organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N-(3,4-Di­methyl­phen­yl)-1-[5-(phenyl­ethyn­yl)thio­phen-2-yl]methanimine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 20 February 2019; accepted 14 March 2019; online 5 April 2019)

The title compound, C21H17NS, was synthesized via the reaction of 5-(2-phenyl­eth-1-yn­yl)thio­phene-2-carbaldehyde and 3,4-di­methyl­aniline using ammonium bifluoride (NH4HF2) as an acid catalyst in methanol. The mol­ecule has three aryl rings: a phenyl (A), a thio­phene (B), and a di­methyl­benzene ring (C). The dihedral angles between the mean planes defined by these individual rings are 14.88 (6)° for A/B and 43.93 (4)° for B/C.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imine formation between thio­phene­carbaldehydes and anilines are prevalent in the chemical literature. Not only are they of inter­est as potential drug candidates, as anti­bacterial and/or anti­fungal agents (Shanty et al., 2017[Shanty, A. A., Philip, J. E., Sneha, E. J., Prathapachandra Kurup, M. R., Balachandran, S. & Mohanan, P. V. (2017). Bioorg. Chem. 70, 67-73.]), but they are also inter­esting ligands (Belkhiria et al., 2018[Belkhiria, M., Mechria, A., Dridi, S., Cruz, T. F. C., Gomes, C. S. B., Gomes, P. T. & Msaddek, M. (2018). J. Mol. Struct. 1171, 827-833.]). Our interests are in quinoxaline formation. The synthetic method using ammonium bifluoride as an acid catalyst outlined by Lassagne and co-workers (Lassagne et al., 2015[Lassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680-2689.]) has proven to be a clean high-yielding method for the synthesis quinoxalines and in addition for the production of imines. This reaction is proof for the clean high-yield production of imines as well.

In the mol­ecule (Fig. 1[link]), all bond lengths and angles are within expected values. Mol­ecules associated by inversion have inter­molecular contacts between the imine nitro­gen (N1) and a hydrogen on a neighboring methyl group (C20). The overall packing (Fig. 2[link]) resembles the classic herringbone pattern.

[Figure 1]
Figure 1
ORTEP view of the title compound, with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A view along [100] showing short packing contacts between imine N atoms and methyl H atoms on neighboring mol­ecules (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Synthesis and crystallization

To a 50 ml Erlenmeyer flask, 1.00 mmol of 5-(2-phenyl­eth-1-yn­yl)thio­phene-2-carbaldehyde (212 mg) was stirred into 10 ml of 2.5 × 10−3 mol l−1 solution of NH4HF2 in methanol. After the solid aldehyde had dissolved, 1.00 mmol of 3,4-di­methyl­aniline (121 mg) was added. Within the first 5 min, the amine also dissolved; however, within an hour, the product had begun to precipitate. The reaction was allowed to continue stirring overnight to ensure completion. Once filtered, the yellow solid product was washed with two 2 ml aliquots of ice cold 50:50 methanol–water, and once dried, 287 mg of product was formed (91.0% yield). This procedure is similar, though not identical, to a method used by Lassagne and co-workers to form quinoxalines and pyrido[2,3-b]pyrazines (Lassagne et al., 2015[Lassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680-2689.]). Crystals for diffraction study were crystallized from methyl­ene chloride (m.p. 410 K). ATR–IR (cm−1): 3059, 2971, 2918, 1882, 1612, 1486, 1440, 1020, 826, 806. 1H NMR (300 MHz, CDCl3): δ 8.54 (s, 1H), 7.58 (m, 2H), 7.40 (m, 4H), 7.30 (t, 1H), 7.17 (d, 1H), 7.08 (d, 1H), 7.04 (dd, 1H), 2.31 (d, 6H). 13C (75 MHz, CDCl3): δ 151.17, 148.88, 144.11, 137.42, 134.96, 132.37, 131.58, 131.40, 130.32, 128.83, 128.46, 127.35, 122.56, 118.24, 95.68, 82.86, 19.86, 19.40. F T–IR, 1H NMR, COSY and 13C NMR are given in the supporting information.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C21H17NS
Mr 315.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 5.9435 (3), 22.7785 (7), 15.0910 (9)
β (°) 124.087 (8)
V3) 1692.06 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.49 × 0.43 × 0.23
 
Data collection
Diffractometer Rigaku Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.754, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 42768, 6330, 4181
Rint 0.035
(sin θ/λ)max−1) 0.779
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.03
No. of reflections 6330
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-N-(3,4-Dimethylphenyl)-1-[5-(phenylethynyl)thiophen-2-yl]methanimine top
Crystal data top
C21H17NSDx = 1.238 Mg m3
Mr = 315.42Melting point: 410 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9435 (3) ÅCell parameters from 8633 reflections
b = 22.7785 (7) Åθ = 4.2–31.1°
c = 15.0910 (9) ŵ = 0.19 mm1
β = 124.087 (8)°T = 293 K
V = 1692.06 (14) Å3Plate, yellow
Z = 40.49 × 0.43 × 0.23 mm
F(000) = 664
Data collection top
Xcalibur, Sapphire3
diffractometer
6330 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1790 pixels mm-1θmax = 33.6°, θmin = 4.2°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 3535
Tmin = 0.754, Tmax = 1.000l = 2323
42768 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2177P]
where P = (Fo2 + 2Fc2)/3
6330 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4721 (3)0.73831 (6)0.25547 (12)0.0574 (3)
H10.65390.73510.19920.069*
C20.3977 (4)0.77446 (7)0.34126 (14)0.0692 (4)
H20.52960.79570.34240.083*
C30.1302 (4)0.77907 (7)0.42473 (14)0.0712 (4)
H30.08120.80350.48230.085*
C40.0653 (3)0.74777 (7)0.42359 (13)0.0678 (4)
H40.24630.75090.48060.081*
C50.0053 (3)0.71160 (6)0.33820 (11)0.0538 (3)
H50.12830.69060.33780.065*
C60.2751 (3)0.70658 (5)0.25309 (9)0.0442 (3)
C70.3453 (3)0.66938 (6)0.16471 (10)0.0491 (3)
C80.3928 (3)0.63856 (6)0.09161 (10)0.0496 (3)
C90.4458 (3)0.60085 (5)0.00742 (9)0.0445 (3)
C100.2630 (3)0.57639 (6)0.00958 (11)0.0505 (3)
H100.07720.58370.03340.061*
C110.3859 (3)0.53910 (6)0.09894 (11)0.0500 (3)
H110.29020.51950.12190.060*
C120.6603 (3)0.53453 (5)0.14866 (10)0.0436 (3)
C130.8443 (3)0.49621 (5)0.23642 (10)0.0458 (3)
H130.78230.47680.27310.055*
C141.2578 (2)0.45061 (5)0.35353 (10)0.0427 (2)
C151.2450 (3)0.44648 (6)0.44287 (10)0.0458 (3)
H151.11720.46880.44510.055*
C161.4172 (3)0.41012 (5)0.52816 (10)0.0454 (3)
C171.6122 (3)0.37701 (5)0.52561 (10)0.0475 (3)
C181.6256 (3)0.38167 (6)0.43691 (11)0.0511 (3)
H181.75480.35990.43480.061*
C191.4519 (3)0.41790 (6)0.35167 (11)0.0484 (3)
H191.46520.42030.29320.058*
C201.3950 (3)0.40764 (8)0.62267 (12)0.0634 (4)
H20A1.56190.42100.68550.095*
H20B1.36020.36800.63320.095*
H20C1.24860.43240.60960.095*
C211.8056 (3)0.33707 (8)0.61696 (13)0.0674 (4)
H21A1.92270.36010.67990.101*
H21B1.91310.31560.59860.101*
H21C1.70420.31010.63050.101*
N11.0880 (2)0.48807 (5)0.26526 (8)0.0469 (2)
S10.77294 (7)0.578178 (15)0.08798 (3)0.04885 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0533 (8)0.0607 (8)0.0519 (7)0.0092 (6)0.0255 (6)0.0024 (6)
C20.0825 (11)0.0612 (9)0.0725 (10)0.0169 (8)0.0487 (9)0.0023 (8)
C30.0916 (12)0.0555 (8)0.0620 (9)0.0016 (8)0.0402 (9)0.0168 (7)
C40.0609 (9)0.0654 (9)0.0572 (9)0.0076 (7)0.0208 (7)0.0174 (7)
C50.0488 (7)0.0535 (7)0.0527 (7)0.0009 (6)0.0246 (6)0.0068 (6)
C60.0510 (7)0.0400 (6)0.0396 (6)0.0003 (5)0.0242 (5)0.0015 (4)
C70.0533 (7)0.0476 (6)0.0422 (6)0.0008 (5)0.0242 (6)0.0013 (5)
C80.0549 (7)0.0470 (6)0.0416 (6)0.0017 (5)0.0238 (6)0.0011 (5)
C90.0516 (7)0.0426 (6)0.0374 (5)0.0029 (5)0.0238 (5)0.0018 (5)
C100.0455 (7)0.0518 (7)0.0509 (7)0.0035 (5)0.0250 (6)0.0023 (6)
C110.0497 (7)0.0507 (7)0.0540 (7)0.0002 (5)0.0317 (6)0.0042 (6)
C120.0502 (7)0.0426 (6)0.0420 (6)0.0006 (5)0.0284 (5)0.0004 (5)
C130.0514 (7)0.0450 (6)0.0437 (6)0.0014 (5)0.0283 (6)0.0039 (5)
C140.0433 (6)0.0425 (6)0.0413 (6)0.0043 (5)0.0229 (5)0.0037 (5)
C150.0488 (7)0.0460 (6)0.0442 (6)0.0003 (5)0.0270 (6)0.0006 (5)
C160.0487 (7)0.0458 (6)0.0393 (6)0.0086 (5)0.0231 (5)0.0007 (5)
C170.0433 (6)0.0455 (6)0.0455 (6)0.0052 (5)0.0200 (5)0.0040 (5)
C180.0452 (7)0.0537 (7)0.0551 (7)0.0020 (5)0.0284 (6)0.0027 (6)
C190.0485 (7)0.0551 (7)0.0478 (7)0.0014 (5)0.0308 (6)0.0036 (5)
C200.0668 (9)0.0800 (10)0.0464 (7)0.0015 (8)0.0336 (7)0.0066 (7)
C210.0597 (9)0.0708 (10)0.0608 (9)0.0082 (7)0.0271 (8)0.0204 (8)
N10.0496 (6)0.0479 (5)0.0422 (5)0.0003 (4)0.0251 (5)0.0063 (4)
S10.04729 (18)0.05599 (19)0.04635 (18)0.00247 (13)0.02812 (15)0.00812 (13)
Geometric parameters (Å, º) top
C1—H10.9300C12—S11.7210 (12)
C1—C21.381 (2)C13—H130.9300
C1—C61.3933 (19)C13—N11.2706 (16)
C2—H20.9300C14—C151.3956 (17)
C2—C31.372 (3)C14—C191.3866 (18)
C3—H30.9300C14—N11.4192 (15)
C3—C41.372 (2)C15—H150.9300
C4—H40.9300C15—C161.3835 (17)
C4—C51.3818 (19)C16—C171.4013 (19)
C5—H50.9300C16—C201.5054 (18)
C5—C61.3880 (18)C17—C181.3889 (19)
C6—C71.4308 (17)C17—C211.5076 (19)
C7—C81.2002 (18)C18—H180.9300
C8—C91.4151 (17)C18—C191.3833 (18)
C9—C101.3673 (19)C19—H190.9300
C9—S11.7270 (13)C20—H20A0.9600
C10—H100.9300C20—H20B0.9600
C10—C111.4033 (18)C20—H20C0.9600
C11—H110.9300C21—H21A0.9600
C11—C121.3647 (18)C21—H21B0.9600
C12—C131.4452 (17)C21—H21C0.9600
C2—C1—H1120.0N1—C13—H13118.9
C2—C1—C6120.08 (14)C15—C14—N1123.50 (11)
C6—C1—H1120.0C19—C14—C15118.68 (11)
C1—C2—H2119.9C19—C14—N1117.79 (11)
C3—C2—C1120.24 (15)C14—C15—H15119.1
C3—C2—H2119.9C16—C15—C14121.77 (12)
C2—C3—H3119.9C16—C15—H15119.1
C4—C3—C2120.20 (14)C15—C16—C17119.26 (12)
C4—C3—H3119.9C15—C16—C20119.46 (13)
C3—C4—H4119.8C17—C16—C20121.26 (12)
C3—C4—C5120.33 (15)C16—C17—C21121.21 (12)
C5—C4—H4119.8C18—C17—C16118.71 (12)
C4—C5—H5119.9C18—C17—C21120.08 (13)
C4—C5—C6120.10 (13)C17—C18—H18119.1
C6—C5—H5119.9C19—C18—C17121.72 (12)
C1—C6—C7121.40 (12)C19—C18—H18119.1
C5—C6—C1119.04 (12)C14—C19—H19120.1
C5—C6—C7119.56 (12)C18—C19—C14119.84 (12)
C8—C7—C6177.09 (15)C18—C19—H19120.1
C7—C8—C9178.38 (14)C16—C20—H20A109.5
C8—C9—S1120.67 (10)C16—C20—H20B109.5
C10—C9—C8127.98 (12)C16—C20—H20C109.5
C10—C9—S1111.32 (10)H20A—C20—H20B109.5
C9—C10—H10123.6H20A—C20—H20C109.5
C9—C10—C11112.74 (12)H20B—C20—H20C109.5
C11—C10—H10123.6C17—C21—H21A109.5
C10—C11—H11123.4C17—C21—H21B109.5
C12—C11—C10113.12 (12)C17—C21—H21C109.5
C12—C11—H11123.4H21A—C21—H21B109.5
C11—C12—C13127.39 (11)H21A—C21—H21C109.5
C11—C12—S1111.39 (9)H21B—C21—H21C109.5
C13—C12—S1121.09 (10)C13—N1—C14118.94 (10)
C12—C13—H13118.9C12—S1—C991.40 (6)
N1—C13—C12122.27 (11)
 

Acknowledgements

Funding for this research was provided by a CSU-AAUP Research Grant.

References

First citationBelkhiria, M., Mechria, A., Dridi, S., Cruz, T. F. C., Gomes, C. S. B., Gomes, P. T. & Msaddek, M. (2018). J. Mol. Struct. 1171, 827–833.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680–2689.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShanty, A. A., Philip, J. E., Sneha, E. J., Prathapachandra Kurup, M. R., Balachandran, S. & Mohanan, P. V. (2017). Bioorg. Chem. 70, 67–73.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds