168.5 (4)C4'—C5'—Fe169.4 (4)
C6—C1—Fe1129.7 (4)C1'—C5'—Fe170.3 (4)
C1—C2—C3109.6 (6)C4'—C5'—H5'125.9
C1—C2—Fe171.0 (4)C1'—C5'—H5'125.9
C3—C2—Fe170.9 (3)Fe1—C5'—H5'126.0
C1—C2—H2125.2C11'—C6'—C7'117.6 (6)
C3—C2—H2125.2C11'—C6'—C1'121.0 (6)
Fe1—C2—H2124.4C7'—C6'—C1'121.4 (6)
C4—C3—C2106.1 (6)C8'—C7'—C6'120.7 (6)
C4—C3—C12126.2 (6)C8'—C7'—H7'119.7
C2—C3—C12127.6 (6)C6'—C7'—H7'119.7
C4—C3—Fe168.9 (4)C9'—C8'—C7'119.1 (6)
C2—C3—Fe167.8 (4)C9'—C8'—H8'120.4
C12—C3—Fe1131.0 (5)C7'—C8'—H8'120.4
C5—C4—C3108.9 (6)C8'—C9'—C10'121.7 (6)
C5—C4—Fe169.7 (4)C8'—C9'—Br1'119.7 (5)
C3—C4—Fe170.3 (4)C10'—C9'—Br1'118.6 (5)
C5—C4—H4125.5C11'—C10'—C9'119.0 (7)
C3—C4—H4125.5C11'—C10'—H10'120.5
Fe1—C4—H4126.1C9'—C10'—H10'120.5
C4—C5—C1109.6 (6)C10'—C11'—C6'121.7 (6)
C4—C5—Fe170.4 (4)C10'—C11'—H11'119.1
C1—C5—Fe170.4 (3)C6'—C11'—H11'119.1
C4—C5—H5125.2C17'—C12'—C13'116.5 (7)
C1—C5—H5125.2C17'—C12'—C3'122.7 (6)
Fe1—C5—H5125.7C13'—C12'—C3'120.8 (6)
C7—C6—C11117.2 (6)C14'—C13'—C12'121.3 (7)
C7—C6—C1121.7 (6)C14'—C13'—H13'119.3
C11—C6—C1121.0 (6)C12'—C13'—H13'119.3
C8—C7—C6122.1 (7)C15'—C14'—C13'120.3 (8)
C8—C7—H7118.9C15'—C14'—H14'119.8
C6—C7—H7118.9C13'—C14'—H14'119.8
C7—C8—C9118.9 (7)C14'—C15'—C16'119.4 (8)
C7—C8—H8120.6C14'—C15'—H15'120.3
C9—C8—H8120.6C16'—C15'—H15'120.3
C8—C9—C10121.2 (7)C17'—C16'—C15'120.3 (7)
C8—C9—Br1118.7 (6)C17'—C16'—H16'119.8
C10—C9—Br1120.1 (6)C15'—C16'—H16'119.8
C8—C9—H9119.4C16'—C17'—C12'122.2 (7)
C10—C9—H9119.4C16'—C17'—H17'118.9
C11—C10—C9119.1 (7)C12'—C17'—H17'118.9
C11—C10—H10120.5
 

Funding information

Funding for this research was provided by: Air Force Office of Scientific Research.

References

First citationBruker (2017). APEX3, SAINT and SADABS. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHosono, N., Yoshihara, N., Murakami, Y. & Watanabe, T. (2013). Macromol. Chem. Phys. 214, 1356–1362.  CrossRef CAS Google Scholar
First citationLiu, X., Zhang, W., Zhang, G. & Gao, Z. (2015). New J. Chem. 39, 155–162.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuraoka, T., Kinbara, K., Kobayashi, Y. & Aida, T. (2003). J. Am. Chem. Soc. 125, 5612–5613.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371–6376.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchmiel, D. & Butenschön, H. (2017). Organometallics, 36, 4979–4989.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds